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Abstract. Let (R,m) be a commutative Noetherian regular local ring of dimension d and
I be a proper ideal of R such that mAssR(R/I) = AsshR(I). It is shown that the R-

module Hht(I)I (R) is I-cofinite if and only if cd(I,R) = ht(I). Also we present a sufficient
condition under which this condition the R-module Hi

I(R) is finitely generated if and only
if it vanishes.
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1. Introduction

Throughout this paper, let R denote a commutative Noetherian local ring (with

identity), I a proper ideal of R and M an R-module. The local cohomology modules

Hi
I(M) arise as the derived functors of the left exact functor ΓI(−), where for an

R-module M , ΓI(M) is the submodule of M consisting of all elements annihilated

by some powers of I, i.e.
∞⋃
n=1

(0 :M In). There is a natural isomorphism:

Hi
I(M) = lim−→

n>1

ExtiR(R/In,M).

It is well-known that if (R,m) is a regular local ring of dimension d > 0, then

the top local cohomology module Hd
m(R) is not a finitely generated R-module.

But for each i > 0 and each finitely generated module over an arbitrary Noethe-

rian local ring (R,m) the R-module Hi
m(M) is Artinian and hence the R-module

HomR(R/m, Hi
m(M)) is finitely generated. This lead to a conjecture from Grothen-

dieck in [7], that for any ideal I of a Noetherian ring R and any finitely generated
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R-module M , the module HomR(R/I,Hi
I(M)) is finitely generated. This conjec-

ture is not true in general and several counterexamples are given by several authors

(see [8], [4] and [5]). In fact, using [4], Theorem 3.9, it is easy to see that for

any Noetherian ring of dimension d > 3 there are an ideal I of R and a finitely

generated R-module M , such that the module HomR(R/I,Hi
I(M)) is not finitely

generated. But for the first time Hartshorne was able to present a counterexample

to Grothendieck’s conjecture (see [8] for details and the proof). However, he defined

an R-module M to be I-cofinite if SuppM ⊆ V (I) and ExtjR(R/I,M) is finitely

generated for all j.

Recall that for an R-module M , the cohomological dimension of M with respect

to I is defined as

cd(I,M) := max{i ∈ Z : Hi
I(M) 6= 0}.

Let I be a proper ideal of a regular local ring (R,m). Let bight(I) denote the

biggest height of any minimal prime of I. In [10], Theorem 2.3, it was shown that

if HomR(R/I,Hj
I (R)) is finitely generated for all j > r for some r > bight(I), then

Hj
I (R) = 0 for all j > r. This result implies that if k = cd(I, R) > bight(I), then the

R-module HomR(R/I,Hk
I (R)) is not finitely generated. In particular, the R-module

Hk
I (R)) is not I-cofinite. The first aim of this paper is to show that if bight(I) =

ht(I) = n, then the R-module Hn
I (R) is I-cofinite if and only if cd(I, R) = n.

As mentioned in the introduction of [9], ifR is a regular local ring containing a field,

then H l
I(R) (for l > 1) is finitely generated if and only if it vanishes. This holds

because in this family of regular rings we have injdimR(H
i
I(R)) 6 dim Supp(Hi

I(R)).

In this paper we present a sufficient condition for local Cohen-Macaulay rings under

which the same assertion holds.

For each R-module L, we denote by AsshRL the set {p ∈ AssRL : dimR/p =

dimL}. Also for any ideal a of R we denote {p ∈ SpecR : p ⊇ a} by V (a). Finally,

for any R-module T , injdimR(T ) denotes the injective dimension of T .

2. Main results

The following theorem is the first main result of this paper.

Theorem 2.1. Let (R,m) be a regular local ring of dimension d and I a proper

ideal of R such that bight(I) = ht(I) = n. Then the following statements are

equivalent:

(i) Hn
I (R) is I-cofinite,

(ii) cd(I, R) = n.

P r o o f. (ii)⇒(i): It follows from [13], Proposition 3.11.
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(i)⇒(ii): Suppose the contrary is true. Let p be a minimal element of the set

S :=

d⋃

i=n+1

Supp(Hi
I(R)).

Then as by hypothesis we have bight(I) = ht(I) = n and cd(IRp, Rp) > n, it

follows from Grothendieck’s vanishing theorem that dim(Rp) > n and bight(IRp) =

ht(IRp) = n. Then replacing (R,m) with (Rp, pRp), we may assume that

d⋃

i=n+1

Supp(Hi
I(R)) = {m} and bight(I) = ht(I) = n.

Now as for each 0 6 i 6 n the R-module Hi
I(R) is I-cofinite, it follows from [11],

Corollary 3.5, that the R-module HomR(R/I,Hn+1
I (R)) is finitely generated with

support in V (m) and so is of finite length. So, by [13], Proposition 4.1, the R-

module Hn+1
I (R) is I-cofinite. Now since for each 0 6 i 6 n + 1 the R-module

Hi
I(R) is I-cofinite, again it follows from [11], Corollary 3.5, that the R-module

HomR(R/I,Hn+2
I (R)) is finitely generated with support in V (m) and so is of finite

length. Hence, by [13], Proposition 4.1, the R-module Hn+2
I (R) is I-cofinite. Pro-

ceeding in the same way we can see that the R-modules Hi
I(R) are I-cofinite for all

i > 0. In particular, for all j > bight(I) = n, the R-modules HomR(R/I,Hj
I (R)) are

finitely generated. Therefore in view of [10], Theorem 2.3 (i), we have cd(I, R) = n,

which is a contradiction. �

Corollary 2.2. Let (R,m) be a regular local ring of dimension d and p a prime

ideal of R such that ht(p) = n. Then the following statements are equivalent:

(i) Hn
p (R) is p-cofinite,

(ii) cd(p, R) = n.

P r o o f. The assertion follows from Theorem 2.1. �

For proving the next result we need the following well known lemma and its corol-

lary.

Lemma 2.3. Let (R,m) be a Noetherian local Cohen-Macaulay ring of dimension

d and I a nonzero proper ideal of R such that grade(I, R) = t. If 0 = Q1 ∩ . . . ∩Qr

with AssR(R/Qi) = qi is a minimal primary decomposition of the zero ideal of R

and

T = {q ∈ AssR(R) : dimR/(I + q) = dimR/I},

then 0 :R Ht
I(R) =

⋂
qi∈T

Qi.

P r o o f. See [2], Theorem 2.2. �
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Corollary 2.4. Let (R,m) be a Noetherian local Cohen-Macaulay ring of dimen-

sion d and p a prime ideal of R such that grade(p, R) = t > 0. Then 0 :R Ht
p(R) = 0

if and only if ZR(R) ⊆ p, where ZR(R) is the set of all zero divisors of R.

P r o o f. The assertion follows immediately from Lemma 2.3. �

Now we are ready to state and prove our next main result.

Theorem 2.5. Let (R,m) be a Noetherian local Cohen-Macaulay ring of dimen-

sion d and p a prime ideal of R such that ht(p) = n = cd(p, R). Then ZR(R) ⊆ p.

P r o o f. Since ht(p) = n = cd(p, R), it follows that grade(p, R) = n and hence we

have Hi
p(R) 6= 0 if and only if i = n. Now we show that Hd−n

m (Hn
p (R)) ∼= Hd

m(R).

Since grade(p, R) = n, it follows that p contains an R-regular sequence such as

x1, . . . , xn. In particular, this sequence is a p-filter regular sequence for R. Set

H := Hn
(x1,...,xn)

(R). By [12], Proposition 1.2, Γp(H) = H0
p(H) = Hn

p (R) and

for each i > 1, Hi
p(H) = Hn+i

p (R) = 0. Therefore for each i > 1, Hi
p(H) = 0

and Γp(H) = Hn
p (R). On the other hand, Γp(H/Γp(H)) = 0 and for all i > 1,

Hi
p(H/Γp(H)) ∼= Hi

p(H) = 0. Then for all i > 1,

∅ = SuppHi
p(H/Γp(H)) ⊆ V (m) = m.

Hence by [1], Theorem 3.1, Hi
m(H/Γp(H)) ∼= Hi

p(H/Γp(H)) = 0. Also by [1], Theo-

rem 4.5, Hd−n
(xn+1,...,xd)

(H) ∼= Hd
(x1,...,xd)

(R) ∼= Hd
m(R). Since H is (x1, . . . , xn)-torsion,

it follows that Hi
(xn+1,...,xd)

(H) ∼= Hi
(x1,...,xd)

(H) ∼= Hi
m(H). Consequently, for all

i > 1, Hd−n
m (H) ∼= Hd−n

(xn+1,...,xd)
(H) ∼= Hd

m(R). There is a short exact sequence

0 → Γp(H) = Hn
p (H) → H → H/Γp(H)) → 0.

Now from this short exact sequence and the fact that for all i > 0, Hi
p(H/Γp(H)) = 0,

we conclude that

Hd−n
m (Hn

p (R)) ∼= Hd−n
m (H) ∼= Hd

m(R).

Therefore, using the fact that AssR(R) = AsshR(R), we used from reference [3],

Corollary 2.9, that

0 :R Hn
p (R) ⊆ 0 :R Hd−n

m (Hn
p (R)) ⊆ 0 :R Hd

m(R) = 0.

Hence, we have 0 :R Hn
p (R) = 0 and so the assertion follows from Corollary 2.4. �

736



The following proposition is needed in the proof of Theorem 2.7.

Proposition 2.6. Let (R,m) be a Cohen-Macaulay local ring of dimension d > 2

and let X and Y be nonempty subsets of AssR(R) such that AssR(R) = X ∪ Y

and X ∩ Y = ∅. Let n be a positive integer such that 1 6 n 6 d − 1. Then there

exists a prime ideal Q of R such that ht(Q) = n and
⋂

p∈X

p ⊆ Q and
⋂

q∈Y

q 6⊆ Q. In

particular, cd(Q,R) > ht(Q) = n.

P r o o f. Since
⋂

q∈Y

q 6⊆
⋃

p∈X

p, it follows that there exists an element y ∈
⋂

q∈Y

q

such that y 6∈
⋃

p∈X

p. Then y is a part of a system of parameters for the R-

module R/J , where J :=
⋂

p∈X

p. So there are elements x1, . . . , xn ∈ m, where

the elements y, x1, . . . , xn are a part of a system of parameters for R/J . So

dim(R/(J + (x1, . . . , xn))) = d− n, which implies that there exists a prime ideal Q

in AsshR(R/(J + (x1, . . . , xn))) such that ht(Q) = n and y 6∈ Q and so
⋂

q∈Y

q 6⊆ Q

and
⋂

p∈X

p ⊆ Q. In particular, ZR(R) 6⊆ Q and so by Theorem 2.5 we have

ht(Q) = n < cd(Q,R). �

Theorem 2.7. Let (R,m) be a Noetherian local Cohen-Macaulay ring of dimen-

sion d > 2 and n an integer such that 1 6 n 6 d − 1. If for any prime ideal p of R

with ht(p) = n we have cd(p, R) = n, then AssR(R) has exactly one element.

P r o o f. The assertion follows from Proposition 2.6. �

As mentioned in the introduction of [9], if R is a regular local ring containing

a field, then H l
I(R) (for l > 1) is finitely generated if and only if it vanishes. In

this section we present a condition under which the same assertion holds for a given

Cohen-Macaulay local ring.

Theorem 2.8. Let (R,m) be a Noetherian Cohen-Macaulay local ring of dimen-

sion d > 1 such that

mH
ht(J)
J (R) = H

ht(J)
J (R)

for every proper ideal J of R with ht(J) > 1. Let I be an ideal of R such that H l
I(R)

(for l > 1) is finitely generated. Then H l
I(R) = 0.

P r o o f. Suppose that the contrary is true and H l
I(R) is nonzero and finitely

generated. Since H l
I(R) 6= 0, it follows that I is a proper and non-nilpotent ideal

of R. If l = ht(I), then as l > 1, it follows from the hypothesis thatH l
I(R) = mH l

I(R)

and so by NAK lemma (Nakayama’s lemma) it follows that H l
I(R) = 0, which is

a contradiction. Therefore, using [6], Theorem 6.2.7, we have l > ht(I) = grade(I, R).
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So, if l = 1, then ht(I) = 0. Moreover, as the R-module H1
I (R) is finitely generated,

it follows that the set AssR(H
1
I (R)) is finite. Let

AssR(H
1
I (R)) = {p1, . . . , pn}.

Then it follows from the Grothendieck’s vanishing theorem that ht(pi) > 1 for all

i = 1, . . . , n. Therefore there exists an element x ∈
n⋂

i=1

pi such that x is an R-

sequence. Now it is easy to see that x is a system of parameters for the R-moduleR/I.

In particular, dim(R/(I + Rx)) = d − 1, which implies that ht(I + Rx) = 1. As

x ∈
n⋂

i=1

pi, it follows that H
0
Rx(H

1
I (R)) = H1

I (R). Consequently, from the exact

sequence

0 → H1
Rx(H

0
I (R)) → H1

I+Rx(R) → H0
Rx(H

1
I (R)) → 0

(see [14], Corollary 3.5) we get the exact sequence

(∗) 0 → H1
Rx(H

0
I (R)) → H1

I+Rx(R) → H1
I (R) → 0.

Now as by hypothesis we have

mH1
I+Rx(R) = H1

I+Rx(R),

from the exact sequence (∗), H1
I (R) = mH1

I (R) and so by NAK lemma it follows

that H1
I (R) = 0, which is a contradiction. Thus, we have l > grade(I, R) > 1. Now

in view of [9], Theorem 3, there exists an ideal J ⊇ I of grade(J,R) = l−1 such that

H l
I(R) ∼= H l

J(R).

So replacing I with J we may assume that grade(I, R) = l−1 > 1 and the R-module

H l
I(R) is nonzero and finitely generated. Now as the R-module H l

I(R) is finitely

generated, it follows that the set AssR(H
l
I(R)) is finite. Let

AssR(H
l
I(R)) = {q1, . . . , qt}.

Then it follows from the Grothendieck’s vanishing theorem that ht(qi) > l for all

i = 1, . . . , t. Therefore there exists an element z ∈
t⋂

i=1

qi such that ht(I + Rz) = l.

As z ∈
t⋂

i=1

qi, it follows that H
0
Rz(H

l
I(R)) = H l

I(R). Consequently, from the exact

sequence

0 → H1
Rz(H

l−1
I (R)) → H l

I+Rz(R) → H0
Rz(H

l
I(R)) → 0
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(see [14], Corollary 3.5) we get the exact sequence

(∗∗) 0 → H1
Rz(H

l−1
I (R)) → H l

I+Rz(R) → H l
I(R) → 0.

Now as by hypothesis we have

mH l
I+Rz(R) = H l

I+Rz(R),

from the exact sequence (∗∗), H l
I(R) = mH l

I(R) and so by NAK lemma it follows

that H l
I(R) = 0, which is a contradiction. �

The following result is an application of Theorem 2.8.

Theorem 2.9. Let (R,m) be a Noetherian regular local ring of dimension d > 1

such that

injdimRH
ht(J)
J (R) < d

for every proper nonzero ideal J of R. Let I be an ideal of R such that H l
I(R) (for

l > 1) is finitely generated. Then H l
I(R) = 0.

P r o o f. In view of Theorem 2.8 it is enough to prove that

mH
ht(J)
J (R) = H

ht(J)
J (R)

for every proper ideal J of R with ht(J) > 1. To do this, suppose that J is a proper

and nonzero ideal of R such that mH
ht(J)
J (R) 6= H

ht(J)
J (R). Then there is an exact

sequence

0 → K → H
ht(J)
J (R) → R/m → 0

for some submodule K of H
ht(J)
J (R), which induces the exact sequence

ExtdR(R/m, H
ht(J)
J (R)) → ExtdR(R/m, R/m) → 0.

(Note that since R is a regular local ring of dimension d, it follows injdimR(K) 6 d.)

Now as ExtdR(R/m, R/m) 6= 0, it follows that ExtdR(R/m, H
ht(J)
J (R)) 6= 0 and hence

injdimRH
ht(J)
J (R) = d, which is a contradiction. �
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