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Abstract. Let G be a finite group. A normal subgroup N of G is a union of several
G-conjugacy classes, and it is called n-decomposable in G if it is a union of n distinct
G-conjugacy classes. In this paper, we first classify finite non-perfect groups satisfying
the condition that the numbers of conjugacy classes contained in its non-trivial normal
subgroups are two consecutive positive integers, and we later prove that there is no non-
perfect group such that the numbers of conjugacy classes contained in its non-trivial normal
subgroups are 2, 3, 4 and 5.
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1. Introduction

All groups considered in this paper are finite.

Let G be a group. There is close relation between the structure of G and some of

its arithmetical conditions, for example, the famous Sylow theorem, Burnside’s paqb-

theorem, and so on. In recent years, some scholars take great interest in investigating

the structure of a group by using arithmetical properties of its conjugacy classes. As

a normal subgroup N of G is a union of distinct G-conjugacy classes, the number

of G-conjugacy classes contained in N has great influence on the structure of the

normal subgroup N and the structure of G. Many group researchers have been

paying great attention to this topic, and lots of results have been obtained, see [2],

[3], [10] and [11] for instance.
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Let N be a normal subgroup of a group G. If N is a union of exactly t distinct G-

conjugacy classes for some positive integer t, then we say that N is a t-decomposable

normal subgroup of G or N is t-decomposable in G. For convenience, we write

ξ(N) = t and set K(G) = {ξ(N) : N E G, N 6= G}. As the structure of normal

subgroups has great influence on the structure of a group G, it is interesting to

determine the structure ofG by observing the numbers of conjugacy classes contained

in its normal subgroups. In 2004, Ashrafi in [3] raised the following question:

Question ([3], Question 2.7). Suppose that X is a finite set of positive integers

containing 1. Is there a finite group G such that K(G) = X?

Up to now, the cases when K(G) = {1, n}, where n is a positive integer larger

than 1, and K(G) = {1, 2, 3}, {1, 3, 4}, {1, 2, 4}, and {1, 2, 3, 4} have been investigated

in [2], [3], [1], [6], and [5], respectively.

In this paper, we first determine non-perfect groups G with K(G) = {1,m,m+1}

for a positive integer m. Notice that the cases m = 2 and 3 have been covered in [2]

and [3], respectively. So we only concentrate on the case when m > 4 and we have

the following theorem.

Theorem A. Suppose that G is a non-perfect group. Then K(G) = {1,m,m+1}

if and only if one of the following holds

(1) G is a Frobenius group, G′ is the kernel and G′ is minimal normal in G, and

a complement of G′ is cyclic of order 4.

(2) G/N ∼= S3, the symmetric group on three symbols, where N is the unique

minimal normal subgroup of G, and N is a q-group for some prime q 6= 3.

(3) |G/G′| = 4 and G′ is the unique minimal normal subgroup of G and G′ is

non-soluble. Furthermore, for every element x of G of order 2 such that x /∈ G′,

|CG(x)| = 4.

(4) G = G′×Z(G), |Z(G)| = m is a prime, G′ is a simple group and ξ(G′) = m+1.

(5) G has two non-trivial normal subgroups G′′ and G′, G′′ is non-soluble and

G/G′′ ∼= Zp ⋉E(2n), p = 2n − 1 is a prime, and for every element x ∈ G′ −G′′,

|CG(x)| = 2n.

On the other hand, in a recent paper, we determined the structure of a finite non-

perfect group where the numbers of conjugacy classes contained in its non-trivial

normal subgroups are three consecutive positive integers. It is natural to ask what

can be said about the structure of a finite non-perfect group where the numbers of

conjugacy classes contained in its non-trivial normal subgroups are four consecutive

positive integers? In fact, we prove the following theorem.
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Theorem B. There exists no finite non-perfect group G such that K(G) =

{1, 2, 3, 4, 5}.

Let G be a group. Throughout this paper, as usual, G′ denotes the derived

subgroup of G, Z(G) denotes the center of G and G is said to be perfect if G′ = G.

If x is an element in G, then xG = {xg : g ∈ G} is the G-conjugacy class containing x.

For a positive integer n, Zn denotes the cyclic group of order n, d(n) denotes the set

of all positive divisors of n and E(pn) denotes an elementary abelian group of order

pn for a prime p.

2. Preliminaries

In this section, some fundamental facts are established.

Lemma 2.1 ([7], Lemma 12.3.). Let G be a soluble group such that G′ is the

unique minimal normal subgroup of G. Then one of the following holds:

(i) G is a p-group, |G′| = p and Z(G) is cyclic.

(ii) G is a Frobenius group, G′ is the kernel and the complement of G is cyclic.

Lemma 2.2 ([6], Example 2.1.). Let G be an abelian group of order n. Then

K(G) = d(n)− {n}.

Lemma 2.3. Let G be a soluble group. Then G 6= G′T for any non-trivial normal

subgroup T of G.

P r o o f. Suppose to the contrary that T is a non-trivial normal subgroup of G

such that G = G′T . Then G/T is soluble. However, (G/T )′ = G′T/T = G/T , which

contradicts the fact that G is soluble. �

3. The proof of Theorem A

In this section, we deal with non-perfect groups with K(G) = {1,m,m + 1} for

some positive integer m. As the cases when m = 2 and 3 are covered in [3] and [1],

respectively, we concentrate on m > 4, and we always assume that m > 4 in the rest

of this section.

To begin with, we list some lemmas which are useful in the sequel.

Lemma 3.1. Let G be a group with K(G) = {1,m,m+1}. Then G is not abelian.
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P r o o f. Suppose that G is abelian and that |G| = n for some positive integer n.

Then by Lemma 2.2, K(G) = {1,m,m+ 1} = d(n) − {n}. As 2 divides m(m + 1),

we have that m = 2, which contradicts our assumption. �

Lemma 3.2. Let G be a group with K(G) = {1,m,m + 1}. Then G is not of

prime power order.

P r o o f. Suppose that G is a p-group for some prime p. It is easy to prove

that |G| = p3. As G is not abelian by the above lemma, we have that Z(G) is

of order p. Therefore, m = p. Let M be a normal subgroup of G of order p2.

Then Z(G) 6 M . Furthermore, M = Z(G) ∪ xG for some element x ∈ G by the

hypothesis. So |xG| = p2 − p = p(p− 1) divides p3, which gives that p = 2. Whence

m = 2, and this is a contradiction. �

In the following, we will prove Theorem A and we will distinguish two different

cases in which G is soluble or not.

Theorem 3.3. Suppose that G is a soluble group. Then K(G) = {1,m,m+1} if

and only if one of the following holds:

(1) G is a Frobenius group, G′ is the kernel and G′ is minimal normal in G, and

a complement of G′ is cyclic of order 4.

(2) G/N ∼= S3, the symmetric group on three symbols, where N is the unique

minimal normal subgroup of G, and N is a q-group for some prime q 6= 3.

P r o o f. We first assume that ξ(G′) = m. Then G′ is the unique minimal normal

subgroup of G. In fact, if there exists another minimal normal subgroup N of G, as

ξ(G′×N) > m+1, we have that G = G′×N , whence G is abelian, which contradicts

Lemma 2.3. Now by Lemma 2.1, G is a Frobenius group, G′ is the kernel and the

complement of G is cyclic. We may suppose that G = G′〈x〉 for some element x ∈ G.

Let M be a normal subgroup of G with ξ(M) = m+ 1. Then G′ 6 M and M/G′ is

a union of exactly two different G/G′-conjugacy classes. Then G/G′ is of order 4 by

Theorem 3 of [2], and G has the structure (1) in the theorem. Conversely, if G has

the structure described above, it is easy to see that G satisfies the hypothesis of this

theorem.

Now assume that ξ(G′) = m+1. Then G′ is the unique maximal normal subgroup

of G by Lemma 2.3. Furthermore, if M and N are two distinct minimal normal

subgroups of G, then both M and N are contained in G′ and ξ(M) = ξ(N) = m.

It follows that ξ(M × N) > m + 1, hence M × N = G, which contradicts the fact

that MN 6 G′. Therefore, G has a unique minimal normal subgroup, say N , which

is a q-group for some prime q. In the following, we denote by G = G/N . Then
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G has a unique non-trivial normal subgroup G′/N , and G′/N is a union of exactly

two G-conjugacy classes. Now by Theorem 3 of [2], G ∼= S3. Let G
′ = N ∪ xG for

some element x ∈ G. Then |xG| = |G′| − |N | = 2|N |, so |CG(x)| = 3, which shows

that q 6= 3. Conversely, if G has the structure described above, we can see that N

and G′ are non-trivial normal subgroups of G, and G satisfies the hypothesis of this

theorem. �

Theorem 3.4. Suppose that G is a non-soluble non-perfect group. Then K(G) =

{1,m,m+ 1} if and only if one of the following holds:

(1) |G/G′| = 4 and G′ is the unique minimal normal subgroup of G and G′ is

non-soluble. Furthermore, for every element x of G of order 2 such that x /∈ G′,

|CG(x)| = 4.

(2) G = G′×Z(G), |Z(G)| = m is a prime, G′ is a simple group and ξ(G′) = m+1.

(3) G has two non-trivial normal subgroups G′′ and G′, G′′ is non-soluble and

G/G′′ ∼= Zp ⋉E(2n), p = 2n − 1 is a prime, and for every element x ∈ G′ −G′′,

|CG(x)| = 2n.

P r o o f. First suppose that ξ(G′) = m. Then G′ is a minimal normal subgroup

of G. If G has another minimal normal subgroup N 6= G′, then G = N × G′ as

ξ(G′N) > m + 1. So N ∼= G/G′ is abelian. Suppose that |N | = ps for some prime

p and some positive integer t. Then s = 2 as K(G) = {1,m,m + 1}. Let x be

an element of N of order p. Then M = G′〈x〉 is a normal subgroup of G, and

|M | = p|G′|. Then |xG| = (p − 1)|G′|, so p − 1 divides p2. Therefore, p = 2. So

|CG(x)| = 4. As N 6 CG(x), we conclude that CG′(x) = 1. Then by Theorem 10.1.4

of [4], G′ is abelian, which shows that G is soluble, a contradiction. Therefore, G′

is the unique minimal normal subgroup of G. Now for every normal subgroup K

of G such that ξ(K) = m + 1, we have that G′ 6 K and K/G′ is a union of two

G/G′-conjugacy classes. Then by Theorem 3 of [2], G/G′ is of order 4. Let y be an

arbitrary element of G of order 2 which is not in G′. Then K = G′ ∪ yG is a normal

subgroup of G. It follows that |yG| = |G′| and |CG(y)| = 4, we can see that G has

the structure described in (1) of this theorem.

Now suppose that ξ(G′) = m + 1. If there exists some normal subgroup N of

G such that ξ(N) = m and N � G′, then G = G′ × N . Hence, N = Z(G).

Furthermore, |N | = |G/G′| = p for some prime p as G′ is a maximal normal subgroup

of G. So, m = p. If there exists a normal subgroup T of G and T < G′, then

ξ(T × Z(G)) > m + 1, and thus G = T × Z(G) < G′ × Z(G) = G, which is

a contradiction. Therefore, G′ is minimal normal in G. It is easy to see that every

minimal normal subgroup of G is equal to G′ or Z(G). Now as 1 < G′ < G is

a chief series of G and 1 < Z(G) < G is a normal series of G, by Jordan-Hölder
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theorem, Z(G) is a maximal subgroup of G. Therefore, G′ and Z(G) are all non-

trivial normal subgroups of G. Since G′ ∼= G/Z(G), and Z(G) is maximal normal

in G, G′ is a simple group, and this is case (2) in this theorem.

In the following, we assume that all minimal normal subgroups of G are contained

in G′. Now let T be a normal subgroup of G and ξ(T ) = m. Then it is easy to

see that T is the unique minimal normal subgroup of G and by Theorem 3 of [2],

G/T ∼= S3 or G/T ∼= Zp ⋉ E(2n), where n is a positive integer and p = 2n − 1

is a prime. If G/T ∼= S3, then |G′/T | = 3. Suppose that G′ = T ∪ zG for some

element z ∈ G. Then |CG(z)| = 3, so G′ = T 〈z〉 is a Frobenius group, whence N is

nilpotent and G is soluble, which is a contradiction. Therefore, the only possibility

is G/T ∼= Zp ⋉ E(2n). As G′/T is abelian and G′ is non-soluble, T = G′′. By

the hypothesis of this theorem, we see that G′/G′′ is the unique non-trivial normal

subgroup of G/G′′. For every element w ∈ G′ − G′′, we see that G′ = G′′ ∪ wG. It

is easy to show that |CG(w)| = 2n, and this is case (3) of this theorem.

Conversely, if G has the structure described in the above three paragraphs, it is

easy to see that G satisfies the hypothesis of this theorem. �

4. The proof of Theorem B

In this section, we attempt to obtain the structure of a non-perfect group G with

K(G) = {1, 2, 3, 4, 5}.

First, some basic lemmas are needed.

Lemma 4.1. If G is a group with K(G) = {1, 2, 3, 4, 5}, then G is soluble.

P r o o f. Suppose that G is non-soluble. Let N1, N2 be normal subgroups of G

such that ξ(N1) = 2 and ξ(N2) = 3. We show that N1 < N2. For otherwise, as

N1 ∩ N2 = 1, ξ(N1 × N2) > 5. It follows that G = N1 × N2. However, we see

that both N1 and N2 are soluble by [10] and [11], and thus G is soluble, which is

a contradiction. If ξ(G′) < 4, then again by [10] and [11], G′ is soluble, so G is

soluble, which is a contradiction. Therefore, ξ(G′) > 4. If there exists a non-trivial

normal subgroup N of G with ξ(N) < 4 and N 6 G′, then G/N is non-perfect, and

K(G/N) ⊆ {1, 2, 3, 4}. By [5], we see that G/N is soluble, and G is soluble too,

which contradicts our assumption. So no 2- or 3-decomposable normal subgroup of

G is contained in G′. Now let N1, N2 be normal subgroups of G and ξ(N1) = 2,

ξ(N2) = 3. As G′ ∩N1 = 1, G′ ∩N2 = 1, we have that G = N1 ×G′ = N2 ×G′. So

N1
∼= G/G′ ∼= N2, which is a contradiction as we have proved that N1 < N2. �

Lemma 4.2. If G is a group with K(G) = {1, 2, 3, 4, 5}, then G is not abelian.
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P r o o f. Suppose that G is an abelian group of order n for some positive inte-

ger n. Then by Lemma 2.2, K(G) = d(n) − {n}. So d(n) − {n} = {1, 2, 3, 4, 5}. As

both 3 and 4 divide n, we have that 12 divides n. However, 12 /∈ {1, 2, 3, 4, 5}, which

is a contradiction. �

Lemma 4.3. If G is a group with K(G) = {1, 2, 3, 4, 5}, then G is not of prime

power order.

P r o o f. Suppose that G is a p-group for some prime p. Let N be a minimal

normal subgroup of G. Then K(G/N) = {1, 2, 3, 4}. However, by Lemma 2.4 of [5],

there is no {1, 2, 3, 4}-decomposable group of prime power order, which is a contra-

diction. �

We now come to the proof of Theorem B and we divide it into the following four

theorems, in which ξ(G′) = 2, 3, 4, and 5, respectively.

Theorem 4.4. There is no non-perfect group G such that K(G) = {1, 2, 3, 4, 5}

and ξ(G′) = 2.

P r o o f. Let N be a normal subgroup of G with ξ(N) > 3. Then G′ 6 N . In

fact, if G′ � N , then ξ(G′N) > 5, and thus G = G′N , which contradicts Lemma 2.3.

Now let N be a normal subgroup of G with ξ(N) = 3. Then N/G′ is a union of

two G/G′-conjugacy classes. We denote by G = G/G′. Then {1, 2} ⊆ K(G/G′) ⊆

{1, 2, 3, 4}. As G/G′ is abelian and G/G′ has at least three non-trivial normal sub-

groups, by Theorem 3 of [2], Theorem of [3], Main theorem of [5] and Theorems 3.2

and 3.3 of [6], the only possibility for the structure of G/G′ is that G/G′ ∼= Z2 ×Z2.

By Theorem 1 of [10], we may assume that |G′| = pn for some prime p and

some positive integer n. Then |G| = 4pn. So p 6= 2 by Lemma 4.3. Let x ∈ G

such that G′ = 1 ∪ xG. Then |xG| = pn − 1. As |xG| divides |G|, we have that

pn − 1 divides 4pn. Since (pn − 1, pn) = 1, pn − 1 divides 4. It follows that pn = 3

or 5. Let N = G′ ∪ yG ∪ zG be a 4-decomposable normal subgroup of G. Then

2pn = |N | = |G′| + |yG| + |zG|. It follows that pn = |yG| + |zG|. In both cases,

we have that |yG| = 1 or |zG| = 1. So Z(G) 6= 1. Then G′ � Z(G). By the first

paragraph of the proof, we conclude that |Z(G)| = 2. If pn = 5, then |xG| = 4 and

hence |CG(x)| = 5, which contradicts the fact that Z(G) 6 CG(x). Therefore, p
n = 3.

Now let K = G′ ∪ uG ∪ vG ∪wG be a 5-decomposable normal subgroup of G, where

u, v and w are elements of G. It follows that 2pn = |K| = |G′|+ |uG|+ |vG|+ |wG|.

Therefore, pn = 3 = |uG| + |vG| + |wG|, and thus |uG| = |vG| = |wG| = 1, whence

|Z(G)| > 4, which is a contradiction. �

Theorem 4.5. There is no non-perfect group G such that K(G) = {1, 2, 3, 4, 5}

and ξ(G′) = 3.
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P r o o f. Suppose that G is a non-perfect group with K(G) = {1, 2, 3, 4, 5} and

ξ(G′) = 3. We will show that G′ is contained in every normal subgroup K of G with

ξ(K) > 4, G′ contains every normal subgroup N of G with ξ(N) = 2 and G′ is the

unique 3-decomposable normal subgroup of G. In fact, if G′ � K, then G′K E G

and ξ(G′K) > 5. It follows that G = G′N , which contradicts Lemma 2.3. The latter

two conclusions can be obtained similarly.

Now let N be a normal subgroup of G with ξ(N) = 2 and write G = G/N . By

Theorem 1 of [10], we may assume that |N | = pn for some prime p and some positive

integer n. Then G′/N is a union of two G-conjugacy classes. And if K is a normal

subgroup of G with ξ(K) = 4, then K/N is a union of three G-conjugacy classes.

Therefore, {1, 2, 3} ⊆ K(G) ⊆ {1, 2, 3, 4}. Since G has at least three non-trivial

normal subgroups, by Theorem of [3] and Main theorem of [5], G ∼= Q8, D8, D12

or H , where H = 〈a, b : a7 = b6 = 1, b−1ab = a5〉.

First suppose that G ∼= Q8 or D8. Then |G| = 8. It follows that |G| = 8pn. So

p 6= 2 by Lemma 4.3. In both cases, we have |G′| = 2pn. Let N = 1 ∪ xG for some

element x ∈ G. Then |xG| = pn−1. As |xG| divides |G| and (pn−1, pn) = 1, we have

that pn−1 divides 8. It follows that pn = 3, 5 or 9. If pn = 3, then |CG(x)| = 12 and

CG(x) E G. As N = 〈x〉 6 Z(CG(x)), we have that CG(x) = N × T , with |T | = 4.

It follows that T E G. However, we have shown that every normal subgroup of G

contains or is contained in G′, and that |G′| = 2 · 3 = 6, which is a contradiction.

If pn = 5, then |xG| = 4 and thus |CG(x)| = 10. As N = 〈x〉 6 Z(CG(x)), we have

that CG(x) = CG(N) = N × T , with |T | = 2. So T E G. It follows that T 6 Z(G).

On the other hand, G/CG(N) is of order 4, which is abelian, so G′ 6 CG(N).

Since |G′| = 10 = |CG(N)|, G′ = CG(N). Suppose that G′ = N ∪ yG for some

element y ∈ G. Then |yG| = 5, and thus |CG(y)| = 8, which contradicts the fact

that N 6 CG(y). If p
n = 9, then we can take U to be a normal subgroup of G with

ξ(U) = 5. We may assume that U = N ∪uG∪vG∪wG for some elements u, v, w ∈ G.

Then |U/N | = 4 and |uG| + |vG| + |wG| = 27. As |uG|, |vG|, |wG| divides |G| = 72,

we have that |uG| = |vG| = |wG| = 9, and thus |CG(u)| = |CG(v)| = |CG(w)| = 8.

Therefore, u, v, w are contained in the center of some Sylow 3-subgroup of G, and

thus all of them are in the same conjugacy class of G, which is a contradiction.

Now suppose that G ∼= D12. Then |G′/N | = 3 and |G′| = 3pn. Let T/N be

a normal subgroup of G of order 2. Then |T | = 2pn. However, we have shown that

every non-trivial normal subgroup of G contains or is contained in G′. So T 6 G′ or

G′ 6 T , which is a contradiction by order consideration.

Finally suppose that G ∼= H , where H = 〈a, b : a7 = b6 = 1, b−1ab = a5〉.

Then |G| = 2 · 3 · 7 · pn and |G′| = 7 · pn. As ξ(G′) = 3, by Theorem 1 of [11],

|G′| = pn+l for some positive integer l or |G′| = pnq for some prime q 6= p. We now

distinguish the two cases. If |G′| = pn+l, then p = 7 and l = 1 as |G′| = 7 · pn.
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Assume that N = 1 ∪ xG for some element x ∈ G. Then |xG| = 7n − 1 divides

2 · 3 · 7n+1. As (7n − 1, 7n+1) = 1, 7n − 1 divides 2 · 3. It follows that 7n = 7,

whence |G| = 2 · 3 · 72. Suppose that G′ = N ∪ yG for some element y ∈ G. Then

|yG| = |G′|−|N | = 72−7 = 7 ·6. It follows that |CG(y)| = 7, which is a contradiction

as |G′| is abelian of order 72. If |G′| = pnq, then q = 7 6= p. Suppose that N = 1∪uG

for some element u ∈ G. Then |uG| = pn − 1 divides 2 · 3 · 7 · pn. As (pn − 1, pn) = 1,

pn− 1 divides 2 · 3 · 7. It follows that pn = 2, 3, 4, 8 or 43. If pn = 2, then N 6 Z(G).

Let G′ = N ∪ vG for some v ∈ G. Then |vG| = 12, whence |CG(v)| = 7, which

is a contradiction. If pn = 3, then |G| = 2 · 32 · 7. Let N = 1 ∪ wG for some

element w ∈ G. Then |wG| = 2. It follows that CG(N) = CG(w) is a normal

subgroup of G of index 2. So G′ 6 CG(N). Suppose that G′ = N ∪ tG for some

element t ∈ G. Then |tG| = 18, and thus |CG(t)| = 7, which contradicts the fact that

N 6 CG(G
′) 6 CG(t). If p

n = 4, then |G| = 23 ·3·7. LetN = 1∪αG and G′ = N∪βG

for elements α, β ∈ G. Then |CG(α)| = 23 · 7 and |CG(β)| = 7. As G′ contains all

Sylow 7-subgroups of G, we see a contradiction. If pn = 23, we may let T/N be

a normal subgroup of G of order 2 · 7, and let T = G′ ∪ zG for some element z ∈ G.

Then |zG| = 23 · 7 and |CG(z)| = 6. However, as z is a 2-element, 4 must divide

|CG(z)|, which is a contradiction. If p
n = 43, then |G| = 2 · 3 · 7 · 43. Let N = 1∪ εG

and G′ = N ∪ ξG for elements ε, ξ ∈ G. Then |CG(ε)| = 43 and |CG(ξ)| = 7. As

all Sylow subgroups of G are cyclic of prime order, by Theorem 6.18 of [9], G =

〈a, b : am = bn = 1, b−1ab = ar, ((r − 1)n,m) = 1, rn ≡ 1 (mod m), |G| = mn〉.

Therefore, |CG(ε)| > 43 or |CG(ξ)| > 7, which is a contradiction. �

Theorem 4.6. There is no non-perfect group G such that K(G) = {1, 2, 3, 4, 5}

and ξ(G′) = 4.

P r o o f. LetK be a normal subgroup ofG with ξ(K) = 5. ThenG′ 6 K. In fact,

if G′ � K, then ξ(G′K) > 5. So G′K = G, which contradicts Lemma 2.3. Similarly,

we can prove that every normal subgroup N of G with ξ(N) 6 3 is contained in G′.

Let N and T be normal subgroups of G with ξ(N) = 2 and ξ(T ) = 3. If N � T , then

ξ(N × T ) > 4, which contradicts N, T 6 G′. Therefore, there is a series of normal

subgroups of G as follows:

1 < N < T < G′ < K < G.

Let G = G/N . Then K(G) = {1, 2, 3, 4} and G′/N is a union of four conjugacy

classes of G. However, by Theorem 3.2 of [5], there is no such group. So, the proof

is complete. �

Theorem 4.7. There is no non-perfect group G such that K(G) = {1, 2, 3, 4, 5}

and ξ(G′) = 5.
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P r o o f. In this case, by Lemma 2.3, G′ contains all non-trivial normal subgroups

of G. It is easy to see that G has a series of normal subgroups

1 < N < M < T < G′ < G,

with ξ(N) = 2, ξ(M) = 3, ξ(T ) = 4 and ξ(G′) = 5. Let G = G/N . Then K(G) =

{1, 2, 3, 4} and G′/N is a union of four conjugacy classes of G. By Theorem 3.3 of [5],

|G| = 23 · 33 or 23 · 3 · 52. By Theorem 1 of [10], |N | = pn for some prime p and some

positive integer n. Furthermore, |M | = pn+l for some positive integer l or |M | = pnq

for some prime q 6= p.

First suppose that |G| = 23 · 33. In this case, all non-trivial normal subgroups of

G are of order 32, 2 · 32, 23 · 32. Therefore, |M | = 32pn. If |M | = pnq, then q = 32,

which is a contradiction. Therefore, |M | = pn+l = 32pn, so p = 2 and l = 2. Let

N = 1 ∪ wG for some element w ∈ G. Then |N | = 3n − 1 divides 23 · 33+n. It

follows that 3n − 1 divides 23. So 3n = 3 or 9. If 3n = 1, then |wG| = 2, and

CG(w) = CG(N) is a normal subgroup of G of index 2. However, G has no normal

subgroup of index 2. If 3n = 32, then let N = 1∪xG,M = N ∪yG for some elements

x, y ∈ G. It follows that |CG(x)| = 35 and |CG(y)| = 33. Therefore, N = Z(M) and

M is non-abelian. By Theorem 2 of [8], T is a Frobenius group with kernel M . As

|T | = 2|M |, M has a fixed point free automorphism of order 2. Then M is abelian

by Theorem 10.1.4 of [4], which is a contradiction.

Now suppose that |G| = 23 · 3 · 52. In this case, if |M | = pnq, then all non-trivial

normal subgroups of G are of orders 52, 2 · 52, 23 · 52. Therefore, |M | = 52pn. If

|M | = pnq, then q = 52, a contradiction. Therefore, |M | = pn+l = 52pn. It follows

that p = 5 and l = 2. Let N = 1 ∪ vG for some element v ∈ G. Then |vG| = 5n − 1

divides 23 · 3 · 5n+2. Therefore, 5n − 1 divides 23 · 3. So, 5n = 5 or 25. If 5n = 5,

then |vG| = 4, whence CG(v) = CG(N) is a normal subgroup of G of index 4, which

contradicts the above claim. If 5n = 52, we may suppose that M = N ∪wG for some

element w ∈ G. Then |wG| = 54 − 52 = 52 · 23 · 3. So |CG(w)| = 52, whence M is

not abelian. However, by Theorem 2 of [8], T is a Frobenius group of order 2 · 54.

Therefore,M has a fixed point free automorphism of index 2, and thus M is abelian

by Theorem 10.1.4 of [4], which is a contradiction. �
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