Commentationes Mathematicae Universitatis Carolinas

Yahya Talebi; Atefeh Darzi

On graph associated to co-ideals of commutative semirings

Commentationes Mathematicae Universitatis Carolinae, Vol. 58 (2017), No. 3, 293-305
Persistent URL: http://dml.cz/dmlcz/146913

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2017

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

On graph associated to co-ideals of commutative semirings

Yahya Talebi, Atefeh Darzi

Abstract

Let R be a commutative semiring with non-zero identity. In this paper, we introduce and study the graph $\Omega(R)$ whose vertices are all elements of R and two distinct vertices x and y are adjacent if and only if the product of the co-ideals generated by x and y is R. Also, we study the interplay between the graph-theoretic properties of this graph and some algebraic properties of semirings. Finally, we present some relationships between the zero-divisor graph $\Gamma(R)$ and $\Omega(R)$.

Keywords: semiring; co-ideal; maximal co-ideal
Classification: 16Y60, 05C75

1. Introduction

The concept of the zero-divisor graph of a commutative ring R was first introduced by Beck [3]. He defined this graph as a simple graph where all elements of the ring R are the vertex-set of this graph and two distinct elements x and y are adjacent if and only if $x y=0$. Beck conjectured that $\chi(R)=\omega(R)$ for every ring R. In [2], Anderson and Livingston introduced the zero-divisor graph with vertices $Z(R)^{*}=Z(R) \backslash\{0\}$, the set of non-zero zero-divisors of R. Some other investigations into properties of zero-divisor graph over commutative semiring may be found in [5], [6]. In [11], Sharma and Bhatwadekar defined another graph on a ring R with vertices as elements of R and there is an edge between two distinct vertices x and y in R if and only if $R x+R y=R$. Further, in [10], Maimani et al. studied the graph defined by Sharma and Bhatwadekar and called it comaximal graph. Also, in [1], Akbari et al. studied the comaximal graph over non-commutative ring.

Note that throughout this paper all semirings are considered to be commutative semirings with non-zero identity. First, we introduce the concept of product of coideals in the semiring R. Next, we define an undirected graph over commutative semiring in which vertices are all elements of R and two distinct vertices x and y are adjacent if and only if the product of the co-ideals generated by x and y is R (i.e. $F(x) F(y)=R$). We denote this graph by $\Omega(R)$. In Section 2, we recall some notions of semirings which will be used in this paper. In other sections, we study some graph-theoretic properties of $\Omega(R)$ and its subgraphs such as diameter, radius, girth, clique number and chromatic number.

In a graph G, we denote the vertex-set of G by $V(G)$ and the edge-set by $E(G)$. A graph G is said to be connected, if there is a path between every two distinct vertices and we say that G is totally disconnected, if no two vertices of G are adjacent. For a given vertex x, the number of all vertices adjacent to it, is called degree of the vertex x, denoted by $\operatorname{deg}(x)$. For distinct vertices x and y of G, let $d(x, y)$ be the length of the shortest path from x to $y(d(x, x)=0$ and $d(x, y)=\infty$ if there is no such path). The diameter of G is $\operatorname{diam}(G)=\sup \{d(x, y): x$ and y are distinct vertices of $G\}$. The girth of G, denoted by $\operatorname{gr}(G)$, is defined as the length of the shortest cycle in G. If G has no cycles, then $\operatorname{gr}(G)=\infty$ and G is called a forest. Also, G is called a tree if G is connected and has no cycles. A clique in a graph G is a complete subgraph of G. The clique number of G, denoted by $\omega(G)$, is the number of vertices in a largest clique of G. An independent set in a graph G is a set of pairwise non-adjacent vertices. A graph in which each pair of distinct vertices is joined by an edge is called a complete graph. We denote the complete graph on n vertices by K_{n}. For a positive integer k, a k-partite graph is one whose vertex-set can be partitioned into k independent sets. A k-partite graph G is said to be a complete k-partite graph, if each vertex is joined to every vertex that is not in the same partition. The complete bipartite graph (2-partite graph) with parts of sizes m and n is denoted by $K_{m, n}$. We will sometimes call a $K_{1, n}$ a star graph. We write $G \backslash\{x\}$ or $G \backslash S$ for the subgraph of G obtained by deleting a vertex x or set of vertices S. An induced subgraph is a subgraph obtained by deleting a set of vertices. Also, a spanning subgraph of G is a subgraph with vertex-set $V(G)$. A general reference for graph theory is [12].

2. Preliminaries

In this section, we recall various notions about semirings which will be used throughout the paper. A semiring R is an algebraic system $(R,+, \cdot)$ such that $(R,+)$ is a commutative monoid with identity element 0 and (R, \cdot) is a semigroup. In addition, operations + and \cdot are connected by distributivity and 0 annihilates R (i.e. $x 0=0 x=0$ for each $x \in R$). A semiring R is said to be commutative if (R, \cdot) is a commutative semigroup and R is said to have an identity if there exists $1 \in R$ such that $1 x=x 1=x$.

Recall that, throughout this paper, all semirings are commutative with nonzero identity. The following definitions are given in [7], [9].
2.1 Definition. Let R be a semiring.
(1) A non-empty subset I of R is called a co-ideal of R if and only if it is closed under multiplication and satisfies the condition that $a+r \in I$ for all $a \in I$ and $r \in R$. According to this definition, $0 \in I$ if and only if $I=R$. Also, a co-ideal I of R is called strong, if $1 \in I$.
(2) A co-ideal I of semiring R is called subtractive if $x \in I$ and $x y \in I$, implies $y \in I$ for all $x, y \in R$. So every subtractive co-ideal is a strong co-ideal.
(3) A proper co-ideal P of R is called prime if $a+b \in P$, implies $a \in P$ or $b \in P$ for all $a, b \in R$.
(4) A proper co-ideal I of R is called maximal if there is no co-ideal J such that $I \subset J \subset R$.
(5) An element a of a semiring R is multiplicatively idempotent if and only if $a^{2}=a$ and a is called additively idempotent if and only if $a+a=a$. A semiring R is said to be idempotent if it is both additively and multiplicatively idempotent.
(6) An element x of a semiring R is called a zero-sum of R, if there exists an element $y \in R$ such that $x+y=0$. It is clear that, y is the unique element which satisfies $x+y=0$. We will denote the set of all zero-sums of R by $Z S(R)$. It is easy to see that $Z S(R)$ is an ideal of R. Also, a semiring R is a ring if and only if $Z S(R)=R$ and R is called zero-sumfree if and only if $Z S(R)=0$.
(7) If A is a non-empty subset of a semiring R, then the set $F(A)$ of all elements of R of the form $a_{1} a_{2} \ldots a_{n}+r$, where $a_{i} \in A$ for all $1 \leq i \leq n$ and $r \in R$, is a co-ideal of R containing A. In fact, $F(A)$ is the unique smallest co-ideal of R containing A.

By the above definition, we can consider the co-ideal generated by a single element $x \in R$ as follows: $F(x)=\left\{x^{n}+r: r \in R\right.$ and $\left.n \in \mathbf{N}\right\}$. It is obvious that, if $x \in I$ for some co-ideal I, then $F(x) \subseteq I$.

By definition of co-ideal, if R is a ring, then R has no proper co-ideals and so throughout this paper we consider semirings which are not rings. For a semiring R, we denote the set of maximal co-ideals, the union of all the maximal co-ideals and the intersection of all the maximal co-ideals of R by $C o-\operatorname{Max}(R), U M(R)$ and $I M(R)$, respectively. Also, if the semiring R has exactly one maximal coideal, then we say that the semiring R is c-local and R is said to be a c-semilocal semiring, if R has only a finite number of maximal co-ideals.
2.2 Lemma ([7]). Let I_{1}, \ldots, I_{n} be co-ideals of a semiring R and P be a prime co-ideal containing $\bigcap_{i=1}^{n} I_{i}$. Then $I_{i} \subseteq P$ for some $i=1, \ldots, n$. Moreover, if $P=\bigcap_{i=1}^{n} I_{i}$, then $P=I_{i}$ for some i.
2.3 Lemma. Let R be a semiring. Then $x \in \sqrt{Z S(R)}$ if and only if $F(x)=R$.

Proof: Let $x \in \sqrt{Z S(R)}$. Thus $x^{n} \in Z S(R)$ for some positive integer n. This implies $x^{n}+r=0$ for some $r \in R$. Hence $0 \in F(x)$, since $x^{n}+r \in F(x)$ and so $F(x)=R$.

The converse follows, since all conclusions are reversible.
2.4 Proposition. Let R be a semiring. Then $R \backslash \sqrt{Z S(R)}=U M(R)$.

Proof: Assume that $x \in R \backslash \sqrt{Z S(R)}$. Thus $F(x) \neq R$ and by [7, Proposition 2.1], there exists $m \in C o-\operatorname{Max}(R)$ such that $x \in F(x) \subseteq m$. Hence $R \backslash \sqrt{Z S(R)} \subseteq U M(R)$.

Conversely, suppose that $x \in U M(R)$. Thus there is a maximal co-ideal m such that $x \in m$. Now, if $x \in \sqrt{Z S(R)}$, then $F(x)=R$ by Lemma 2.3 and so $R=F(x) \subseteq m$, that is impossible. Hence $U M(R) \subseteq R \backslash \sqrt{Z S(R)}$. This implies $R \backslash \sqrt{Z S(R)}=U M(R)$.
2.5 Remark. Note that the Prime Avoidance Theorem is explained for subtractive prime co-ideals of a commutative semiring R in [4, Theorem 3.8]. Also, by [8, Proposition 2.5] and [7, Theorem 3.10], every maximal co-ideal is a subtractive and prime co-ideal, so we can conclude that the Prime Avoidance Theorem and Lemma 2.2 also hold for the case where co-ideals are maximal.

In the following, we define the product of co-ideals of a semiring R. It is straightforward to verify that the product of co-ideals with this definition is a coideal.
2.6 Definition. Let I and J be two co-ideals of a semiring R. We define the product of I and J as follows:

$$
I J=\{x y+r: x \in I, y \in J \text { and } r \in R\} .
$$

Similarly, we define the product of any finite family of co-ideals. Moreover, I^{n} is defined for any co-ideal I and $I^{n}=\left\{a_{1} \ldots a_{n}+r: a_{i} \in I\right.$ and $\left.r \in R\right\}$.

Let I and J be co-ideals of R such that $x \in I$ and $y \in J$. Note that with this definition, if I and J are strong co-ideals, then $x, y \in I J$ because $x=x 1+0$ and $y=1 y+0$ but this may not be true in general.

3. Some basic properties of $\Omega(R)$

As mentioned in the introduction, the graph $\Omega(R)$ is a graph with all the elements of R as its vertex-set and two distinct vertices x and y are adjacent if and only if $F(x) F(y)=R$. Let $\Omega_{1}(R)$ be the subgraph of $\Omega(R)$ with vertexset $\sqrt{Z S(R)}$ and $\Omega_{2}(R)$ be the subgraph of $\Omega(R)$ with vertex-set $U M(R)$. If $x \in \sqrt{Z S(R)}$, then by Lemma 2.3, $F(x)=R$ and this implies x is adjacent to any other vertex of R. With this comment, we can say that $\Omega_{1}(R)$ is a complete graph. Also, if $x, y \in m$ for some maximal co-ideal m of R, then x and y cannot be adjacent because $F(x) F(y) \subseteq m$. Hence, if the semiring R has one maximal co-ideal, then $\Omega_{2}(R)$ is a totally disconnected graph.
3.1 Lemma. Let m be a maximal co-ideal of a semiring R and $x \in R$. If $x \notin m$, then $m F(x)=R$.

Proof: Suppose that $x \notin m$. Thus $F(m \cup\{x\})=R$ since $m \subsetneq F(m \cup\{x\})$ and m is a maximal co-ideal. Now, since $0 \in R$, we split the proof into three cases for $F(m \cup\{x\})$:

Case 1: There exist $a_{1}, \ldots, a_{k} \in m$ and $r \in R$ for some positive integer k such that $a_{1} \ldots a_{k}+r=0$. This implies $0 \in m$ since m is co-ideal. This is a contradiction because m is a maximal co-ideal.

Case 2: $x^{t}+r=0$ for some $r \in R$ and a positive integer t. In this case, $F(x)=R$ because $0=x^{t}+r \in F(x)$ and so $m F(x)=R$.

Case 3: $y x^{t}+r=0$ for some $y \in m, r \in R$ and a positive integer t. Hence $m F(x)=R$ since $0=y x^{t}+r \in m F(x)$.

As an immediate consequence of Lemma 3.1, we have the next proposition:
3.2 Proposition. Let m be a maximal co-ideal of a semiring R and $x \in R$. If $x \notin m$, then there is an element $y \in m$ such that x is adjacent to y in $\Omega(R)$.

Proof: Suppose that m is a maximal co-ideal and $x \notin m$. By Lemma 3.1, we have $m F(x)=R$. This implies $y\left(x^{t}+r\right)+k=0$ for some $r, k \in R, y \in m$ and a positive integer t. Hence $y x^{t}+s=0$ for some $s \in R$ and so $F(x) F(y)=R$ since $0=y x^{t}+s \in F(x) F(y)$. Therefore, x and y are adjacent in $\Omega(R)$.
3.3 Proposition. Let R be a semiring and $x \in R$. Then $x \in I M(R)$ if and only if x is adjacent to no vertex of $\Omega_{2}(R)$.

Proof: Let $x \in I M(R)$. Assume contrary that $y \in U M(R)$ is adjacent to x in $\Omega_{2}(R)$. Thus there exists $m \in C o-\operatorname{Max}(R)$ such that $y \in m$ and $F(x) F(y)=R$. On the other hand, $x \in I M(R)$ gives $x \in m$. Hence $F(x) F(y) \subseteq m$, that is a contradiction.

Conversely, assume that x is not adjacent to any vertex of $\Omega_{2}(R)$. If $x \notin$ $I M(R)$, there exists $m \in C o-\operatorname{Max}(R)$ such that $x \notin m$. By Proposition 3.2, there is an element $y \in m$ such that x is adjacent to y, which is contrary to our assumption.

By Proposition 3.3, for each $x \in I M(R)$, $\operatorname{deg}_{\Omega_{2}(R)}(x)=0$. So it will be interesting to study the properties of the graph $\Omega_{2}(R) \backslash I M(R)$ with vertex-set $U M(R) \backslash I M(R)$. Note that if R is a c-local semiring, then $\Omega_{2}(R) \backslash I M(R)$ is an empty graph.
3.4 Theorem. Let R be a semiring which is not c-local. Then $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph if and only if R has exactly two maximal co-ideals.

Proof: First, assume that $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph with vertex-sets V_{1} and V_{2}. Clearly, m is contained in one of the partitions for any maximal co-ideal m. Thus, suppose that $m_{i} \backslash I M(R) \subseteq V_{i}$ for $i=1,2$. If R has another maximal co-ideal such as m_{3}, then $m_{3} \backslash I M(R) \subseteq V_{i}$ for some $i=1,2$, which is impossible, since $m_{1} m_{3}=m_{2} m_{3}=R$. Hence R can have only two maximal co-ideals.

Conversely, suppose that $C o-\operatorname{Max}(R)=\left\{m_{1}, m_{2}\right\}$. Then the vertex-set of $\Omega_{2}(R) \backslash I M(R)$ is $\left(m_{1} \backslash m_{2}\right) \cup\left(m_{2} \backslash m_{1}\right)$. Clearly, the subgraphs $m_{1} \backslash m_{2}$ and $m_{2} \backslash m_{1}$ are totally disconnected. Let $x \in m_{1} \backslash m_{2}$ and $y \in m_{2} \backslash m_{1}$. Now to complete the proof, it suffices to show that $F(x) F(y) \nsubseteq m_{1}$ and $F(x) F(y) \nsubseteq m_{2}$. If $F(x) F(y) \subseteq m_{1}$, then $x y \in m_{1}$. This implies that $y \in m_{1}$, since m_{1} is subtractive, a contradiction. Similarly, it can be shown that $F(x) F(y) \nsubseteq m_{2}$. Therefore we have $F(x) F(y)=R$. Hence $\Omega_{2}(R) \backslash I M(R)$ is complete bipartite graph with vertex-set $m_{1} \backslash m_{2}$ and $m_{2} \backslash m_{1}$.

In the following, we give an example of semiring R in which R has two maximal co-ideals and show that $\Omega_{2}(R) \backslash I M(R)$ is complete bipartite graph.
3.5 Example. Let $S=\{0,1, a\}$ be an idempotent semiring in which $a+1=$ $1+a=a$ and let $R=S \times S$. The maximal co-ideals of R are as follows:

$$
\begin{aligned}
m_{1} & =\{(0,1),(0, a),(1, a),(a, 1),(1,1),(a, a)\} \\
m_{2} & =\{(1,0),(a, 0),(1, a),(a, 1),(1,1),(a, a)\}
\end{aligned}
$$

It can be shown that $\Omega_{2}(R) \backslash I M(R)$ is complete bipartite with vertex-sets $\{(0,1),(0, a)\}$ and $\{(1,0),(a, 0)\}$.

In the next theorem, we study the clique number of the graph $\Omega_{2}(R) \backslash I M(R)$ for a c-semilocal semiring. Also, with this theorem, we give a result about the girth of $\Omega_{2}(R) \backslash I M(R)$.
3.6 Theorem. Let R be a c-semilocal semiring and $|C o-\operatorname{Max}(R)| \geq n$ with $n \geq 2$. Then $\Omega_{2}(R) \backslash I M(R)$ has a clique of order n. In particular, if $\mid C o-$ $\operatorname{Max}(R) \mid=n$, then $\omega\left(\Omega_{2}(R) \backslash I M(R)\right)=n$.
Proof: Let $\left\{m_{1}, \ldots, m_{n}\right\}$ be a subset of $C o-\operatorname{Max}(R)$. We claim that for any $x_{1} \in m_{1} \backslash \bigcup_{j=2}^{n} m_{j}$, there exists a clique with vertex-set $\left\{x_{1}, \ldots, x_{n}\right\}$ in $\Omega_{2}(R) \backslash I M(R)$, where $x_{i} \in m_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{n} m_{j}$ for $i=1, \ldots, n$. We prove this claim by induction on n. For $n=2$, the proof is similar to the proof of Theorem 3.4. Now, suppose that $n \geq 3$. By Remark 2.5, $m_{1} \cap m_{n} \nsubseteq \bigcup_{j=2}^{n-1} m_{j}$. Thus there exists $y \in\left(m_{1} \cap m_{n}\right) \backslash \bigcup_{j=2}^{n-1} m_{j}$ and so $x_{1}+y \in\left(m_{1} \cap m_{n}\right) \backslash \bigcup_{j=2}^{n-1} m_{j}$. By induction hypothesis, there is a clique with vertex-set $\left\{x_{1}+y, x_{2}, \ldots, x_{n-1}\right\}$, where $x_{i} \in m_{i} \backslash \bigcup_{j=1}^{n-1} m_{j}$ for $2 \leq i \leq n-1$. Indeed, $x_{2}, \ldots, x_{n-1} \notin m_{n}$ since $x_{1}+y \in m_{n}$. On the other hand, since $x_{1}+y$ is adjacent to x_{2}, \ldots, x_{n-1}, hence x_{1} is adjacent to x_{2}, \ldots, x_{n-1} because $F\left(x_{1}+y\right) \subseteq F\left(x_{1}\right)$. Now, since $x_{1}+\cdots+x_{n-1} \notin m_{n}$ (m_{n} is prime), so by Proposition 3.2, there exists $x_{n} \in m_{n}$ which is adjacent to $x_{1}+\cdots+x_{n-1}$. This implies that x_{n} is adjacent to x_{1}, \ldots, x_{n-1} and we can conclude $\left\{x_{1}, \ldots, x_{n}\right\}$ is a clique of order n in $\Omega_{2}(R) \backslash I M(R)$.

Now, suppose that $|C o-\operatorname{Max}(R)|=n$. Thus we have $\omega\left(\Omega_{2}(R) \backslash I M(R)\right) \geq n$. If $\Omega_{2}(R) \backslash I M(R)$ has a clique of order k in which $k \geq n$, then by the Pigeon Hole Principal, two elements of the clique should belong to one maximal co-ideal, which is a contradiction. Hence $\omega\left(\Omega_{2}(R) \backslash I M(R)\right)=n$.

Theorem 3.6 leads to the following corollary:
3.7 Corollary. Let R be a c-semilocal semiring with $|C o-\operatorname{Max}(R)| \geq 3$. Then $\operatorname{gr}\left(\Omega_{2}(R) \backslash I M(R)\right)=3$.
Proof: Let $|C o-\operatorname{Max}(R)| \geq 3$. By Theorem 3.6, $\Omega_{2}(R) \backslash I M(R)$ has a clique of order 3 , so $g r\left(\Omega_{2}(R) \backslash I M(R)\right)=3$.

In the next theorem, we will compute the girth of $\Omega_{2}(R) \backslash I M(R)$ when R is a c-semilocal semiring.
3.8 Theorem. Let R be a c-semilocal semiring with $|C o-\operatorname{Max}(R)| \geq 2$. If $\Omega_{2}(R) \backslash I M(R)$ contains a cycle, then $\operatorname{gr}\left(\Omega_{2}(R) \backslash I M(R)\right) \leq 4$.

Proof: Assume that $\Omega_{2}(R) \backslash I M(R)$ contains a cycle and $\operatorname{gr}\left(\Omega_{2}(R) \backslash I M(R)\right) \neq$ 3. So Corollary 3.7 implies that $|\operatorname{Co}-\operatorname{Max}(R)|=2$. Hence by Theorem 3.4, $\Omega_{2}(R) \backslash I M(R)$ is complete bipartite graph and so $\operatorname{gr}\left(\Omega_{2}(R) \backslash I M(R)\right)=4$.
3.9 Example. Let $X=\{a, b, c\}$ and $R=(P(X), \cup, \cap)$ be a semiring, where $P(X)$ is the power set of X. For this semiring we have $1_{R}=X$ and $0_{R}=\emptyset$. In this case, the maximal co-ideals of semiring R are as follows:

$$
\begin{aligned}
m_{1} & =\{\{a\},\{a, b\},\{a, c\}, X\}, \\
m_{2} & =\{\{b\},\{a, b\},\{b, c\}, X\}, \\
m_{3} & =\{\{c\},\{a, c\},\{b, c\}, X\} .
\end{aligned}
$$

For the graph $\Omega_{2}(R) \backslash I M(R)$ the vertex-set is $P(X) \backslash\{\emptyset, X\}$ and $\{\{\mathrm{a}\},\{\mathrm{b}\},\{\mathrm{c}\}\}$ is a maximal clique. This implies that $\omega\left(\Omega_{2}(R) \backslash I M(R)\right)=3$ and so $\operatorname{gr}\left(\Omega_{2}(R) \backslash\right.$ $I M(R))=3$.
3.10 Proposition. Let R be a c-semilocal semiring with $|\operatorname{Co}-\operatorname{Max}(R)| \geq 2$. Then $\Omega_{2}(R) \backslash I M(R)$ is star graph if and only if there is a vertex of $\Omega_{2}(R) \backslash I M(R)$ which is adjacent to every other vertex.

Proof: The necessity is obvious by definition, thus we need to prove the sufficiency. Assume that there exists $x \in \Omega_{2}(R) \backslash I M(R)$ that is adjacent to every other vertex. Let $x \in m$ for some $m \in \operatorname{Co}-\operatorname{Max}(R)$. We must have $|m \backslash I M(R)|=1$, because if x and y are distinct vertices of $m \backslash I M(R)$, then by assumption x and y are adjacent, which is impossible. Now, if $|\operatorname{Co}-\operatorname{Max}(R)| \geq 3$, then $|m \backslash I M(R)| \geq 3$ for any maximal co-ideal m of R. Hence R cannot contain more than two maximal co-ideals. It is straightforward to verify that $\Omega_{2}(R) \backslash I M(R)$ is a star graph by Theorem 3.4.
3.11 Theorem. Let R be a c-semilocal semiring with $|C o-\operatorname{Max}(R)| \geq 2$. Then the following statements are equivalent:
(1) $\Omega_{2}(R) \backslash I M(R)$ is a tree;
(2) $\Omega_{2}(R) \backslash I M(R)$ is a forest;
(3) $|\operatorname{Co}-\operatorname{Max}(R)|=2$ and $|m \backslash I M(R)|=1$ for some $m \in \operatorname{Co}-\operatorname{Max}(R)$;
(4) $\Omega_{2}(R) \backslash I M(R)$ is a star graph.

Proof: $(1) \Rightarrow(2),(3) \Rightarrow(4)$ and $(4) \Rightarrow(1)$ are clear.
$(2) \Rightarrow(3)$ Let $\Omega_{2}(R) \backslash I M(R)$ be a forest. Thus by Corollary 3.7, we have $|C o-\operatorname{Max}(R)|=2$. Now, if $|m \backslash I M(R)| \geq 2$ for each maximal co-ideal m, then $\Omega_{2}(R) \backslash I M(R)$ contains a cycle of order 4 , because by Theorem $3.4, \Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph, a contradiction. Hence $|m \backslash I M(R)|=1$ for some $m \in C o-\operatorname{Max}(R)$.
3.12 Proposition. Let R be a c-semilocal semiring. Then $\Omega_{2}(R) \backslash I M(R)$ is a complete graph if and only if it is in the form $K_{1,1}$.
Proof: Let $\Omega_{2}(R) \backslash I M(R)$ be a complete graph. So we can say that there is a vertex of $\Omega_{2}(R) \backslash I M(R)$ that is adjacent to every other vertex. Hence by

Proposition 3.10, $\Omega_{2}(R) \backslash I M(R)$ is a star graph and Theorem 3.11 implies that R has exactly two maximal co-ideals m_{1} and m_{2} so that $\left|m_{i} \backslash I M(R)\right|=1$ for some i. Now, since for each maximal co-ideal m_{i}, the vertex-set $m_{i} \backslash I M(R)$ is a partition of $\Omega_{2}(R) \backslash I M(R)$, we must have $\left|m_{i} \backslash I M(R)\right|=1$ for any i, because the elements of $m_{i} \backslash I M(R)$ are not adjacent to each other. In this case, $\Omega_{2}(R) \backslash I M(R)$ is in the form $K_{1,1}$.

The converse is obvious.
3.13 Example. Let $X=\{a, b\}$ and $R=(P(X), \cup, \cap)$ be a semiring, where $P(X)$ is power set of X and $1_{R}=X$ and $0_{R}=\emptyset$. The maximal co-ideals of semiring R are as follows:

$$
\begin{aligned}
m_{1} & =\{\{a\}, X\} \\
m_{2} & =\{\{b\}, X\}
\end{aligned}
$$

Thus by Theorem 3.4, $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph with vertexsets $V_{1}=\{\{a\}\}$ and $V_{2}=\{\{b\}\}$. Indeed, $\Omega_{2}(R) \backslash I M(R)$ forms $K_{1,1}$. Hence $\Omega_{2}(R) \backslash I M(R)$ is complete graph that is a star graph and a tree. Also, since $\Omega_{2}(R) \backslash I M(R)$ does not contain any cycle, so it is a forest and $\operatorname{gr}\left(\Omega_{2}(R) \backslash\right.$ $I M(R))=\infty$.
3.14 Theorem. Let R be a c-semilocal semiring which is not a c-local. Then the following hold.
(i) If $|\operatorname{Co}-\operatorname{Max}(R)|=n$, then $\Omega_{2}(R) \backslash I M(R)$ is n-partite.
(ii) If $\Omega_{2}(R) \backslash I M(R)$ is n-partite, then $|C o-\operatorname{Max}(R)| \leq n$. In this case, if $\Omega_{2}(R) \backslash I M(R)$ is not $(n-1)$-partite, then $|C o-\operatorname{Max}(R)|=n$.

Proof: (i) Suppose that $C o-\operatorname{Max}(R)=\left\{m_{1}, \ldots, m_{n}\right\}$. Let $V_{1}=m_{1} \backslash I M(R)$ and $V_{i}=m_{i} \backslash \bigcup_{j=1}^{i-1} m_{j}$ for $2 \leq i \leq n$. By Remark $2.5, V_{i} \neq \emptyset$ for each i. Also, clearly that $\bigcup_{i=1}^{n} V_{i}=U M(R) \backslash I M(R)$ and for every $x, y \in V_{i}$, they are not adjacent in $\Omega_{2}(R) \backslash I M(R)$. Hence $\Omega_{2}(R) \backslash I M(R)$ is n-partite graph.
(ii) Assume contrary that $|C o-\operatorname{Max}(R)| \geq n+1$. By Theorem 3.6, $\Omega_{2}(R) \backslash$ $I M(R)$ has a clique with cardinality $n+1$. Thus by the Pigeon Hole Principal, two elements of this clique should belong to one part of $\Omega_{2}(R) \backslash I M(R)$, which is a contradiction.

Now, if $\Omega_{2}(R) \backslash I M(R)$ is not $(n-1)$-partite and $|C o-\operatorname{Max}(R)|=k<n$, then by part $(i), \Omega_{2}(R) \backslash I M(R)$ can be a k-partite graph, a contradiction.
3.15 Proposition. Let R be a semiring with $|\operatorname{Co}-\operatorname{Max}(R)| \geq 2$. If $\Omega_{2}(R) \backslash$ $I M(R)$ is complete n-partite graph, then $n=2$.

Proof: Let $\left\{m_{1}, m_{2}\right\} \subseteq C o-\operatorname{Max}(R)$. By Proposition 3.2, it is clear that there exists at least one element of $m_{1} \backslash I M(R)$ which is adjacent to one element of $m_{2} \backslash I M(R)$. Also, $m_{i} \backslash I M(R)$ is totally disconnected for any $m_{i} \in \operatorname{Co}-\operatorname{Max}(R)$, so $m_{1} \backslash I M(R)$ and $m_{2} \backslash I M(R)$ are entirely contained in one of partitions of $\Omega_{2}(R) \backslash I M(R)$. This implies that $\left(m_{1} \backslash I M(R)\right) \cap\left(m_{2} \backslash I M(R)\right)=\emptyset$ and hence
$m_{1} \cap m_{2} \subseteq I M(R)$. Therefore we have $m_{1} \cap m_{2}=I M(R)$. Thus $|\operatorname{Co}-\operatorname{Max}(R)|=$ 2 and by Theorem 3.4, $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph.

As mentioned in the introduction, Beck conjectured that $\chi(R)=\omega(R)$ for every ring R. In the following theorem we want to establish Beck's conjecture for the graph $\Omega_{2}(R) \backslash I M(R)$ of c-semilocal semiring.

We recall that the chromatic number of the graph G, denoted by $\chi(G)$, is the minimal number of colors which can be assigned to the vertices of G in such a way that any two adjacent vertices have different colors.
3.16 Theorem. Let R be a c-semilocal semiring with $|\operatorname{Co}-\operatorname{Max}(R)|=n$. Then $\chi\left(\Omega_{2}(R) \backslash I M(R)\right)=\omega\left(\Omega_{2}(R) \backslash I M(R)\right)=n$.

Proof: Let $\operatorname{Co}-\operatorname{Max}(R)=\left\{m_{1}, \ldots, m_{n}\right\}$. By Theorem 3.6, we know that $\omega\left(\Omega_{2}(R) \backslash I M(R)\right)=n$. Also, it is obvious that $\chi(G) \geq \omega(G)$ for any graph G, so $\chi\left(\Omega_{2}(R) \backslash I M(R)\right) \geq n$. On the other hand, $\Omega_{2}(R) \backslash I M(R)$ is n-partite by Theorem 3.14, thus the elements of each part can be colored by an identical color because these elements are not adjacent. Hence $\chi\left(\Omega_{2}(R) \backslash I M(R)\right)=n$.

4. Diameter and radius of $\Omega(R)$

In this section, we show that $\Omega_{2}(R) \backslash I M(R)$ is a connected graph and $\operatorname{diam}\left(\Omega_{2}\right.$ $(R) \backslash I M(R)) \leq 3$. Also, we compute the eccentricity of the vertices of $\Omega_{2}(R) \backslash$ $I M(R)$.
4.1 Theorem. Let R be a semiring. The graph $\Omega_{2}(R) \backslash I M(R)$ is connected with $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right) \leq 3$.

Proof: Let $x, y \in \Omega_{2}(R) \backslash I M(R)$ that are not adjacent. We consider two cases:
Case 1: Suppose that $x+y \notin I M(R)$. By Proposition 3.3, $F(x+y) F(a)=R$, for some $a \in \Omega_{2}(R) \backslash I M(R)$. This implies that $F(x) F(a)=F(y) F(a)=R$ since $F(x+y) \subseteq F(x), F(y)$. Hence $x-a-y$ is a path in $\Omega_{2}(R) \backslash I M(R)$ and $d(x, y)=2$.

Case 2: Suppose that $x+y \in I M(R)$. Thus for each $m \in \operatorname{Co}-\operatorname{Max}(R)$, we have $x \in m$ or $y \in m$. Since $x \notin I M(R)$, by Proposition 3.3, there exists $a \in \Omega_{2}(R) \backslash I M(R)$ such that x is adjacent to a in $\Omega_{2}(R) \backslash I M(R)$. Hence if $x \in m$ for maximal co-ideal m, then $a \notin m$. Now, there exists $n \in C o-\operatorname{Max}(R)$ in which $y \notin n$, since $y \notin I M(R)$. This implies that $x \in n$ and $a \notin n$. As n is prime co-ideal, we have $a+y \notin I M(R)$. So by Case $1, d(a, y) \leq 2$ and hence $d(x, y) \leq 3$.

We recall that for a graph G, the eccentricity of a vertex x is $e(x)=$ $\operatorname{Max}\{d(y, x) ; y \in V(G)\}$. A vertex x with smallest eccentricity is called a center of G and its eccentricity is called the radius of G and is denoted by $\operatorname{rad}(G)$.
4.2 Proposition. Let R be a c-semilocal semiring with $|\operatorname{Co}-\operatorname{Max}(R)| \geq 3$. If $x \in \Omega_{2}(R) \backslash I M(R)$ belongs to at least two maximal co-ideals, then $e(x)=3$.

Proof: Suppose that for $x \in \Omega_{2}(R) \backslash I M(R)$ there exist at least two maximal coideals m_{i} and m_{j} so that x is contained in $m_{i} \cap m_{j}$. By Theorem 4.1, $d(x, y) \leq 3$ for any $y \in \Omega_{2}(R) \backslash I M(R)$. Now to complete the proof, it suffices to show that, there is an element y in $\Omega_{2}(R) \backslash I M(R)$ such that $d(x, y)=3$. Let $y \in \bigcap_{\substack{k=1 \\ k \neq i}}^{n} m_{k} \backslash I M(R)$. Clearly that $d(x, y) \neq 1$, since $x, y \in m_{j}$. If $d(x, y)=2$, then $x-a-y$ is a path for some $a \in \Omega_{2}(R) \backslash I M(R)$. Now, as $x \in m_{i} \cap m_{j}$, thus $a \notin m_{i}, m_{j}$. Also, $y \in \bigcap_{\substack{k=1 \\ k \neq i}}^{n} m_{k} \backslash I M(R)$ implies that $a \notin m_{k}$, for $1 \leq k \leq n$ and $k \neq i$. Indeed, this implies that $a \notin m$ for any $m \in C o-\operatorname{Max}(R)$, that is impossible. So we can conclude that $d(x, y)=3$ and hence $e(x)=3$.
4.3 Corollary. Let R be a c-semilocal semiring with $|C o-M a x(R)| \geq 3$. Then $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right)=3$.

Proof: We know that $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right) \leq 3$, by Theorem 4.1. On the other hand, $|C o-\operatorname{Max}(R)| \geq 3$ implies that there is an element x in $\Omega_{2}(R) \backslash I M(R)$ that belongs to at least two maximal co-ideals. Now, the proof is immediate from Proposition 4.2.
4.4 Proposition. Let R be a semiring with $|C o-\operatorname{Max}(R)|=2$. If $\left|m_{i}\right|$ $I M(R) \mid \geq 2$ for some i, then $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$.
Proof: Assume that $|C o-\operatorname{Max}(R)|=2$. By Theorem 3.4, $\Omega_{2}(R) \backslash I M(R)$ is complete bipartite graph and thus $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right) \leq 2$. On the other hand, $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right) \neq 1$ because $\left|m_{i} \backslash I M(R)\right| \geq 2$ for some i. Hence $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$.
4.5 Theorem. Let R be a semiring. If $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$, then R has an infinite number of maximal co-ideals or $|\operatorname{Co}-\operatorname{Max}(R)|=2$ such that $\left|m_{i} \backslash I M(R)\right| \geq 2$ for some $i=1,2$.
Proof: Assume that $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$ and $|C o-M a x(R)|$ is finite. If $n \geq 3$, then by Corollary 4.3, $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right)=3$, which is a contradiction. Thus we must have $|C o-\operatorname{Max}(R)|=2$. Now, if $\left|m_{i} \backslash I M(R)\right|=1$ for each i, then $\operatorname{diam}\left(\Omega_{2}(R) \backslash I M(R)\right)=1$ because $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph, this is a contradiction. Hence $\left|m_{i} \backslash I M(R)\right| \geq 2$ for some i.
4.6 Theorem. Let R be a c-semilocal semiring with $|\operatorname{Co}-\operatorname{Max}(R)|=n \geq 2$. If $\Omega_{2}(R) \backslash I M(R)$ is not a star graph, then we have:

$$
e(x)= \begin{cases}2 & \text { if } x \in m_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{n} m_{j} \\ 3 & \text { otherwise }\end{cases}
$$

Proof: First, we claim that for any $a \in \Omega_{2}(R) \backslash I M(R), e(a) \neq 1$. Suppose that there is an element x of $\Omega_{2}(R) \backslash I M(R)$ such that $e(x)=1$. This means that x is adjacent to any vertex of $\Omega_{2}(R) \backslash I M(R)$ and so $\Omega_{2}(R) \backslash I M(R)$ is a star graph by Proposition 3.10, which is a contradiction. Now, suppose that $x \in m_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{n} m_{j}$.

For any $y \in \bigcup_{\substack{j=1 \\ j \neq i}}^{n} m_{j} \backslash m_{i}$, if $F(x) F(y) \neq R$, then $F(x) F(y) \subseteq m_{k}$ for some $m_{k} \in \operatorname{Co}-\operatorname{Max}(R)$. Hence $x, y \in m_{k}$, that is a contradiction. Therefore, in this case $d(x, y)=1$. But, if $y \in m_{i} \backslash I M(R)$ and $y \neq x$, then by proof of Theorem 4.1, $d(x, y) \leq 2$ since $x+y \notin I M(R)$. Clearly x and y are not adjacent and so $d(x, y)=2$. According to the assumption, since $\Omega_{2}(R) \backslash I M(R)$ is not star graph thus by Theorem $3.11((4) \Rightarrow(3))|C o-\operatorname{Max}(R)| \geq 2$ and $|m \backslash I M(R)| \geq 2$ for each $m \in C o-\operatorname{Max}(R)$. Hence $e(x)=2$ for any $x \in m_{i} \backslash \bigcup_{j=1}^{n} m_{j}$.

Now, suppose that $x \notin m_{i} \backslash \underset{\substack{j=1 \\ j \neq i}}{n} m_{j}$ for any maximal co-ideal m_{i}. Hence there are at least two maximal co-ideals m_{k} and m_{j} so that x is contained in $m_{k} \cap m_{j}$. This implies that $|\operatorname{Co}-\operatorname{Max}(R)| \geq 3$, thus by Proposition 4.2 we have $e(x)=3$.
4.7 Corollary. Let R be a c-semilocal semiring with $|\operatorname{Co}-\operatorname{Max}(R)|=n \geq 2$. If $\Omega_{2}(R) \backslash I M(R)$ is not a star graph, then the elements of $m_{i} \backslash \bigcup_{\substack{j=1 \\ j \neq i}}^{n} m_{j}$ are center of $\Omega_{2}(R) \backslash I M(R)$ for each $m_{i} \in C o-\operatorname{Max}(R)$ and $\operatorname{rad}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$.

Proof: This is an immediate consequence of Theorem 4.6.
4.8 Proposition. Let R be a semiring with $|C o-\operatorname{Max}(R)|=2$. Then $\operatorname{rad}\left(\Omega_{2}(R) \backslash I M(R)\right)=1$ or 2 .

Proof: We know by Theorem 3.4, $\Omega_{2}(R) \backslash I M(R)$ is a complete bipartite graph when $|C o-\operatorname{Max}(R)|=2$. Now, if $\Omega_{2}(R) \backslash I M(R)$ is a star graph, clearly $\operatorname{rad}\left(\Omega_{2}(R) \backslash I M(R)\right)=1$. Otherwise, $\operatorname{rad}\left(\Omega_{2}(R) \backslash I M(R)\right)=2$ and all elements of $\Omega_{2}(R) \backslash I M(R)$ are center.

5. The relations between $\Omega(R)$ and $\Gamma(R)$

In this section, we will investigate the relations between the zero-divisor graph $\Gamma(R)$ and $\Omega(R)$. We show that $\Gamma(R)$ is a subgraph of the $\Omega(R)$. Also, we determine a family of commutative semirings whose zero-divisor graph $\Gamma(R)$ and $\Omega_{2}(R)$ are isomorphic.

We recall that an isomorphism from a simple graph G to a simple graph H is a bijection $f: V(G) \rightarrow V(H)$ such that x and y are adjacent in G if and only if $f(x)$ and $f(y)$ are adjacent in H. We say G is isomorphic to H, if there is an isomorphism from G to H, denoted by $G \cong H$.
5.1 Theorem. The zero-divisor graph $\Gamma(R)$ is a subgraph of the graph $\Omega(R)$.

Proof: Suppose that x and y are two distinct adjacent vertices in $\Gamma(R)$. Thus $x y=0$ and this implies $F(x) F(y)=R$, since $0=x y \in F(x) F(y)$. Hence x and y are adjacent in $\Omega(R)$. Now, since the vertex-set of zero-divisor graph is $Z(R)^{*}$, thus we can conclude that $\Gamma(R)$ is a subgraph of $\Omega(R)$.
5.2 Theorem. Let R be a multiplicatively idempotent and zero-sumfree semiring. Then the zero-divisor graph $\Gamma(R)$ is an induced subgraph of the graph $\Omega(R)$.

Proof: By Theorem 5.1, $\Gamma(R)$ is a subgraph of $\Omega(R)$. Thus it is enough to show that if $x, y \in Z(R)^{*}$ and they are adjacent in $\Omega(R)$, then x and y are adjacent in $\Gamma(R)$. Assume that $x, y \in Z(R)^{*}$ and $F(x) F(y)=R$. So we have $\left(x^{n}+r\right)\left(y^{m}+s\right)+k=0$ for some positive integers n, m and $r, s, k \in R$. Since R is a multiplicatively idempotent, then we have $x y+a=0$ for some $a \in R$. Hence $x y=0$ because R is a zero-sumfree semiring. This implies x and y are adjacent in $\Gamma(R)$.

Note that if $U M(R)=Z(R)^{*}$, then $\Gamma(R)$ is a spanning subgraph of $\Omega_{2}(R)$ by Theorem 5.1. Thus, if R is a multiplicatively idempotent and zero-sumfree semiring, then we have the following result:
5.3 Corollary. Let R be a multiplicatively idempotent and zero-sumfree semiring. If $Z(R)^{*}=U M(R)$, then the zero-divisor graph $\Gamma(R)$ and $\Omega_{2}(R)$ are isomorphic. In particular, if $Z(R)^{*}=U M(R) \backslash I M(R)$, then $\Gamma(R)$ and $\Omega_{2}(R) \backslash I M(R)$ are isomorphic.

Proof: This is an immediate consequence of Theorems 5.1 and 5.2.
To this end, we give an example that clarifies the previous results:
5.4 Example. Let $S=\{0,1, a\}$ and $R=(S \times S,+, \cdot)$ be a semiring as defined in Example 3.5. We know that R is a multiplicatively idempotent. For this semiring, the vertex-set of $\Gamma(R)$ is

$$
Z(R)^{*}=\{(0,1),(1,0),(0, a),(a, 0)\}
$$

and the vertex-set of $\Omega_{2}(R)$ is $U M(R)=R \backslash\{(0,0)\}$. Clearly $\Gamma(R)$ is an induced subgraph of $\Omega(R)$ and $\Omega_{2}(R)$. On the other hand, $(0,0)$ is only zero-sum of R, thus R is zero-sumfree semiring. We see that $U M(R) \backslash I M(R)=Z(R)^{*}$, so we can conclude that $\Gamma(R)$ and $\Omega_{2}(R) \backslash I M(R)$ are isomorphic by Corollary 5.3.

References

[1] Akbari S., Habibi M., Majidinya A., Manaviyat R., A note on co-maximal graph of noncommutative rings, Algebr. Represent. Theory 16 (2013), 303-307.
[2] Anderson D.F., Livingston P.S., The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447.
[3] Beck I., Coloring of commutative rings, J. Algebra 116 (1988), 208-226.
[4] Chaudhari J.N., Ingale K.J., Prime avoidance theorem for co-ideals in semirings, Research J. Pure Algebra 1(9) (2011), 213-216.
[5] Ebrahimi Atani S., The zero-divisor graph with respect to ideals of a commutative semiring, Glas. Mat. 43(63) (2008), 309-320.
[6] Ebrahimi Atani S., An ideal-based zero-divisor graph of a commutative semiring, Glas. Mat. 44(64) (2009), 141-153.
[7] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M., Strong co-ideal theory in quotients of semirings, J. Adv. Res. Pure Math. 5 (2013), no. 3, 19-32.
[8] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M., A fundamental theorem of cohomomorphisms for semirings, Thai J. Math. 12 (2014), no. 2, 491-497.
[9] Golan J.S., Semirings and Their Applications, Kluwer Academic Publishers, Dordrecht, 1999.
[10] Maimani H.R., Salimi M., Sattari A., Yassemi S., Comaximal graph of commutative rings, J. Algebra 319 (2008), 1801-1808.
[11] Sharma P.K., Bhatwadekar S.M., A note on graphical representation of rings, J. Algebra 176 (1995), 124-127.
[12] West D.B., Introduction to Graph Theory, Prentice-Hall of India Pvt. Ltd, 2003.

Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

E-mail: talebi@umz.ac.ir
a.darzi@stu.umz.ac.ir

