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Abstract. Nanda (2010) and Bhattacharjee et al. (2013) characterized a few distributions
with help of the failure rate, mean residual, log-odds rate and aging intensity functions. In
this paper, we generalize their results and characterize some distributions through functions
used by them and Glaser’s function. Kundu and Ghosh (2016) obtained similar results
using reversed hazard rate, expected inactivity time and reversed aging intensity functions.
We also, via w(·)-function defined by Cacoullos and Papathanasiou (1989), characterize
exponential and logistic distributions, as well as Type 3 extreme value distribution and
obtain bounds for the expected values of selected functions in reliability theory. Moreover,
a bound for the varentropy of random variable X is provided.
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1. Introduction

Let X be a random variable having absolutely continuous distribution function

F (t), survival function F (t) = 1−F (t) and probability density function f(t). Let X

take values in an interval (a, b) with −∞ 6 a < b 6 ∞, where a = inf{t : F (t) > 0}
and b = sup{t : F (t) < 1}. Then the hazard rate (HR) function of X is defined for
t < b as r(t) = − d

dt lnF (t) = f(t)/F (t); besides, let the random variable X have

finite moments of all orders with variance Var(X) = σ2 and mean E(X) = µ.

This research has been supported by a grant from Ferdowsi University of Mashhad
(No. 2/43905).
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A useful reliability measure of X is the mean residual life (MRL) which is defined

as the expectation of the residual life random variableXt = (X−t | X > t), given by

m(t) =
1

F (t)

∫

∞

t

F (x) dx,

for t < b. The MRL function is usually of interest for a non-negative random variable.

For instance, if X is thought of as the lifetime of a device, then for every t > 0, m(t)

expresses the conditional expected residual life of the device at time t given that

the device is still alive at time t. Hence, we assume F (t) = 0 for t < 0 (i.e. a = 0,

b = ∞).
Hall and Wellner [14] and Bhattacharjee [3] have characterized the class of mean

residual life functions. It has been shown by Gupta [10] that the MRL function

determines the distribution uniquely. In particular, it is well known that a constant

MRL characterizes the exponential distribution, as was shown by Nanda [20]. For

comprehensive review and applications of the mean residual function, we refer to

Guess and Proschan [9].

The hazard rate and MRL function are related by

(1.1) r(t) =
1 +m′(t)

m(t)
.

It is well known that r(t) determines the distribution function uniquely and hence

m(t) also characterizes the distribution. In addition, F (t) and r(t) are connected by

(1.2) F (t) = exp

{

−
∫ t

0

r(x) dx

}

.

As a dual notion to the residual life, the inactivity time at time t is X(t) = (t−X |
X < t). The expected inactivity time (EIT) function of X is defined by

m∗(t) = E(X(t)) =
1

F (t)

∫ t

a

F (x) dx.

The EIT function is a well-known reliability measure which has applications in many

disciplines such as reliability theory, survival analysis and actuarial studies.

The reversed hazard rate (RHR) function of X is given by r∗(t) = f(t)/F (t) for

t > a, which is related to F (t) by

(1.3) F (t) = exp

{

−
∫ b

t

r∗(x) dx

}

.
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Furthermore, Glaser’s function (also known as eta-function) η(t) for a random vari-

able X is defined as

η(t) = −f ′(t)

f(t)
.

This function contains useful information about r(t), but it is simpler, because it does

not involve F (t). The relation between r(t) and η(t) is given by d
dt ln r(t) = r(t)−η(t).

Here we obviously assume that f(t) is a differentiable density function on (0,∞). For

further studies on the relationship between Glaser’s function and the failure rate, see

Gupta and Warren [12].

The aging intensity (AI) function, which analyzes the aging property of a system

quantitatively (cf. Jiang et al., [16]), is defined as

L(t) =
tr(t)

∫ t

0
r(u) du

=
−tf(t)

F (t) lnF (t)
.

The log-odds rate (LOR) of X is defined as

(1.4) LOR(t) =
d

dt
LO(t) =

f(t)

F (t)F (t)
,

where LO(t) = ln(F (t)/F (t)) is the log-odds function.

A probability distribution can be characterized by various methods. Nanda [20],

Bhattacharjee et al. [4] and Iwińska and Szymkowiak [15] studied the characteriza-

tions of distributions through the expected values of the failure rate, MRL, log-odds

rate and aging intensity functions. It is pointed out that the functions considered

by them are defined for left truncated random variables. For characterizations of

distributions using EIT function, we refer to Chandra and Roy [7], Kundu et al. [19],

and Asadi and Berred [1]. For the characterization of right truncated distributions,

Kundu and Ghosh [18] have used the reversed hazard rate, expected inactivity time

and reversed aging intensity functions.

Cacoullos and Papathanasiou [6] obtained a lower bound for the variance of a func-

tion of a random variable. They established that, if X is a continuous random vari-

able with density function f(x), mean µ and variance σ2 and g : R → R is any

absolutely continuous function with derivative g′, then

(1.5) Var[g(X)] > σ2(E[w(X)g′(X)])2,

where the w(·)-function is defined by

(1.6) σ2w(x)f(x) =

∫ x

−∞

(µ− t)f(t) dt.

The equality holds if and only if g is linear.
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In this article, we consider the particular cases of the function g, which is used in

reliability analysis for aging.

2. Characterization through functions of HR, MRL and AI

In this section, we characterize probability distributions such as exponential,

Pareto, Weibull, Makeham, and Gompertz distributions. First we generalize Theo-

rem 2.3 of Nanda [20].

As stated in it, the exponential distribution can be characterized by E[Xr(X)].

Below we characterize this distribution in terms of E[Xkr(X)], where k > 0 is a real

constant.

Proposition 2.1. For any non-negative random variable X ,

(2.1) E[Xkr(X)] >
k + 1

E(Xk+1)
(E(Xk))2;

the equality holds if and only if X is exponentially distributed.

P r o o f. By the Cauchy-Schwarz inequality, we have

(2.2) (E(Xk))2 =

[
∫

∞

0

xkf(x) dx

]2

=

[
∫

∞

0

√

xkF (x)

√

xk

F (x)
f(x) dx

]2

6

∫

∞

0

xkF (x) dx

∫

∞

0

xkf2(x)

F (x)
dx.

Since (see Gut [13]),

(2.3)

∫

∞

0

xkF (x) dx =
E(Xk+1)

k + 1
,

and
∫

∞

0

xkf2(x)

F (x)
dx = E[Xkr(X)],

(2.2) reduces to (2.1). The equality holds if and only if there exists a constant A > 0

such that, for all x > 0,
√

xkf2(x)

F (x)
= A

√

xkF (x).

This gives r(x) = constant, which holds if and only if X is exponentially distributed.

�
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The next theorem gives a useful lower bound for E[c−Xr(X)]; c > 1, and charac-

terizes the exponential distribution.

Theorem 2.2. Let X be an absolutely continuous non-negative random variable.

Then

(2.4) E[c−Xr(X)] >
(ln c)(E[c−X ])2

1− E[c−X ]

for c > 1, where the equality holds if and only if X has exponential distribution.

P r o o f. Using the Cauchy-Schwarz inequality, we get

(2.5) (E[c−X ])
2
6 E[c−Xr(X)]E

[ c−X

r(X)

]

.

On the other hand, since

(2.6) E
[ c−X

r(X)

]

=

∫

∞

0

c−xF (x) dx =
1

ln c
(1− E(c−X)),

substituting (2.6) in (2.5) yields (2.4).

The equality is obtained if and only if there exists a constant A > 0 such that, for

all x > 0,
√

c−xf2(x)

F (x)
= A

√

c−xF (x).

This gives r(x) = constant, which again holds if and only if X is exponentially

distributed. �

Corollary 2.3. Under the assumptions of Theorem 2.2, if c = et for t > 0 then

(2.7) E[e−tXr(X)] >
t(f∗(t))

2

1− f∗(t)
,

where f∗(t) = E[e−tX ] =
∫

∞

0 e−txf(x) dx is the Laplace transform of X .

The equality holds if and only if F is an exponential distribution function.

In the following theorem a characterization of Gompertz distribution is provided.

Theorem 2.4. Let X be an absolutely continuous non-negative random variable

with E[c−Xr(X)] < ∞ and E[(c−Xr(X))−1] < ∞, where c > 1. Then

(2.8) E
[ 1

c−Xr(X)

]

>
1

E[c−Xr(X)]
,
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and the equality holds if and only if X follows the Gompertz distribution with prob-

ability density function

(2.9) f(x) = θcxe−θ(cx−1)/ ln c, x > 0, θ > 0.

P r o o f. By the Cauchy-Schwarz inequality, we obtain (2.8). The equality in (2.8)

holds if and only if there exists a constant A > 0 such that, for all x > 0,

f(x)

c−xr(x)
= Ac−xr(x)f(x),

which is equivalent to the fact that r(x) = θcx. Now, using (1.2), we obtain F (x) =

e−θ(cx−1)/ ln c. Since F (∞) = 0, we should have c > 1 and therefore the result is

obtained. �

R em a r k 2.5. In the previous theorem, it is clear that if any of the moments or

both of them are infinite then inequality (2.8) will be trivial.

The next corollary characterizes Makeham distribution through E[e−tXr(X)].

Corollary 2.6. In Theorem 2.4 if c = et for t > 0 then

(2.10) E[e−tXr(X)] >
1

E[(e−tXr(X))−1]
,

and the equality holds if and only if X follows the Makeham distribution with prob-

ability density function

(2.11) f(x) = θ exp
{

tx− θ

t
(etx − 1)

}

, x > 0, θ > 0, t > 0.

Now, in the particular case where t = 1, we would like to compare the lower

bounds obtained for E[e−tXr(X)] in inequalities (2.7) and (2.10).

Let X have a Rayleigh distribution with density function f(x) = 2xe−x2

, x > 0.

Then the lower bound (2.10) is

1

E[(e−Xr(X))−1]
=

2e−1/4

√
π(1 + erf(12 ))

≈ 0.578.

On the other hand, since f∗(1) = 1− 1
2

√
πe1/4 erfc(12 ), the lower bound (2.7) is

2
(

1− 1
2

√
πe1/4 erfc(12 )

)2

√
πe1/4 erfc(12 )

≈ 0.378.
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Accordingly, comparing these values with the exact value E[e−Xr(X)], for this distri-

bution we conclude that the lower bound (2.10) is better than the lower bound (2.7).

In the next theorem, we characterize a distribution in which mean residual life is

proportional to 1/x.

Theorem 2.7. Let X be an absolutely continuous positive random variable with

E[Xm(X)] < ∞ and E[1/Xm(X)] < ∞. Then

(2.12) E
[ 1

Xm(X)

]

>
1

E[Xm(X)]
,

and the equality holds if and only if X follows the distribution with survival function

(2.13) F (x) =
x

a
e−(x2

−a2)/2θ, x > a, a > 0, θ > 0.

P r o o f. By applying the Cauchy-Schwarz inequality we obtain (2.12). The equal-

ity in (2.12) holds if and only if there exists a constant A > 0 such that

f(x)

xm(x)
= Axm(x)f(x),

which is equivalent to the fact that m(x) = θ/x. Lastly, applying (1.1) and (1.2), we

get (2.13). �

Theorem 2.8. Let X be an absolutely continuous positive random variable with

E[m(X)/X] < ∞ and E[X/m(X)] < ∞. Then

(2.14) E
[m(X)

X

]

>
1

E[X/m(X)]
,

with equality if and only if X has the Pareto distribution with probability density

function

(2.15) f(x) =
cac

xc+1
, x > a, a > 0, c > 1.

P r o o f. The inequality (2.14) follows from the Cauchy-Schwarz inequality and

equality holds if and only if there exists a constant A > 0 such that

xf(x)

m(x)
= A

m(x)f(x)

x
,

which is equivalent to the fact that m(x) = θx. Applying (1.1) and (1.2), we have

F (x) = (x/a)−(1+θ)/θ for x > a. Now, since θ > 0 setting c = (θ + 1)/θ, yields the

desired result. �
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R em a r k 2.9. Kundu and Ghosh [18] showed that inequalities (2.12) and (2.14)

remain true when MRL is replaced by EIT, and equality characterizes the finite range

distribution and three distributions as given in Theorem 2.1 of Kundu et al. [19] for

suitable values of p = r∗(t)m∗(t) respectively.

The following theorem is a generalization of Theorem 2.3 of Bhattacharjee et al. [4].

Theorem 2.10. For any non-negative random variable X , if for some real k > 0,

E[XkL(X)/r(X)] < ∞ and E[r(X)/(XkL(X))] < ∞, then

(2.16) E
[XkL(X)

r(X)

]

>
1

E[r(X)/(XkL(X))]
.

The equality holds in (2.16) if and only if X has a Weibull distribution with proba-

bility density function

(2.17) f(x) = (k + 1)θxke−θxk+1

, x > 0, θ > 0.

P r o o f. Using the Cauchy-Schwarz inequality, it follows that

(2.18) E
[XkL(X)

r(X)

]

E
[ r(X)

XkL(X)

]

> 1.

The equality in (2.16) holds if and only if there exists a constant θ > 0 such that,

for all x > 0,

(2.19)

∫ x

0

r(t) dt = θxk+1.

Differentiating (2.19) with respect to x, we get r(x) = (k+1)θxk for all x > 0. Now,

by applying (1.2), we obtain F (x) = e−θxk+1

. Hence, the result follows. �

In the next theorem we obtain a characterization of the two-parameter Weibull

distribution through an inequality between E[XL(X)] and E(m(X)).

Theorem 2.11. For any non-negative random variable X ,

(2.20) E[XL(X)] >
µ2

E(m(X))
.

The equality holds if and only if the random variable X follows two-parameter

Weibull distribution.
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P r o o f. By the Cauchy-Schwarz inequality we have

(2.21)

[
∫

∞

0

xf(x) dx

]2

6

∫

∞

0

−x2f2(x)

F (x) lnF (x)
dx

∫

∞

0

−F (x) lnF (x) dx.

Now, since

(2.22)

∫

∞

0

−x2f2(x)

F (x) lnF (x)
dx = E[XL(X)],

and, as Asadi and Zohrevand [2] showed,

(2.23)

∫

∞

0

−F (x) lnF (x) dx = E(m(X));

thus, substituting (2.22) and (2.23) into (2.21) gives (2.20).

The equality in (2.20) holds if and only if there exists a constant A > 0 such that

√

−F (x) lnF (x) = A

√

−x2f2(x)

F (x) lnF (x)
,

which is equivalent to L(x) = constant. Thus, the result follows from Lemma 2.1 in

Bhattacharjee et al. [4]. �

R em a r k 2.12. According to Proposition 2.2 in Navarro et al. [21], we get a fur-

ther lower bound for E[XL(X)]:

E[XL(X)] >
(β + 1)(E(X))

β+2

E(Xβ+1)(Γ(1 + β−1))
β
,

for all β > 0.

3. Characterization through functions of w(·)-function

What we have discussed so far, gives us motivation to find an easier lower bound

for inequality (1.5) for some particular functions g. In fact, by getting a lower bound

for E[w(X)g′(X)], we will obtain a new lower bound for Var[g(X)]. In Theorems 3.1

and 3.3, g(x) is considered to be
∫ x

0
r(u) du and

∫ b

x
r∗(u) du respectively. If r(x) and

r∗(x) exist, then − lnF (x) =
∫ x

0 r(u) du and − lnF (x) =
∫ b

x r∗(u) du represent the

cumulative hazard (failure) rate and the cumulative reversed hazard rate respectively.
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Theorem 3.1. Let X be a non-negative random variable. Then

(3.1) E[w(X)r(X)] >
1

E
[

w(X)/r(X)
] ,

where w(x) is the w(·)-function corresponding to the random variable X . The equal-
ity is achieved if and only if X has exponential distribution.

P r o o f. Using the Cauchy-Schwarz inequality, we have

(3.2) (E[w(X)])
2
6 E[w(X)r(X)]E

[w(X)

r(X)

]

.

On the other hand, as Cacoullos and Papathanasiou [6] showed, since E[w(X)] = 1,

the inequality (3.2) yields (3.1). The equality holds in (3.1) if and only if r(x) =

constant, or equivalently if and only if X has the exponential distribution. �

R em a r k 3.2. Referring to Cacoullos and Papathanasiou [5] and [6], it can be

seen that if X has a gamma distribution with shape parameter α > 0 and scale

parameter β > 0 then w(x) = x/αβ and thus Theorem 3.1 will be a special case of

Proposition 2.1 for k = 1.

Theorem 3.3. For any absolutely continuous random variable X ,

(3.3) E[w(X)r∗(X)] >
1

E
[

w(X)/r∗(X)
] ,

where w(x) is the w(·)-function corresponding to the random variable X . The equal-
ity holds if and only if X follows the distribution given in equation (2.3) of Kundu

and Ghosh [18].

P r o o f. Like in Theorem 3.1, it is easy to check that inequality (3.3) holds. The

equality holds in (3.3) if and only if r∗(x) = constant, or equivalently, by using (1.3),

if and only if X is distributed as Type 3 extreme value distribution defined on

(−∞, b]; b > 0, specified as

(3.4) F (x) = exp
(x− b

b− µ

)

, x ∈ (−∞, b],

as given in equation (2.3) of Kundu and Ghosh [18]. �

In the next theorem, we assume that g(x) used in inequality (1.5) is LO(x).

Theorem 3.4. Let X be a random variable with E[w(X) LOR(X)] < ∞ and

E[w(X)/LOR(X)] < ∞. Then

(3.5) E[w(X) LOR(X)] >
1

E[w(X)/LOR(X)]
.

The equality holds if and only if X follows logistic distribution.
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P r o o f. Using the Cauchy-Schwarz inequality and the fact that E[w(X)] = 1,

the proof of inequality (3.5) is trivial. Moreover, the equality holds in (3.5) if and

only if LOR(x) = constant, or equivalently, X follows logistic distribution (see Bhat-

tacharjee et al. [4]). �

The next remark gives an upper bound for E[w(X) LOR(X)].

R em a r k 3.5. In the inequality (1.5) if g(x) = LO(x) then

Var[LO(X)] > σ2(E[w(X) LOR(X)])2.

Since Var[LO(X)] = E[LO(X)]2 =
∫ b

a

(

ln F (x)

F (x)

)2
f(x) dx =

∫ 1

0
(ln u

1−u )
2 du = 1

3π
2,

thus

E[w(X) LOR(X)] 6
π

σ
√
3
.

In the following remark, we obtain an upper bound for E[w(X)r(X)].

R em a r k 3.6. If in the inequality (1.5) we put g(x) = − ln
(

F (X)
)

then

Var[− ln(F (X))] > σ2(E[w(X)r(X)])
2
.

Note that Var[− lnF (X)] =
∫ 1

0 (lnu)
2 du−

(∫ 1

0 lnu du
)2

= 1, thus

(3.6) E[w(X)r(X)] 6
1

σ
.

E x am p l e 3.7. If X has the inverse-gamma distribution with probability den-

sity function f(x) = βαΓ(α)−1x−α−1 exp(−β/x), x > 0 and parameters α > 2 and

β > 0, then by using (1.6), we can easily obtain w(x) = (α− 1)(α− 2)β−2 x2. Now

if α = 4 and β = 1 then w(x) = 6x2 and by using (3.1) and (3.6), we can get

3 6 E[w(X)r(X)] 6 3
√
2.

Theorem 3.8. Let X be an absolutely continuous non-negative random variable

with E[w(X)/η(X)] < ∞ and w be a smooth function. Then if for all x > 0,

(i) η(x) > 0 ⇒ E
[

w(X)/η(X)
]

> 1/E[w′(X)],

(ii) η(x) < 0 ⇒ E
[

w(X)/η(X)
]

6 1/E[w′(X)],

where w(x) is the w(·)-function corresponding to the random variable X . The equal-
ity holds if and only if X has an exponential distribution.

P r o o f. Using the Cauchy-Schwarz inequality and the fact that E[w(X)] = 1, we

get

(3.7) 1 6 E[w(X)η(X)]E
[w(X)

η(X)

]

.
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Now since w is a smooth function, using equation (1.94) of Johnson [17], we have

(3.8) E(w(X)η(X)) = E[w′(X)],

and since it can be verified from (1.6) that w(x) is positive, this completes the proof.

Equality in (3.7) holds if and only if η(x) = constant, or equivalently if and only if

X is exponentially distributed.

It should be noted that although the eta function is constant for uniform distribu-

tion (η(x) = 0), however, since η appears in the denominator the condition η(x) 6= 0

does not hold. �

R em a r k 3.9. The varentropy of a random variable X is defined as

Var[− ln f(X)] =

∫

R

f(x)(ln f(x))2 dx−
(
∫

R

f(x) ln f(x) dx

)2

.

In the inequality (1.5) if g(x) = − ln f(x) then a lower bound for the varentropyX

is obtained by

(3.9) Var[− ln f(X)] > σ2(E[w′(X)])
2
.

E x am p l e 3.10. Let X have beta distribution with parameters a = 2 and b = 1.

It is easy to show that f is log-concave and η(x) = −1/x and thus η(x) < 0 for all x.

As mentioned in Example 1, since w(x) = 6x(1− x), so E[w(X)/η(X)] 6 − 1
2 . Also

by using Theorem 2.3 of Fradelizi et al. [8] and (3.9),

2

9
6 Var[− ln f(X)] 6 1.

Motivated by Theorem 2.5 of Nanda [20] we have the following result.

Theorem 3.11. Let X be an absolutely continuous non-negative random variable

with E
[

r(X)/η(X)
]

< ∞ and E[η(X)/r(X)] < ∞. Then

(3.10) E
[ r(X)

η(X)

]

>
1

E[η(X)/r(X)]
,

and the equality holds if and only if X follows the distribution having the survival

function

(3.11) F (x) = (1 + βx)−1/α.

For α, β > 0, it becomes a Pareto distribution of the second kind (the Lomax). When

α = 0 then the above distribution gives an exponential distribution. When α < 0

(6= −1) and β < 0 then (3.11) is a finite range distribution.
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P r o o f. Using the Cauchy-Schwarz inequality, it follows that

(3.12) E
[ r(X)

η(X)

]

E
[η(X)

r(X)

]

> 1.

The equality in (3.12) holds if and only if there exists a constant A > 0 such that,

for all x > 0,

(3.13)
r(x)

η(x)
f(x) = A

η(x)

r(x)
f(x),

which is equivalent to η(x)/r(x) = θ.

Thus, the equality holds if and only if there exists a constant θ(6= 0) such that,

for all x > 0,

F (x)f ′(x) + θf2(x) = 0.

Writing F (x) = y, the above equation can be written as

(3.14) y
d2y

dx2
− θ

(dy

dx

)2

= 0.

For θ 6= 1, the solution of this second-order differential equation is

(3.15) F (x) = [(1− θ)(k1x+ k2)]
1/(1−θ).

Since F (0) = 1, the above equation reduces to

(3.16) F (x) = [k1(1− θ)x + 1]1/(1−θ),

where when considering θ − 1 = α and k1(1 − θ) = β, we have k1 = −β/α. Hence,

when α, β > 0, the given distribution is a Pareto distribution. Also according to

Gupta and Kirmani [11], if α, β < 0 then X has a finite range distribution. Note

that, since θ 6= 0, hence α 6= −1.

Finally, if θ = 1, by simple calculation it can be shown that the solution of equation

(3.14) is F (x) = k2e
k1x. Since F (0) = 1, by writing E(X) = µ we have

F (x) = e−x/µ, x > 0.

Hence, the result follows. �
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4. Conclusion

In this article, we characterized probability distributions such as exponential,

Pareto, Weibull, Makeham, Gompertz, and finite range distributions through in-

equalities involving expectation of functions of failure rate, mean residual, log-odds

rate, aging intensity functions, and also Glaser’s function. It should be noted that we

first generalized the results of Nanda [20] and Bhattacharjee et al. [4]. Moreover, we

characterized exponential and logistic distributions, as well as Type 3 extreme value

distribution by using the w(·)-function defined by Cacoullos and Papathanasiou [6].
We also obtained bounds for the expected values of selected functions in reliability

theory by this function. Wang [22] proved that for every random variable X with

log-concave density f , varentropy is bounded from above by the number 1 and in

fact the probability bound does not depend on f , whereas we have provided a lower

bound for it that depends on the probability density function X .
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