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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 3 , P A G E S 4 3 7 – 4 6 0

ON THE CONNECTION BETWEEN CHERRY-TREE
COPULAS AND TRUNCATED R-VINE COPULAS

Edith Kovács and Tamás Szántai

Vine copulas are a flexible way for modeling dependences using only pair-copulas as building
blocks. However if the number of variables grows the problem gets fastly intractable. For dealing
with this problem Brechmann at al. proposed the truncated R-vine copulas. The truncated
R-vine copula has the very useful property that it can be constructed by using only pair-
copulas and a lower number of conditional pair-copulas. In our earlier papers we introduced
the concept of cherry-tree copulas. In this paper we characterize the relation between cherry-
tree copulas and truncated R-vine copulas. It turns out that the concept of cherry-tree copula
is more general than the concept of truncated R-vine copula. Although both contain in their
expressions conditional independences between the variables, the truncated R-vines constructed
in greedy way do not exploit the existing conditional independences in the data. We give a
necessary and sufficient condition for a cherry-tree copula to be a truncated R-vine copula. We
introduce a new method for truncated R-vine modeling. The new idea is that in the first step
we construct the top tree by exploiting conditional independences for finding a good-fitting
cherry-tree of order k. If this top tree is a tree in an R-vine structure then this will define
a truncated R-vine at level k and in the second step we construct a sequence of trees which
leads to it. If this top tree is not a tree in an R-vine structure then we can transform it into
such a tree at level k + 1 and then we can again apply the second step. The second step is
performed by a backward construction named Backward Algorithm. This way the cherry-tree
copulas always can be expressed by pair-copulas and conditional pair-copulas.

Keywords: copula, conditional independences, Regular-vine, truncated vine, cherry-tree
copula

Classification: 60C05, 62H05

1. INTRODUCTION

Copulas in general are known to be useful tool for modeling multivariate probability
distributions since they make possible to model separately the dependence structure
and the univariate marginals. In this paper we show how conditional independences can
be utilized in the expression of multivariate copulas. Regarding to this we proved in [19]
a theorem which links to a junction tree probability distribution the so called junction
tree copula.
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The paper [1] calls the attention to the fact that “conditional independence may re-
duce the number of the pair-copula decompositions and hence simplify the construction”.
In this paper the importance of choosing a good factorisation which takes advantage of
the conditional independence relations between the random variables is pointed out.
In [19] we introduced the concept of cherry-tree copulas which exploits the conditional
independences between the variables.

The importance of taking into account the conditional independences between the
variables encoded in a Bayesian Network (related to a directed acyclic graph) was ex-
plored in the papers written by Kurowicka and Cooke [21], by Hanea et al. [12] and
Bauer et al. [3]. Two aspects of this problem were discussed. First, when the Bayesian
Network (BN) is known, some of the conditional independences taken from the BN are
used to simplify a given expression of the D- or C-vine copulas, which are very special
types of vine copulas (see [3]). Second, the problem of reconstruction of the BN from
a sample data set was formulated under the assumption that the joint distribution is
multivariate normal. For discovering the independences and conditional independences
between the variables in Hanea et al. [12] the correlations, the conditional correlations
and the determinant of the correlation matrix are used.

The paper [3] is dealing with more general pair-copula constructions related to the
non-Gaussian BNs. In their paper the BN is supposed to be known. The formula of
probability distribution associated to the given BN is expressed by pair-copulas.

The so-called truncated Regular-vine (R-vine) copula is defined by Kurowicka in [23]
and by Brechmann et al. in [6]. In [23] an algorithm was developed for searching the
“best truncated vine”, which was defined as the one whose nodes of the top trees (trees
with most conditioning) correspond to the smallest absolute values of correlations. This
restricts the applicability of this method to Gaussian copulas.

In this paper we recall the concept of the cherry-tree copulas. An alternative definition
of R-vines using a special hypergraph structure is given in [19]. There we proved that
truncated vine copula is a special case of the cherry-tree copula.

In the preliminary section we recall all concepts that we need in the paper. First we
will remind some graph theoretical concepts since the conditional independences can be
represented on graphs. Then the concepts of copulas and R-vine copulas will be recalled.
Finally the multivariate junction tree copula associated to a junction tree probability
distribution and an equivalent definition of the R-vine copulas based on the cherry-tree
graph structures will also be presented. In the third section we give a necessary and
sufficient condition for a cherry-tree copula to be a truncated R-vine copula and an
algorithm for obtaining the truncated R-vine structure from a given cherry-tree copula.
In the fourth section we give a theorem for transforming a general cherry-tree copula into
a truncated R-vine copula. We finish the paper with conclusions and with highlighting
the new perspectives given by the paper.

2. PRELIMINARIES

The reader who is familiar with the basic concepts presented in this preliminary section
may skip some parts of it.
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2.1. Acyclic hypergraph, junction tree, junction tree probability
distribution

In this subsection we recall some concepts used in graph theory and probability theory
which are needed throughout the paper and present how these can be linked to each
other. For a good overview see [24] and [25]. We first present the acyclic hypergraphs
and junction trees. Then we introduce the cherry-trees as a special type of junction trees.
We finish this subsection with the multivariate joint probability distribution associated
to junction trees.

Let V = {1, . . . , d} be a set of vertices and Γ a set of subsets of V called set of
hyperedges. A hypergraph consists of a set V of vertices and a set Γ of hyperedges. We
denote a hyperedge by Ki, where Ki is a subset of V .

The acyclic hypergraph is a special type of hypergraph which fulfills the following
requirements:

• Neither of the hyperedges of Γ is a subset of another hyperedge.

• There exists a numbering of edges for which the running intersection property is
fulfilled: ∀j ≥ 2 ∃ i < j : Ki ⊃ Kj ∩ (K1 ∪ . . . ∪Kj−1). (Other formulation is
that for all hyperedges Ki and Kj with i < j−1, Ki∩Kj ⊂ Ks for all s, i < s < j.)

Let Sj = Kj ∩ (K1 ∪ . . . ∪Kj−1), for j > 1 and S1 = φ. Let Rj = Kj\Sj . We
say that Sjseparates Rj from (K1 ∪ . . . ∪Kj−1) \Sj , and call Sj separator set or shortly
separator.

Now we link these concepts to the terminology of junction trees.
The junction tree is a special tree stucture which is equivalent to the connected acyclic

hypergraphs (see in [24] and [25]). The “nodes” of the tree correspond to the hyperedges
of the connected acyclic hypergraph and are called clusters, the “edges” of the junction
tree correspond to the separator sets and called separators. The set of all clusters is
denoted by Γ, the set of all separators is denoted by S. A junction tree (V,Γ, S) is
defined by the set of vertices V , the set of nodes Γ called also set of clusters, and the
set of separators S. The junction tree with the largest cluster containing k variables is
called k-width junction tree.

An important relation between graphs and hypergraphs is given in [24]: A hypergraph
is acyclic if and only if it can be considered to be the set of maximal cliques (complete
graphs) of a triangulated (chordal) graph. We remind here that a clique is a subset of
vertices of an undirected graph such that its induced subgraph is complete and a graph
is triangulated if every cycle of length greater than 3 has a chord. This means that the
vertices in a cluster are all connected with each other.

In the Figure 1 one can see a) a triangulated graph, b) the corresponding acyclic
hypergraph and c) the corresponding junction tree.

We consider the random vector X = (X1, . . . , Xd)
T . Through the paper we use the

following notations: V = {1, . . . , d} the set of indices, X = {X1, . . . , Xd} the set of
the components of the random vector X and XA a random vector with components
Xi, i ∈ A ⊂ {1, . . . , d}.

Major advances in probabilistic inference methods based on graphical representations
have been realized by Lauritzen and Spiegelhalter [24] and Lauritzen [25]. However
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Fig. 1. a) Triangulated graph, b) The corresponding acyclic

hypergraph, c) The corresponding junction tree which is a cherry-tree.

probabilistic inference has the inherent disadvantage of being NP-hard. By exploiting the
conditional independence relations among the discrete random variables of a probabilistic
network the underlying joint probability space maybe decomposed into smaller subspaces
corresponding to cliques in a triangulated graph ([24] and [25]).

We say that a probability distribution has the Global Markov (GM) property de-
scribed by a graph if for any A,B,C ⊂ V for which C separates A and B in graph
theoretical sense XA and XB are conditionally independent given XC . This can be
formulated in terms of probabilities as

P (XA∪B∪C) =
P (XA∪C)P (XB∪C)

P (XC)
.

The concept of junction tree probability distribution is related to the junction tree
graph and to the Global Markov property. A junction tree probability distribution is
defined as a fraction of some products of marginal probability distributions as follows:

P (X) =

∏
C∈Γ

P (XC)∏
S∈S

[P (XS)]νS−1 , (1)

where Γ is the set of clusters of the junction tree, S is the set of separators, νS is the
number of those clusters which are linked by the separator S.

Example 2.1. The probability distribution corresponding to Figure 1 is:

P (X) =
P
(
X{1,2,3}

)
P
(
X{2,3,4}

)
P
(
X{3,4,5}

)
P
(
X{2,3}

)
P
(
X{3,4}

)
=

P (X1, X2, X3)P (X2, X3, X4)P (X3, X4, X5)
P (X2, X3)P (X3, X4)

.

In [7] and [8] there were used and named the so called t-cherry-tree graph structures.
Since these can be regarded as a special type of junction tree we can give now the
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following definition. In this paper we will call this structure simply cherry-tree as this
does not cause any confusion.

Definition 2.2. We call k order cherry-tree the junction tree with all clusters of size k
and all separators of size k − 1.

Denoting by Cch and Sch the set of clusters and the set of separators of the cherry
junction tree we gave the following definition.

Definition 2.3. (Kovács and Szántai [19]) In the discrete case the probability distri-
bution given by (2) is called cherry-tree probability distribution

Pch(X) =

∏
K∈Cch

P (XK)

∏
S∈Sch

(P (XS))νs−1 (2)

and in the continuous case the probability distribution given by (3) is called cherry-tree
probability density function

fch (x) =

∏
K∈Cch

fK (xK)∏
S∈SCh

(fS (xS))νS−1 , (3)

where in both cases νS denotes the number of clusters which are linked by the separa-
tor S.

The marginal probability distributions and the marginal density functions involved in
the above formulae are marginal probability distributions of P (X), respectively marginal
density functions of f (x).

2.2. Copula, R-vine copula

In this subsection we recall some definitions according to copulas and R-vine copulas.

Definition 2.4. A function C : [0; 1]d → [0; 1] is called a d-dimensional copula if it
satisfies the following conditions:

1. C (u1, . . . , ud) is increasing in each component ui,

2. C (u1, . . . , ui−1, 0, ui+1, . . . , ud) = 0 for all uk ∈ [0; 1], k 6= i, i = 1, . . . , n,

3. C (1, . . . , 1, ui, 1, . . . , 1) = ui for all ui ∈ [0; 1] , i = 1, . . . , d,

4. C is d-increasing, i.e for all (u1,1, . . . , u1,d) and (u2,1, . . . , u2,d) in [0; 1]d with
u1,i < u2,i for all i, we have

2∑
i1=1

· · ·
2∑

id=1

(−1)

dP
j=1

ij
C (ui1,1, . . . , uid,d) ≥ 0.
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Due to Sklar’s theorem if X1, . . . , Xd are continuous random variables defined on a
common probability space, with the univariate marginal cdf’s FXi

(xi) and the joint cdf
FX1,...,Xd

(x1, . . . , xd) then there exists a unique copula function CX1,...,Xd
(u1, . . . , ud) :

[0; 1]d → [0; 1] such that by the substitution ui = Fi (xi) , i = 1, . . . , d we get

FX1,...,Xd
(x1, . . . , xd) = CX1,...,Xd

(F1 (x1) , . . . , Fd (xd))

for all (x1, . . . , xd)
T ∈ Rd.

In the following we will use the vectorial notation FXD
(xD) = CXD

(uD), where
uD =

(
FXi1

(xi1) , . . . , FXim
(xim)

)T and {i1, . . . , im} = D ⊆ V .
It is well known that

fXi1 ,...Xim
(xi1 , . . . , xim) = cXi1 ,...Xim

(
FXi1

(xi1) , . . . , FXim
(xim)

)
·
m∏
k=1

fXik
(xik) .

In vectorial terms this can be written as

fXD
(xD) = cXD

(uD) ·
∏
ik∈D

fXik
(xik) (4)

and after dividing by the product term

cXD
(uD) =

fXD
(xD)∏

ik∈D
fXik

(xik)
.

In many applications occurs that between different pairs of variables there are differ-
ent dependence structures ([1, 11]) which can not be modeled by a unique multivariate
copula function. Therefore a new approach was introduced by Joe in [16]. This is the so
called pair-copula construction which is able to encode more types of pair dependences
in the same multivariate probability distribution. In this approach a copula is expressed
as a product of different types of bivariate copulas and conditional bivariate copulas.
A useful tool called R-vine structure was introduced for construction of pair-copulas by
Bedford and Cooke in [4, 5] and described in more detail by Kurowicka and Cooke in
[22]. This construction uses some special graph sequences.

If it does not cause confusion, instead of fXD
and cXD

we will write fD and cD. We
also introduce the following notations:

Fi,j|D – the conditional probability distribution function of Xi and Xj

given XD;
fi,j|D – the conditional probability density function of Xi and Xj

given XD,
ci,j|D – the conditional copula density function corresponding to fi,j|D,

where D ⊂ V ; i, j ∈ V \D.
According to [22], the definition of the R-vine graph structure is given as:

Definition 2.5. A Regular-vine (R-vine) on d variables consists of a sequence of trees
T1, T2, . . . , Td−1 with nodes Ni and edges Ei for i = 1, . . . , d − 1, which satisfy the
following conditions:
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• T1 has nodes N1 = {1, . . . , d} and edges E1.

• For i = 2, . . . , d− 1 the tree Ti has nodes Ni = Ei−1.

• For two hyperedges a and b to be joined in Ti+1 it must hold that {a, b} ∈ Ei and
|a∆b| = 2, where ∆ stands for the symmetric difference operator and | · | stands
for the cardinality of the set.

We mention here that a and b are subsets of V and |a| = |b| = i in the tree Ti.
The last condition usually is referred to as proximity condition that ensures that two

nodes in tree Ti+1 are only connected by an edge if these nodes share a common node
in tree Ti.

It is shown in [4] and [22] that the edges in an R-vine tree can be uniquely identified
by two nodes (the conditioned nodes), and a set of conditioning nodes, i.e., edges are
denoted by e = j (e) , k (e) |D (E) where D (E) is the conditioning set and j (e) , k (e) /∈
D(E). For a good overview see [10].

The next theorem (see [4]), which can be regarded as a central theorem of R-vines,
links the probability density function to the copulas assigned to the R-vine structure. In
[4] it is shown that there exists a unique probability density assigned to a given R-vine
structure. In [5] it is shown that this probability distribution can be expressed as (5).

Theorem 2.6. The joint density of X = (X1, . . . , Xd) is uniquely determined and given
by:

f (x1, . . . , xd) =
[
d∏
k=1

fk (xk)
]

·
d−1∏
i=2

∏
e∈Ei

cj(e),k(e)|D(e)

(
Fj(e)|D(e)

(
xj(e)|xD(e)

)
, Fk(e)|D(e)

(
xk(e)|xD(e)

) ∣∣xD(e)

)
,

(5)

where Fj(e)|D(e)

(
xj(e)|xD(e)

)
can be calculated as follows:

Fj(e)|D(e)

(
xj(e)|xD(e)

)
=
∂Ci,j(e)|D(e)\{i} (ui, uj)

∂ui

∣∣∣∣∣∣∣ui=Fi|D(e)\{i}(xi|xD(e)\{i})
uj=Fj(e)|D(e)\{i}(xj(e)|xD(e)\{i})

for i ∈ D (e).

Thus one can express Fj(e)|D(e)

(
xj(e)|xD(e)

)
as a function of two conditional distribu-

tions Fi|D(e)\{i}
(
xi|xD(e)\{i}

)
and Fj(e)|D(e)\{i}

(
xj(e)|xD(e)\{i}

)
, with one less condition-

ing variable. This formula was given by Joe in [16]. Hence all conditional distribution
functions in (5) are nested functions of the univariate marginal distribution functions.
In (5) only pair-copulas are involved, therefore these constructions are also called pair-
copula constructions.

We emphasize here that in general the parameter of the pair-copulas cj(e),k(e)|D(e)

depends on the conditioning set D(e). However in the case of simplified pair copula
constructions, the parameter only depends on the conditioning set and not on the values
of the corresponding random variables contained in the conditioning set.
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In Subsection 2.4 we will give another definition for the R-vine which is related to a
sequence of k order cherry-trees.

In [1] the inference of pair-copula decomposition is depicted in three parts:

• The selection of a specific factorization (structure);

• The choice of pair-copula types;

• The estimation of parameters of the chosen pair-copulas.

Our approach deals with finding a good factorization which exploits some of the
conditional independences between the random variables.

Many papers are dealing with selecting specific R-vine such as C-vine or D-vine, see
for example in [1].

2.3. The multivariate copula associated to a junction tree probability dis-
tribution. The cherry-tree copulas.

In this subsection we recall results published in [19] and [20]. In [19] a theorem assuring
the existence of a special type of copula density was proved. This copula density was
assigned to a junction tree graph structure. Let us consider a random vector X =
(X1, X2, . . . , Xd)T , with the set of indices V = {1, 2, . . . , d}. Let (V,Γ, S) be a junction
tree defined on the vertex set V , by the cluster set Γ, and the separator set S.

Theorem 2.7. (Kovács and Szántai [19]) The copula density function associated to a
junction tree probability distribution

fX (x) =

∏
K∈Γ

fXK
(xK)∏

S∈S
[fXS

(xS)]νS−1 ,

is given by

cX (uV ) =

∏
K∈Γ

cXK
(uK)∏

S∈S
[cXS

(uS)]νS−1 , (6)

where νS is the number of clusters linked by S.

Definition 2.8. (Kovács and Szántai [19]) The copula defined by (6) is called junction
tree copula.

Definition 2.9. The junction tree copula associated to a junction tree with the largest
cluster containing k elements is called k-width junction tree copula.

We saw that if the conditional independence structure between the random variables
makes possible the construction of a junction tree, then the multivariate copula density
associated to the joint probability distribution can be expressed as a fraction of some
products of lower dimensional copula densities.

As a special case of Theorem 2.7 we state the following theorem for cherry-tree
probability distributions.



On the connection between cherry-tree copulas and truncated R-vine copulas 445

Theorem 2.10. The copula density function associated to a cherry-tree probability
distribution

fX (x) =

∏
K∈Cch

fXK
(xK)∏

S∈Sch

[fXS
(xS)]vS−1 ,

is given by

cX (uV ) =

∏
K∈Cch

cXK
(uK)∏

S∈Sch

[cXS
(uS)]vS−1 , (7)

where (V, Cch,Sch) is a cherry-tree graph structure and vS is the number of clusters
linked by S.

P r o o f .

fX (x) =

∏
K∈Cch

fXK
(xK)∏

S∈Sch

[fXS
(xS)]vS−1 =

∏
K∈Cch

cXK
(uK) ·

∏
ik∈K

fXik
(xik)

∏
S∈Sch

[
cXS

(uS) ·
∏
ik∈S

fXik
(xik)

]vS−1 . (8)

The question that we have to answer is how many times appears in the nominator
respectively in the denominator the probability density function fXi

(xi) of each Xi

random variable.
Since

⋃
K∈Cch

XK = X for each random variable Xi εX, fXi
(xi) appears at least once

in the nominator.
Now we prove that in the cherry-tree the number of clusters which contain a variable

Xi is greater with 1 than the number of separators which contain the same variable.
In a cherry-tree for every index i as a consequence of the running intersection property
the following property holds. The clusters which contain a given index i define a sub
cherry-tree. If the index i is contained in number of t(i) clusters then i will be contained
in t(i) − 1 separators as these are edges of the cluster-tree. Therefore for all i fXi

(xi)
will be contained once more times in the nominator than in the denominator.

Applying this result in formula (8) after simplification we obtain

fX (x) =

∏
K∈Cch

cXK
(uK)

d∏
i=1

fXi
(xi)∏

S∈Sch

[cXS
(uS)]vS−1 .

Dividing both sides by
d∏
i=1

fXi
(xi) we obtain (7). �
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Definition 2.11. The copula density function associated to a cherry-tree probability
distribution is called cherry-tree copula and its expression is:

cX (uV ) =

∏
K∈Cch

cXK
(uK)∏

S∈Sch

[cXS
(uS)]νS−1 , (9)

where νS denotes the number of clusters containing the separator S.

2.4. R-vine structure given by a sequence of cherry-trees. Cherry-vine
copula.

In [19] and [20] we gave an alternative definition of R-vines by using the concept of
cherry-tree.

Definition 2.12. The cherry-vine graph structure is defined by a sequence of cherry
junction trees T1, T2, . . . , Td−1 as follows

• T1is a regular tree on V = {1, . . . , d}, the set of edges is E1 =
{
e1
i = (li,mi) ,

i = 1, . . . , d− 1, li,mi ∈ V }

• T2 is the second order cherry junction tree on V = {1, . . . , d}, with the set of
clusters E2 =

{
e2
i , i = 1, . . . , d− 1|e2

i = e1
i

}
,
∣∣e1
i

∣∣ = 2

• Tk is one of the possible k order cherry junction tree on V = {1, . . . , d}, with the
set of clusters Ek =

{
eki , i = 1, . . . , d− k + 1

}
, where each eki ,

∣∣eki ∣∣ = k is obtained
from the union of two linked clusters in the (k − 1) order cherry junction tree Tk−1.

It is straightforward to see that Definition 2.12 is equivalent with Definition 2.5. Next
we define the pair-copulas assigned to the cherry-vine structure given in Definition 2.12

The copula densities cli,mi

(
Fli (x

li
) , Fmi

(
x

mi

))
are assigned to the edges of the

tree T1.
The copula densities

cal
ij ,b

l
ij |Sl

ij

(
Fal

ij |Sl
ij

(
xal

ij
|xSl

ij

)
, Fbl

ij |Sl
ij

(
xbl

ij
|xSl

ij

) ∣∣∣ xSl
ij

)
are assigned to each pair of clusters eli and elj , which are linked in the junction tree Tl,
where:

Sl = eli ∩ elj ,

alij = eli − Slij
blij = eli − Slij ,

(10)

for l = 2, . . . , d − 1. It is easy to see that alij and blij , l = 2, . . . , d − 1 contain a single
element only.

The following theorem is a consequence of Theorem 2.6.
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Theorem 2.13. The probability distribution associated to the cherry-vine structure
given in Definition 2.12 can be expressed as:

f (x1, . . . , xd) =
[
d∏
i=1

fi (xi)
][ ∏

(limi)∈E1

climi
(Fli (xli) , Fmi

(xmi
))

]
·

d−1∏
l=2

∏
el

i,e
l
j∈N(Tl)

cal
i,j ,b

l
i,j |Sl

ij

(
Fal

i,j |Sl
ij

(
xal

i,j
|xSl

ij

)
, Fbl

i,j |Sl
ij

(
xbl

i,j
|xSl

ij

)
|xSl

ij

) (11)

where eli, e
l
j ∈ N (Tl) denotes that eli, e

l
j are linked in the cherry tree Tl, and Slij , a

l
i,j , b

l
i,j ,

are defined by (10) and Fal
i,j |Sl

ij
is defined in similar way as in Theorem 2.6.

The Formula (11) can be applied for simplified and also not simplified pair-copula
constructions.

We illustrate these concepts on the following example in the case of simplified pair-
copula constructions.

Fig. 2. Example for an R-vine structure on 6 variables using

Definition 2.12.

Example 2.14. The edge set of the first tree and the sequence of the cherry-trees
(in Figure 2) together with the copula densities determined by Definition 2.12 are the
following:

T1 : E1 =
{
e1

1 = (1, 2) , e1
2 = (2, 3) , e1

3 = (2, 6) , e1
4 = (3, 4) , e1

5 = (4, 5)
}
,

ce11 = c1,2, ce12 = c2,3, ce13 = c2,6, ce14 = c3,4, ce15 = c4,5;

T2 : E2 =
{
e2

1 = (1, 2) , e2
2 = (2, 3) , e2

3 = (2, 6) , e2
4 = (3, 4) , e2

5 = (4, 5)
}

S2
1,2 = e2

1 ∩ e2
2 = {2} ,

a2
1,2 = e2

1 − S2
1,2 = {1} , b21,2 = e2

2 − S2
1,2 = {3} , ca2

1,2,b
2
1,2|S2

1,2
= c1,3|2;

S2
2,3 = e2

2 ∩ e2
3 = {2} ,

a2
2,3 = e2

2 − S2
2,3 = {3} , b22,3 = e2

2 − S2
2,3 = {6} , ca2

2,3,b
2
2,3|S2

2,3
= c3,6|2;
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S2
2,4 = e2

2 ∩ e2
4 = {3} ,

a2
2,4 = e2

2 − S2
2,4 = {2} , b22,4 = e2

4 − S2
2,4 = {4} , ca2

2,4,b
2
2,4|S2

2,4
= c2,4|3;

S2
4,5 = e2

4 ∩ e2
5 = {4} ,

a2
4,5 = e2

4 − S2
4,5 = {3} , b24,5 = e2

5 − S2
4,5 = {5} , ca2

4,5,b
2
4,5|S2

4,5
= c3,5|4;

T3 : E3 =
{
e3

1 = (1, 2, 3) , e3
2 = (2, 3, 4) , e3

3 = (2, 3, 6) , e3
4 = (3, 4, 5)

}
S3

1,2 = e3
1 ∩ e3

2 = {2, 3} ,
a3

1,2 = e3
1 − S3

1,2 = {1} , b31,2 = e3
2 − S3

1,2 = {4} , ca3
1,2,b

3
1,2|S3

1,2
= c1,4|2,3;

S3
2,3 = e3

2 ∩ e3
3 = {2, 3} ,

a3
2,3 = e3

2 − S3
2,3 = {4} , b32,3 = e3

3 − S3
2,3 = {6} , ca3

2,3,b
3
2,3|S3

2,3
= c4,6|2,3;

S3
2,4 = e3

2 ∩ e3
4 = {3, 4} ,

a3
2,4 = e3

2 − S3
2,4 = {2} , b32,4 = e3

4 − S3
2,4 = {5} , ca3

2,4,b
3
2,4|S3

2,4
= c2,5|3,4;

T4 : E4 =
{
e4

1 = (1, 2, 3, 4) , e4
2 = (2, 3, 4, 5) , e4

3 = (2, 3, 4, 6)
}

S4
1,2 = e4

1 ∩ e4
2 = {2, 3, 4} ,

a4
1,2 = e4

1 − S4
1,2 = {1} , b41,2 = e4

2 − S4
1,2 = {5} , ca4

1,2,b
4
1,2|S4

1,2
= c1,5|2,3,4;

S3
2,3 = e4

2 ∩ e4
3 = {2, 3, 4} ,

a4
2,3 = e4

2 − S4
2,3 = {5} , b42,3 = e4

3 − S4
2,3 = {6} , ca4

2,3,b
4
2,3|S4

2,3
= c5,6|2,3,4;

T5 : E5 =
{
e5

1 = (1, 2, 3, 4, 5) , e5
2 = (2, 3, 4, 5, 6)

}
S5

1,2 = e5
1 ∩ e5

2 = {2, 3, 4, 5} ,
a5

1,2 = e5
1 − S5

1,2 = {1} , b51,2 = e5
2 − S5

1,2 = {6} , ca5
1,2,b

5
1,2|S5

1,2
= c1,6|2,3,4,5.

We draw the attention to the fact that the copulas assigned to the first tree T1 are
not conditional copulas in accordance with the formula (11).

The joint probability density function of X = (X1, . . . , X6) can be expressed by The-
orem 2.13 as follows:

f (x1, x2, x3, x4, x5, x6)

=
(

6∏
i=1

f (xi)
)
c1,2 (F1 (x1) , F2 (x2)) · c2,3 (F2 (x2) , F3 (x3)) · c2,6 (F2 (x2) , F6 (x6))

·c3,4 (F3 (x3) , F4 (x4))
·c4,5 (F4 (x4) , F5 (x5))
·c1,3|2

(
F1|2 (x1|x2) , F3|2 (x3|x2)

)
·c3,6|2

(
F3|2 (x3|x2) , F6|2 (x6|x2)

)
·c2,4|3

(
F2|3 (x2|x3) , F4|3 (x4|x3)

)
·c3,5|4

(
F3|4 (x3|x4) , F5|4 (x5|x4)

)
·c1,4|2,3

(
F1|2,3 (x1|x2, x3) , F4|2,3 (x4|x2, x3)

)
·c4,6|2,3

(
F4|2,3 (x4|x2, x3) , F6|2,3 (x6|x2, x3)

)
·c2,5|3,4

(
F2|3,4 (x2|x3, x4) , F5|3,4 (x5|x3, x4)

)
·c1,5|2,3,4

(
F1|2,3,4 (x1|x2, x3, x4) , F5|2,3,4 (x5|x2, x3, x4)

)
·c5,6|2,3,4

(
F5|2,3,4 (x1|x2, x3, x4) , F6|2,3,4 (x6|x2, x3, x4)

)
·c1,6|2,3,4,5

(
F1|2,3,4,5 (x1|x2, x3, x4, x5) , F6|2,3,4,5 (x6|x2, x3, x4, x5)

)
In this example we expressed the probability density function in a simplified form as

in general each conditional pair copula depends on the conditioning variables (see (11)).
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Here we call the attention that our R-vine representation by a sequence of cherry-
trees was also used in a recent paper by Hobaeck–Haff et al. [15], Section 3. However
in their paper it was not clearly declared that this representation was introduced in our
paper [20].

In the following sections we give some theorems dealing with the relation between
truncated R-vines and cherry-tree copulas.

3. TRUNCATED R-VINE AS A SPECIAL CASE OF CHERRY-TREE COPULA

In this section we give theorems highlighting the relation between the truncated R-vine
and cherry-tree copulas.

As the number of variables grows, the number of conditional pair-copulas grows
rapidly. For example in [11] in the case of 16 variables the number of pair-copulas in-
volved, which have to be modeled and fitted is 120 = 15 + 14 + · · ·+ 2 + 1. To keep such
structure tractable for inference and model selection, the simplifying assumption that
copulas of conditional distributions do not depend on the variables which they are condi-
tioned on is popular. Although this assumption leads in many cases to misspecifications
as it was pointed out in [2] and [14]. In [13] there are presented classes of distributions
where simplification is applicable. An idea to overcome the fitting of a large number
of pair-copulas with large conditioning set is to exploit the conditional independences
between the random variables. This idea was already discussed for Gaussian copulas
in [22], based on the idea inspired by Whittaker [27]. However our approach is more
general.

Aas et al. in [1] gave the relation between conditional independences and conditional
pair-copulas:

Remark 3.1. Xi andXj are conditionally independent given the set of variables XA, A ⊂
V \ {i, j} if and only if

cij|A
(
Fi|A (xi|xA) , Fj|A (xj |xA) | xA

)
= 1.

The following theorem is an important consequence of Theorem 2.6.

Theorem 3.2. If in an R-vine the conditional copula densities corresponding to the
trees Tk, Tk+1, . . . , Td−1 are all equal to 1 then there exists a joint probability distri-
bution which can be expressed only with the conditional copula densities assigned to
T1, . . . , Tk−1:

f (x1, . . . , xd) =
[
d∏
i=1

fi (xi)
] [ ∏

(limi)∈E1

climi (Fli (xli) , Fmi (xmi))

]
·

k−1∏
l=2

∏
el

i,e
l
j∈N(Tl)

cal
i,j ,b

l
i,j |Sl

ij

(
Fal

i,j |Sl
ij

(
xal

i,j
|xSl

ij

)
, Fbl

i,j |Sl
ij

(
xbl

i,j
|xSl

ij

)
|xSl

ij

)
where eli, e

l
j ∈ N (Tl) denotes that eli, e

l
j are linked in the cherry tree Tl, and Slij , a

l
i,j , b

l
i,j ,

are defined by (10) and Fal
i,j |Sl

ij
is defined in similar way as in Theorem 2.6.
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The following definition of truncated vine at level k is given in [6].

Definition 3.3. A pair-wisely truncated R-vine copula at level k (or truncated R-vine
copula at level k) is a special R-vine copula with the property that all pair-copulas with
conditioning set equal to, or larger than k, are set to bivariate independence copulas.

We call the attention that Brechmann denotes the first tree T0. To be consistent with
our earlier notations we will denote the first tree by T1.

In their approach Brechmann et al. [6] construct the truncated vine copulas by
choosing the pairs of variables with the strongest Kendall’s correlation in the first tree.
In the last trees the pair-copulas were set to one. We claim that the strong dependences
in the lower trees do not imply necessarily conditional independences in the last trees.
In Figure 3 a conditional independence structure at level 3 is given which can not be
achieved by a sequence of trees as a truncated R-vine.

Another approach, which is much closer to ours, is given by Kurowicka in [23]. Her
idea was to build trees with lowest dependence (conditional independences) in the top
trees, starting with the last tree (node). Her method uses partial correlations which in
case of Gaussian copula are theoretically well grounded.

There arise the following questions. What special properties has the probability
distribution, obtained by setting all the conditional copula densities associated to the
trees Tk, . . . , Td−1 to 1 and what conditional independences are encoded in the obtained
copula?

If the conditional copulas associated to the tree T3 of Figure 3:

c1,4|2,3
(
F1|23 (x1|x2, x3) , F4|2,3 (x4|x2, x3)

)
,

c4,6|2,3
(
F1|23 (x1|x2, x3) , F4|2,3 (x4|x2, x3)

)
,

c2,5|3,4
(
F2,5|3,4 (x2|x3, x4)), F5|3,4 (x5|x3, x4)

)
,

(12)

are equal to 1, these imply the following conditional independences between the variables:

X1 ⊥ X4|X2, X3; X4 ⊥ X6|X2, X3; X2 ⊥ X5|X3, X4. (13)

In this case the junction tree copula associated to T3 in Figure 3 gives the expression of
the multivariate copula as a cherry-tree copula.

1 2 3 2 3 4 3 4 5

2 3 6

2 3

2 3 3 4

Fig. 3. 3-rd order cherry junction tree.
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The cherry-tree copula density assigned to the truncated R-vine structure in Figure 2

is:
f (x1, x2, x3, x4, x5, x6)

=
(

6∏
i=1

f (xi)
)
· c1,2 (F1 (x1) , F2 (x2)) · c2,3 (F2 (x2) , F3 (x3))

·c2,6 (F2 (x2) , F6 (x6)) · c3,4 (F3 (x3) , F4 (x4)) · c4,5 (F4 (x4) , F5 (x5))
·c1,3|2

(
F1|2 (x1|x2) , F3|2 (x3|x2)

)
· c3,6|2

(
F3|2 (x3|x2) , F6|2 (x6|x2)

)
·c2,4|3

(
F2|3 (x2|x3) , F4|3 (x4|x3)

)
· c3,5|4

(
F3|4 (x3|x4) , F5|4 (x5|x4)

)
.

Let us recall the following results.

Theorem 3.4. (Kovács and Szántai [19]) A general k-width junction tree copula (see
Definition 2.9) can be expressed as a k order cherry-tree copula.

This theorem shows why the k order cherry-tree copulas are so powerful in multivari-
ate copula modeling.

Another important result is given by the following theorem.

Theorem 3.5. (Kovács and Szántai [19]) A k order cherry-tree copula can be expressed
as a (k + 1) order cherry-tree copula.

As a consequence of Theorem 3.5 we have the following theorem.

Theorem 3.6. (Kovács and Szántai [19]) Any copula having a structure of truncated
vine at level k is a k order cherry-tree copula.

Remark 3.7. Since truncated R-vine copula is a cherry-tree copula it can be defined
by formula (9), where the set of clusters and separators are defined only by the first tree
after truncation which we call top tree.

The top tree can be achieved in multiple ways, i. e. there are many sequences of
cherry-trees leading to it, therefore in our opinion the good sequence of cherry trees is
not necessarily the sequence which greedy way maximizes associations in the lower trees.
The construction of the sequence of cherry trees in a greedy way may not result a good
truncated vine at level k since the conditional independences in the higher trees will not
necessarily be achieved. Rather we claim that it is more useful to choose that sequence
which uses those pair-copulas which can be good fitted to the empirical data.

Theorem 3.8. A k order cherry-tree copula is a truncated R-vine copula if and only if
its separators define a (k − 1) order cherry-tree.

P r o o f . The first implication is that if the separators of the tree Tk form a (k − 1)
order cherry-tree, then the k order cherry-tree can be expressed as a truncated R-vine.
For this statement we give a constructive proof by the following algorithm.

We will show that there exists a sequence of cherry-trees which leads to the given kth
order cherry-tree. This means that the kth order cherry-tree is a truncated R-vine at
level k.
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Algorithm 3.9. Backward Algorithm.
Algorithm for obtaining a truncated R-vine structure from a cherry-tree structure.
Input: A k order cherry-tree graph structure, i. e. a set of clusters of size k and the

set of separators of size k -1 enhanced with the property that the separators define a
k − 1 order cherry-tree.

Output: An R-vine truncated at level k.
We obtain recursively an (m− 1) width cherry-tree from an m-width cherry-tree, for

m = k, . . . , 1 by the following two steps:

• Step 1. The separators of the m-width cherry-tree will be the clusters in the
(m − 1)-width cherry-tree, which will be linked if between them is one cluster in
the m-width cherry-tree, and they are different.

• Step 2. The leaf clusters (those clusters which contain a simplicial node i. e. a node
which is not contained by any other cluster) are transformed into (m − 1)-width
clusters, by deleting one node which is not simplicial. We emphasize here that
it is essential to delete the same node from all leaf clusters which are connected
to the same cluster. This guaranties that the m − 1 order cherry-tree structure
obtained is enhanced with the property that its separators define an m− 2 order
cherry-tree. The m−1-width cluster obtained in this way will be connected to one
of the clusters obtained in Step 1, which was the m− 1-width separator linked to
it in the m-width cherry-tree.

An application of this algorithm can be seen in Figure 4.
Now we prove the other implication: If the k order cherry-tree copula can be expressed

by an R-vine truncated at level k then the separators define a (k− 1) order cherry-tree.
We prove this by proving an equivalent statement. If the separators do not define a
(k− 1) order cherry-tree, then it cannot be expressed as an R-vine truncated at level k.
We prove this on the example in Figure 5.

Let T4 be the 4 order cherry-tree in Figure 5. Its separators do not define a 3-rd order
cherry-tree. We will prove, that there does not exist any 3-rd order cherry-tree T3 with
the property that T4 can be obtained from it by Defintion 2.12, which means that there
does not exist a truncated R-vine structure which leads to it.

We will show that there does not exist a T3 cherry-tree with clusters in E3, such that
the clusters in E4 = {(1, 2, 3, 5) , (1, 3, 4, 6) , (1, 2, 3, 4) , (1, 2, 4, 7)}, could be obtained by
the union of two linked clusters belonging to E3.

There are two possibilities:

1) The clusters (1, 2, 3) , (1, 3, 4) , (1, 2, 4) are clusters of E3. This cannot be the case
because the running intersection property could not be fulfilled.

2) At least one of these clusters is not in E3. Without loss of generality let us suppose
that (1, 2, 3) is not a cluster in E3. This means that one of the pairs (1, 2), (2, 3)
and (1, 3) are not connected in T3.

Without loss of generality let us suppose that (1, 2) are not linked. By Definition
2.12 this means that (1, 2, 3, 5) in T4 can be obtained from the union of (1, 3, 5)
and (2, 3, 5) which are linked in T3.
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Step 1.

Step 2.

1 2 3 2 3 4 3 4 5

2 3 6

2 3

2 3 3 4

1 2 2 3 3 4 4 5
2 3 4

2

2 3 3 4

Step 1.

Step 2.

2 6

2

1 2 3 4 5

6

2 3 4

Fig. 4. Application of Algorithm 1 to a given 3-rd order cherry-tree

in order to obtain a truncated R-vine at level 3 which leads to it.

1 2 3 5 1 2 3 4 1 2 4 7

1 3 4 6

1 3 4

1 2 3 1 2 4

Fig. 5. A 4 order cherry-tree copula which cannot be achieved as a

truncated R-vine.

Now there are two sub-cases again.

2a) (1, 3, 5) is a leaf cluster (only one cluster is connected directly to it, in this
case (2, 3, 5)). This leads to contradiction because 1 appears in at least one
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of other third order clusters, contained for example in (1, 2, 4, 7).
2b) (1, 3, 5) is not a leaf cluster. In this case it is linked to another cluster by

(1, 3) , (1, 5) or (3, 5). The other cluster has the form (1, 3, k) , (1, 5, k) or
(3, 5, k), with k ∈ {4, 6, 7}. By Defintion 2.12 the clusters of T4 are obtained
by the union of the linked clusters in T3. So by taking the union of (1, 3, 5)
with any of the clusters (1, 3, k) , (1, 5, k) or (3, 5, k) we obtain a 4 order cluster
(1, 3, 5, k), which also leads to contradiction because only one cluster of T4

contains 5 but in this case we would have two clusters (1, 2, 3, 5) and (1, 3, 5, k)
both of them containing 5.

�

Definition 3.10. The truncated R-vine obtained by the Algorithm 3.9 (Backward Al-
gorithm) started from a given cherry-tree as the top tree is called cherry-vine structure.

Remark 3.11. Algorithm 3.9 can produce more cherry-vine structures as in Step 2 we
may proceed in different directions.

Remark 3.12. As it can be seen from the proof of Theorem 3.8 not every cherry-tree
copula is a truncated vine copula.

Lemma 3.13. A necessary and sufficient condition for a cherry-tree copula to be a
truncated R-vine copula is that each cluster has to be connected to its neighbors with
at most two different separators.

P r o o f . First the necessity. If a cluster is connected to its neighbors by more than two
different separators then the cherry-tree copula is not a truncated R-vine, see Figure 5.

Now the sufficiency. We want to prove that if a cherry-tree copula is a truncated
R-vine copula then each cluster has at most two different separators. This is equivalent
to the following. If a cluster of a cherry-tree has more than two different separators then
it is not a truncated R-vine.

Let {i1, . . . , ik} be an arbitrary cluster of a k order cherry-tree. Let us suppose that it
is connected to its neighbors by three different separators. Without loss of generality let
us denote these separators as follows: S\i1 = {i2, . . . , ik} , S\i2 = {i1, i3 . . . , ik} , S\i3 =
{i1, i2, i4 . . . , ik}. Any two of them will define a (k−1) order cherry-tree but all three will
not, since for any permutation of the three separators, there will be an element which
do not fulfill the running intersection property. For example if the following connection
is proposed

S\i1 − S\i2 − S\i3
then i2 occurs in the first and last set, but not in the set on the path between them. �

This relationship was also discussed in a recent paper by Hobaek–Haff et al. [15].
Lemma 3.13 can be used for checking whether a cherry-tree copula is or is not a

truncated R-vine copula.
At this point we can conclude that the truncated vine at level k is a k order cherry-

tree copula, but not every k order cherry-tree copula can be obtained as a truncated
vine at level k.
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4. METHODS FOR CONSTRUCTING CHERRY-TREE COPULAS
AND TRUNCATED R-VINE COPULAS

Regarding Kurowicka’s approach ([23]): “We start building the vine from the top node,
and progress to the lower trees, ensuring that regularity condition is satisfied and partial
correlations corresponding to these nodes are the smallest. If we assume that we can
assign the independent copula to nodes of the vine with small absolute values of partial
correlations, then this algorithm will be useful in finding an optimal truncation of a vine
structure”, we claim, that there are copulas which have conditional independences in
the top trees (m ≥ k), however they have not a truncated R-vine structure at level k.

We may have the following decomposition from the last node backward, which leads
to the cherry-tree which is not truncated R-vine in Figure 6.

Fig. 6. The backward decomposition which leads to a 4th order

cherry-tree, but not an R-vine truncated at level 4.

At this end it may arise the following question. How can we express a cherry-tree
copula by two dimensional copulas? We have two possibilities:

First, if the cherry-tree copula is a truncated R-vine copula (the separators form a
tree as we have seen in Theorem 3.8), then use Algorithm 3.9 to achieve a truncated
vine structure, to which the pair-copulas will be assigned. In this case its formula is the
following: ∏

K∈Cch

cK (FXK
(xK))∏

S∈Sch

[cS (FXS
(xS))]νS−1 =

[ ∏
(limi)∈E1

climi
(Fli (xli) , Fmi

(xmi
))

]
·

k−1∏
l=2

∏
el

i,e
l
j∈N(Tl)

cal
i,j ,b

l
i,j |Sl

ij

(
Fal

i,j |Sl
ij

(
xal

i,j
|xSl

ij

)
, Fbl

i,j |Sl
ij

(
xbl

i,j
|xSl

ij

)
|xSl

ij

)
.

where eli, e
l
j ∈ N (Tl) denotes that eli, e

l
j are linked in the cherry tree Tl, and Slij , a

l
i,j , b

l
i,j ,

are defined by (10) and Fal
i,j |Sl

ij
is defined in similar way as in Theorem 2.6.
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Second, if the cherry-tree copula is not a truncated R-vine copula the following the-
orem will be powerful for solving this problem.

Before stating the theorem it is important to call the attention on the following.
Because the same cherry-tree can be represented graphically in multiple ways (when νS
is greater than 1), it is important to start with a cherry-tree where the same separator
links a cluster to other clusters. This means that from all clusters linked by the same
separator we choose one and all the others will be linked to it. In this way all the other
clusters will be neighbors of the chosen one.

Theorem 4.1. Starting from any k order cherry-tree copula the (k + 1) cherry-tree
copula obtained by joining the neighbor clusters via Definition 2.12 will be a truncated
R-vine copula.

P r o o f . Since via Lemma 3.13 we are interested only in the number of the different sep-
arators, we may suppose without loss of generality that all separators have multiplicity
one.

We have two cases.
In the first case the k order cherry-tree copula is already a truncated R-vine copula,

then by Definition 2.12 the obtained k + 1 order cherry-tree copula is also a truncated
R-vine.

In the second case we suppose that the k order cherry-tree copula is not a truncated R-
vine copula. This means by Theorem 4.1 that the set of separators do not define a cherry-
tree. Lemma 3.13 implies that there exists at least one cluster C∗k = {i1, i2, . . . , ik} which
is connected to its neighbors by more than two different separators.

By joining the neighbor clusters in the k order cherry-tree using Definition 2.12 we
obtain a (k + 1) order cherry-tree in which the separators correspond to the clusters in
the k order tree. Let us consider the k-width clusters denoted by Ck1 , . . . , C

k
k such that

Ck2 , . . . , C
k
k are all connected to Ck1 by different separators. (This will be a cherry-tree

which is not truncated vine.) Let us form the clusters Ck+1
i = Ck1 ∪ Cki , i = 2, . . . , k.

This way we obtain k − 1 clusters of width k + 1. Without loss of generality we fix one
of them C? = Ck+1

2 . C? is connected to the other Ck+1
i , i = 3, . . . , k by Ck1 . On the

other hand if in the original k-width tree Ck2 was connected to other clusters then C?

will be connected to them by Ck2 . At this end it turns out that C? will be connected by
at most 2 separators Ck1 and possibly Ck2 to the other clusters in the k + 1-width tree.

For a better understanding let us illustrate this on an example. Let be C∗k =
{1, 2, 3, 4} see picture a) of Figure 7. Then in picture b) the process of joining the
neighbor clusters is presented. In picture c) of Figure 7 we have C∗k+1 = {1, 2, 3, 4, 5}
which has two different separators connected to it, one of them is C∗k = {1, 2, 3, 4} the
other is {2, 3, 4, 5}.

We emphasize here, that by joining any two k order clusters in the k order cherry-tree
we obtain a (k + 1) order cluster which will have at most two neighbor clusters in the
(k + 1) order tree, connected to it by different separators. By Lemma 3.13 the (k + 1)
tree obtained from the k order tree by Definition 2.12, will have a truncated R-vine
structure. �
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Fig. 7. a) A cherry-tree copula which is not truncated R-vine. b)

Joining the neighboring clusters via Definition 2.12. c) The obtained

5th order cherry-tree which is a truncated R-vine in two

representations.
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We conclude this section with the following. It is easy to see how restrictive is to
search for truncated R-vines only by building from bottom up the first trees in a greedy
way. A truncated R-vine is defined by its top tree, the lower trees can be chosen by
fulfilling the condition given in Definition 2.12. It is important to remark here that the
number of possible sequences of trees is reduced by fixing the top tree. Therefore it may
be combined with greedy methodologies in order to find a good fitting truncated R-vine
copula.

The new idea is searching good fitting cherry-tree copulas and then to express it by
a truncated R-vine copula. We proved in Theorem 4.1 that any cherry-tree copula can
be transformed into a truncated R-vine which can be reached by using the Backward
Algorithm.

5. CONCLUSIONS

In modeling multivariate probability distribution, an important task is to exploit some
conditional independences existing between the random variables. We introduced in [26]
and [17] the discrete cherry-tree probability distributions, then in [19] the cherry-tree
copulas. The results of the present paper link the cherry-tree copula to the truncated
R-vine which makes possible the use of cherry-tree structures in modeling continuous
probability distributions, too.

If the number of variables grows the general R-vine copula modeling gets untractable.
A method to overcome this problem is exploiting the conditional independences between
the variables. The cherry-tree copulas are able to exploit these conditional indepen-
dences. Another model containing conditional independences is the truncated R-vine.
In the literature it was mainly fitted in greedy way from bottom to up. Truncated R-
vines contain conditional independences but they do not use them in the model selection.
This paper gives a possibility to overcome this drawback.

In this paper we clarify the relation between the cherry-tree copula and the truncated
R-vine copula. The cherry-tree copula is more general than the truncated R-vine copula,
but the truncated R-vine copula has the powerful property that it can be expressed by
pair-wise copulas and pair-wise conditional copulas. We proved that a k order cherry-
vine copula can be either expressed as a truncated R-vine copula at level k (by using
the Backward Algorithm) or transformed into a k + 1 order cherry-tree copula which
can be expressed by a truncated vine copula at level k + 1 (Theorem 4.1). In this way
the cherry-tree copula gets also this powerful property.

In [19] we proved that any general k-width junction tree copula can be embedded
in a k order cherry-tree copula. This shows the power of cherry-tree copulas related to
general junction tree copulas.

Since the conditional independence structure of the truncated R-vine copula is com-
pletely characterized by the top tree (at a given level), in our opinion finding good
truncated R-vines should be started by finding a good top tree (cherry-tree). A possible
method for this, starting from a data set, is presented in [18]. Then one can construct
the sequence of the cherry-trees which leads to the top cherry-tree. This is the so called
cherry-vine structure.

We believe our approach may open a new perspective in modeling continuous mul-
tivariate probability distributions by exploiting the conditional independences between
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the components of the random vector. We challenge the vine copula community to
search for good models from this perspective.
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