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Abstract. Using undergraduate calculus, we give a direct elementary proof of a sharp
Markov-type inequality ‖p′‖[−1,1] 6

1
2‖p‖[−1,1] for a constrained polynomial p of degree

at most n, initially claimed by P. Erdős, which is different from the one in the paper of
T. Erdélyi (2015). Whereafter, we give the situations on which the equality holds. On the
basis of this inequality, we study the monotone polynomial which has only real zeros all but
one outside of the interval (−1, 1) and establish a new asymptotically sharp inequality.
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1. Introduction and main results

Throughout this paper, we denote the class of all polynomials p(x) =
n
∑

i=0

aix
i of

degree at most n by πn if ai ∈ R and πc
n if ai ∈ C. We also denote by ‖·‖K the

supremum norm on a set K.

We know that the classical Bernstein’s inequality

|p′(x)| 6 n√
1− x2

‖p(x)‖[−1,1] for − 1 < x < 1

holds for every p ∈ πc
n and the Markov’s inequality

(1.1) ‖p′(x)‖[−1,1] 6 n2‖p(x)‖[−1,1]

holds for every p ∈ πc
n. For proofs of these see [2] or [3]. In 1940, to extend the “right”

Markov factor n2 in (1.1), Erdős dealt with inequalities for the polynomials, of which
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the location of the zeros is constrained, and obtained the following inequality known

as Erdős’ inequality (see [5]).

Theorem E. The inequality

‖p′(x)‖[−1,1] 6
en

2
‖p(x)‖[−1,1]

holds for all p(x) ∈ πn having all their zeros in R \ (−1, 1).

In [5], Erdős mentioned that if we ulteriorly constrain that p′ has no zero in (−1, 1),

we have the following theorem, a more strict result.

Theorem 1.1. Let p ∈ πn. If the zeros of p and p′ are all real and lie in

R \ (−1, 1), then

(1.2) |p′(x)| 6 n

2
‖p(x)‖[−1,1] for − 1 6 x 6 1.

Other inequalities for constrained polynomials can be found in e.g. [1], [6], [7], [8].

Erdős only pointed out that a slightly longer calculation would get the result of

Theorem 1.1, but did not give a hint to prove it. Recently, T. Erdélyi had proved

Theorem 1.1 using Lorentz representation of polynomials (see Theorem 2.5 in [4]).

But he emphasized in [4] that a direct elementary proof of this using undergraduate

calculus would be desirable, which is just what we have done in this paper.

Whereafter, we analyse in which situations the equality in (1.2) holds and obtain:

Theorem 1.2. Let p ∈ πn. If the zeros of p and p′ are all real and lie in

R \ (−1, 1), then the equality in (1.2) holds if and only if

(1.3) p(x) = c
(1± x

2

)n

, n 6= 2

and

(1.4) p(x) = c
(1± x

2

)2

or p(x) = c
[

1−
(1± x

2

)2]

, n = 2,

where c is an arbitrary nonzero real number.

In this paper, we propose additional correction to Theorem 2.5 in [4] for n = 2.

On this basis, we study the monotone polynomial with only one zero in (−1, 1)

and give a new inequality.

Theorem 1.3. If p(x) ∈ πn has only real zeros all but one outside of the interval

(−1, 1) and is monotone on [−1, 1], then

(1.5) ‖p′(x)‖[−1,1] 6 (n+ e2 − 1)‖p(x)‖[−1,1].
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2. Some auxiliary results

To prove our main results we need the following lemmas.

Lemma 2.1. Let p ∈ πn such that ‖p‖[−1,1] 6 1 and p(−1) = 0, p(1) = 1. If the

zeros of p and p′ are all real and lie in R \ (−1, 1), then

(2.1)
p(x)

1 + x
<

1

2
exp

1− x

2

holds for x ∈ (−1, 1).

P r o o f. Let x1 = 1 and xj , j = 2, 3, . . . , n, be n zeros of p(x), then we can easily

get

(2.2) p(x) =
1 + x

2

n
∏

j=2

x− xj

1− xj

and

(2.3) p′(x) = p(x)

(

1

x+ 1
+

n
∑

j=2

1

x− xj

)

.

Hence, from
∏

(1 + aj) < exp
∑

aj , aj 6= 0, and p′(1) > 0,

p(x)

1 + x
=

1

2

n
∏

j=2

x− xj

1− xj
<

1

2
exp

n
∑

j=2

x− 1

1− xj
=

1

2
exp

(

(1− x)
(1

2
− p′(1)

))

.

Then (2.1) holds. �

Lemma 2.2. Let p ∈ πn, p(−1) = 0, p(1) = 1. If the zeros of p and p′ are all

real and lie in R \ (−1, 1), and x0 ∈ (−1, 1) is a zero of p′′(x), then

(2.4)

( n
∑

j=1

1

x0 − xj

)2

=
n
∑

j=1

1

(x0 − xj)2

and

(2.5)

n
∑

j=m+1

1

xj − x0
<

m
∑

j=2

1

x0 − xj

hold, where xj , j = 1, 2, 3, . . . , n, are n zeros of p(x) and xm 6 xm−1 6 . . . 6 x1 =

−1 < 1 < xm+1 6 . . . 6 xn.
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P r o o f. Performing some simple calculations, we get

p′′(x0) = p(x0)

[( n
∑

j=1

1

x0 − xj

)2

−
n
∑

j=1

1

(x0 − xj)2

]

.

Thus, for p′′(x0) = 0, p(x0) > 0, (2.4) holds. Since

0 <

n
∑

j=2

1

(x0 − xj)2
=

2

x0 + 1

n
∑

j=2

1

x0 − xj
+

( n
∑

j=2

1

x0 − xj

)2

=

( m
∑

j=2

1

x0 − xj
−

n
∑

j=m+1

1

xj − x0

)

( 1

x0 + 1
+

p′(x0)

p(x0)

)

(obviously m > 2 here) and

1

x0 + 1
+

p′(x0)

p(x0)
> 0,

we prove that (2.5) holds. �

Lemma 2.3. Under the conditions of Lemma 2.2, if

1

(x0 + 1)2
<

n
∑

j=m+1

1

(xj − x0)2
and

n
∑

j=m+1

1

xj − x0
6

1

2

m
∑

j=1

1

xj − x0
,

then for n > 4

p′(x0) <
n

2
.

P r o o f. Under above conditions and by (2.5), we can find

(2.6)
1

x0 + 1
<

n
∑

j=m+1

1

xj − x0
<

m
∑

j=2

1

x0 − xj
.

On one hand,

n
∑

j=m+1

1

(xj − x0)2
6

(

1

2

m
∑

j=1

1

xj − x0

)2

6
m2

4(x0 + 1)2

then

(2.7)

n
∑

j=1

1

(x0 − xj)2
6

m

(x0 + 1)2
+

m2

4(x0 + 1)2
6

4m+m2

4(x0 + 1)2
.
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On the other hand,

m
∑

j=1

1

(x0 − xj)2
6

m

(1 + x0)2
< m

n
∑

j=m+1

1

(xj − x0)2
6

m(n−m)

(1 − x0)2
,

consequently,

(2.8)

n
∑

j=1

1

(x0 − xj)2
<

m(n−m)

(1− x0)2
+

n−m

(1− x0)2
=

(m+ 1)(n−m)

(1− x0)2
.

Using (2.3), (2.4), (2.7) and (2.8), we obtain

(2.9) p′(x0) 6 min
{ p(x0)

2(1 + x0)

√

4m+m2,
p(x0)

1− x0

√

(m+ 1)(n−m)
}

.

If m = n − 1, (2.6) implies x0 > 0. So by (2.1), (2.9), p′(x0) <
√
e/4×√

4m+m2 < n/2.

If m 6 n− 2, we estimate p′(x0) separately in three intervals.

For x0 ∈ (−1,−1/3), by (2.9) and
√

(m+ 1)(n−m) 6 (n+ 1)/2, p′(x0) 6 3/4×
(n+ 1)/2 < n/2. For x0 ∈ [−1/3, 0), by (2.1), (2.9) and

√
4m+m2 < n, p′(x0) <

n/2. For x0 ∈ [0, 1), obviously p(x0)/(x0 + 1) 6 1, and then by (2.9), p′(x0) < n/2.

�

Lemma 2.4. Under the conditions of Lemma 2.2, if

1

(x0 + 1)2
<

n
∑

j=m+1

1

(xj − x0)2
and

n
∑

j=m+1

1

xj − x0
>

1

2

m
∑

j=1

1

xj − x0
,

then for n > 4

p′(x0) <
n

2
.

P r o o f. It can be easily checked that

(2.10)

m
∑

j=1

1

x0 − xj
−

n
∑

j=m+1

1

xj − x0
<

n
∑

j=m+1

1

xj − x0

and

(2.11)

m
∑

j=1

1

x0 − xj
−

n
∑

j=m+1

1

xj − x0
<

1

2

m
∑

j=1

1

x0 − xj
.

971



So by (2.3), (2.10),

(2.12) p′(x0) < p(x0)

n
∑

j=m+1

1

xj − x0
6 p(x0)

n−m

1− x0
,

and by (2.3), (2.11),

(2.13) p′(x0) <
p(x0)

2

m
∑

j=1

1

x0 − xj
6

mp(x0)

2(1 + x0)
.

For x0 ∈ (−1,−1/3], if m 6 n/3, by (2.1), (2.13), p′(x0) < (m/2)(e/2) < n/2; and

if m > n/3, by (2.12), p′(x0) < (3/4)(n−m) 6 n/2.

For x0 ∈ (−1/3, 1), by (2.1), (2.13), p′(x0) < (m/2)(1/2)e2/3 < n/2. �

Lemma 2.5. Under the conditions of Lemma 2.2, if

1

(x0 + 1)2
>

n
∑

j=m+1

1

(xj − x0)2
,

then for n > 4

p′(x0) <
n

2
.

P r o o f. It is obvious that m 6 n− 1. Then by (2.3), (2.4), we can get

p′(x) = p(x0)

(

1

(x0 + 1)2
+

m
∑

j=2

1

(x0 − xj)2
+

n
∑

j=m+1

1

(xj − x0)2

)1/2

(2.14)

6 p(x0)

(

2

(x0 + 1)2
+

m
∑

j=2

1

(x0 − xj)2

)1/2

6
p(x0)

x0 + 1

√
m+ 1.

For x0 ∈ [−1/3, 1), by (2.1), (2.14), we have p′(x) 6 e2/3
√
m+ 1 /2 < n/2.

For x0 ∈ (−1,−1/3) we estimate p′(x0) basing on the relation between m and n.

(i) m = n− 1: We deduce from (2.4) that

0 6

(n−1
∑

j=2

1

x0 − xj

)2

−
n−1
∑

j=2

1

(x0 − xj)2
(2.15)

=
2

(x0 + 1)(xn − x0)

[

1− (xn − 2x0 − 1)

n−1
∑

j=2

1

x0 − xj

]

,
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which implies
n−1
∑

j=2

1

x0 − xj
6

1

xn − 2x0 − 1
.

Consequently,

(2.16)

n
∑

j=1

1

x0 − xj
6

1

x0 + 1
f(x0),

where we denote

f(x) =
xn − 2x− 1

xn − x
+

x+ 1

xn − 2x− 1
,

which is increasing for x ∈ (−1, 13 ). By (2.1), (2.3), (2.16), for x0 ∈ (− 2
3 ,− 1

3 ),

p′(x0) < f(− 1
3 )

1
2e

5/6 < 1
2n; for x0 ∈ (−1,− 2

3 ], p
′(x0) 6 f(− 2

3 )
1
2e <

1
2n.

(ii) m = n − 2, i.e., xn > xn−1 > 1: For x0 ∈ (− 2
3 ,− 1

3 ), from (2.1), (2.14) we

have that p′(x0) <
1
2

√
m+ 1 exp 1

2 (1− x0) <
1
2n. For x0 ∈ (−1,− 2

3 ], by simple

calculation we can get

(2.17)
3

2

( 1

xn − x0
+

1

xn−1 − x0

)

<
1

x0 + 1
− 1

xn − x0
− 1

xn−1 − x0
.

From (2.4) we deduce

0 >

n−2
∑

j=2

1

(x0 − xj)2
−
(n−2
∑

j=2

1

x0 − xj

)2

=
2

x0 + 1

n−2
∑

j=2

1

x0 − xj
− 2

( 1

xn − x0
+

1

xn−1 − x0

)

n−2
∑

j=2

1

x0 − xj

− 2

x0 + 1

( 1

xn − x0
+

1

xn−1 − x0

)

+
2

(xn − x0)(xn−1 − x0)
.

Further,

( 1

x0 + 1
− 1

xn − x0
− 1

xn−1 − x0

)

n−2
∑

j=2

1

x0 − xj
(2.18)

6
1

x0 + 1

( 1

xn − x0
+

1

xn−1 − x0

)

− 1

(xn − x0) (xn−1 − x0)

=
( 1

x0 + 1
− 1

xn − x0
− 1

xn−1 − x0

)( 1

xn − x0
+

1

xn−1 − x0

)

+
( 1

xn − x0
+

1

xn−1 − x0

)2

− 1

(xn − x0)(xn−1 − x0)
.
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Combining (2.17) with (2.18), we have

n−2
∑

j=2

1

x0 − xj
6

1

xn − x0
+

1

xn−1 − x0

+

( 1

xn − x0
+

1

xn−1 − x0

)2

− 1

(xn − x0)(xn−1 − x0)

3

2

( 1

xn − x0
+

1

xn−1 − x0

)

.

Therefore,

n
∑

j=1

1

x0 − xj
(2.19)

6
1

1 + x0
+

2

3

( 1

xn − x0
+

1

xn−1 − x0

)

− 2

3

1

xn + xn−1 − 2x0

=
1

1 + x0
+

2

3
g(xn − x0, xn−1 − x0)

6
1

1 + x0
+

2

3
g(xn−1 − x0, xn−1 − x0)

6
1

1 + x0
+

1

xn−1 − x0
.

Here we denote g(a, b) = (a2 + b2 + ab)/(ab(a+ b)) which is a decreasing

function with respect to a > 0 and b > 0, i.e., g(xn − x0, xn−1 − x0) 6

g(xn−1 − x0, xn−1 − x0). Now we can obtain by (2.1), (2.3), (2.19) and

1/(xn−1 − x0) < 3/5, 1 + x0 6 1/3 that for x0 ∈ (−1,−2/3]

p′(x0) 6 p(x0)
( 1

1 + x0
+

1

xn−1 − x0

)

<
1

2
exp

1− x0

2
+

3

5

1 + x0

2
exp

1− x0

2

<
n

2
.

(iii) m 6 n− 3: By (2.1) (2.14), p′(x0) < e
√
m+ 1/2 6 n/2, n > 4.

�
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3. Proofs of the main results

P r o o f of Theorem 1.1. Without loss of generality, we assume that p(x) > 0,

p′(x) > 0 for x ∈ (−1, 1) and ‖p(x)‖[−1,1] = p(1) = 1. Then if we get

(3.1) ‖p′(x)‖[−1,1] 6
n

2
,

we have Theorem 1.1 proved because other cases can be settled by (3.1) and some

linear transformations performed on them. Now we let xj , j = 1, 2, 3, . . . , n, be n

zeros of p(x) and

xm 6 xm−1 6 . . . 6 x1 6 −1 < 1 < xm+1 6 . . . 6 xn.

We divide our proof into two parts.

Part I. Firstly, we consider the case x1 = −1.

When n = 1, we have ‖p′‖[−1,1] = 1/2, which satisfies inequality (3.1).

When n = 2, p′(x) has no zero in (−1, 1) and by (2.3) we get

(3.2)
1− x2

2
6 −1 or

1− x2

2
> 1.

If (1− x2)/2 6 −1,

‖p‖[−1,1] = p′(−1) =
1 + x2

2(x2 − 1)
6 1.

If (1− x2)/2 > 1,

‖p‖[−1,1] = p′(1) =
3− x2

2(1− x2)
6 1.

Thus, (3.1) holds for n = 2.

When n = 3, there are three cases with respect to x2 and x3.

In the case x2 6 −1, x3 6 −1, by some simple calculations, we can obtain for

x ∈ (−1, 1] and j = 2, 3,

(3.3) 0 6
x− xj

1− xj
6 1 and

1

x− xj
6

1

x+ 1
.

Thus, by (2.2), (2.3), (3.3) and becouse of the continuity of p′, we gain p′(x) 6 3/2

for x ∈ [−1, 1]. And the equality holds if and only if xj = −1, j = 1, 2, 3.

In the case x2 > 1, x3 > 1, by (2.1), (2.2), (2.3) and becouse of the continuity

of p(x) for x ∈ [−1, 1],

p′(x) 6
1 + x

2
e
( 1

x+ 1
+

1

x− x2
+

1

x− x3

)

6 e
1 + x

2

1

1 + x
<

3

2
.
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In the case x2 6 −1, x3 > 1, p′(x) is non-negative for x ∈ [−1, 1], increasing on

(−∞,−(1− x2 − x3)/3], decreasing on [−(1− x2 − x3)/3,∞), and concave down on

(−∞,∞). In view of p′(1) > 0,

1

x3 − 1
6

1

2
+

1

1− x2
6 1,

which implies x3 > 2.

If |(1− x2 − x3)/3| < 1, for (1 − x2)(x3 − 1) > 2,

‖p′(x)‖[−1,1] = p′
(

−1− x2 − x3

3

)

<
9 + 3(x2 + x3)− 3x2x3

6(1− x2)(x3 − 1)
6

3

2
.

If (1− x2 − x3)/3 6 −1, we have

‖p′(x)‖[−1,1] = p′(1) 6
1

2
+

1

1− x2
<

3

2
.

If (1− x2 − x3)/3 > 1, for x3 > 2, it is obvious that (2 − x3)x2 + 2x3 > 1, which is

equivalent to

‖p′(x)‖[−1,1] = p′(−1) =
1 + x2 + x3 + x2x3

2(1− x2)(1 − x3)
<

3

2
.

Thus, (3.1) holds for n = 3.

When n > 4, there exists at least an x0 ∈ [−1, 1] such that ‖p′(x)‖[−1,1] = p(x0).

We first consider the case x0 = −1 which yields that p(−1) = 0, p′(−1) > 0,

p′′(−1) 6 0. Then by (2.2), (2.3),

p′′(x) =
2p(x)

x+ 1

n
∑

j=2

1

x− xj
+ p(x)

( n
∑

j=2

1

x− xj

)2

− p(x)

n
∑

j=2

1

(x− xj)2

and so

p′′(−1) = 2p′(−1)

n
∑

j=2

1

−1− xj
6 0.

Consequently, due to
n
∑

j=2

1/(x− xj) being a decreasing function of x on [−1, 1],

(3.4)

n
∑

j=2

1

x− xj
6

n
∑

j=2

1

−1− xj
6 0, x ∈ [−1, 1].

Then by (2.1), (2.3), (3.4) and the continuity of p′(x),

p′(x) 6
p(x)

x+ 1
<

1

2
exp

1− x

2
<

n

2
, x ∈ [−1, 1].
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In the case x0 = 1,

‖p′(x)‖[−1,1] = p′(1) = p(1)

(

1

1 + 1
+

n
∑

j=2

1

1− xj

)

6
n

2

and the equality only holds for xj = −1, j = 1, 2, . . . , n.

In the case x0 ∈ (−1, 1), it is easy to see that p′′(x0) = 0. Now Lemma 2.3,

Lemma 2.4 and Lemma 2.5 together prove that (3.1) holds.

Part II. Secondly, we consider the case x1 < −1. Let x(t) = (1−x1)(t+1)/2+x1

and r(t) = p(x) = p[(1− x1)(t+ 1)/2+ x1]. Then we can verify that r(t) satisfies all

the conditions of Part I, which yields ‖r′(t)‖[−1,1] 6 n/2. Thus,

(3.5) ‖p′(x)‖[−1,1] 6
2

1− x1
‖r′(t)‖[−1,1] 6

n

1− x1
<

n

2
.

The proof of Theorem 1.1 is complete. �

P r o o f of Theorem 1.2. Similarly to the preceding proof of Theorem 1.1, we

only need to prove that for the conditions p(x) > 0, p′(x) > 0 for x ∈ (−1, 1) and

‖p(x)‖[−1,1] = p(1) = 1, the equality

(3.6) ‖p′‖[−1,1] =
n

2

holds if and only if

(3.7) p(x) =
(1 + x

2

)n

, n 6= 2

and

(3.8) p(x) =
(1 + x

2

)2

or p(x) = 1−
(1− x

2

)2

, n = 2.

Let xj , j = 1, 2, 3, . . . , n, be n zeros of p(x) and

xm 6 xm−1 6 . . . 6 x1 6 −1 < 1 < xm+1 6 . . . 6 xn.

Firstly, in the case x1 = −1, we can write

p(x) =
1 + x

2

n
∏

j=2

x− xj

1− xj
.

When n = 1, it is evident that p(x) satisfies the form of equality (3.7) with

‖p‖[−1,1] = 1/2.
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When n = 2, we assume there exists an x0 ∈ [−1, 1] such that p′(x0) =

‖p′(x)‖[−1,1] = n/2 = 1. Deducing from (3.2), we have x2 6 −1 or x2 > 3.

Then by (2.3), we can obtain x0 = (1 − x2)/2 ∈ R \ (−1, 1), which yields x0 = ±1

and x2 = −1 or 3, i.e., p(x) have the form of (3.8).

When n = 3, in the proof of Theorem 1.1 we have shown that there is only one

situation such that (3.6) holds. That is xj = −1, j = 1, 2, 3, which meets (3.7).

When n > 4, we assume there exists an x0 ∈ [−1, 1] such p′(x0) = ‖p′(x)‖[−1,1] =

n/2. If x0 = −1, by (2.1), p′(−1) = lim
x→−1

(p(x)/(x+ 1)) < n/2 strictly. If x0 ∈
(−1, 1), in the proof of Theorem 1.1 we have obtained ‖p′(x)‖[−1,1] < n/2 strictly. If

x0 = 1,

p′(x0) = p′(1) =

n
∑

j=1

1

1− xj
=

n

2

and there is only one situation for xj = −1, j = 1, 2, 3, . . . , n such that the equalities

hold. Then p(x) has the form of (3.7).

Secondly, in the case x1 < −1, by (3.5) we know ‖p′(x)‖[−1,1] < n/2 strictly too.

The proof of Theorem 1.2 is complete. �

P r o o f of Theorem 1.3. Without lost of generality, we assume that holds

‖p(x)‖[−1,1] = 1, p′(x) 6 0 for x ∈ [−1, 1], and p(xi) = 0, −1 < x1 6 0, xi ∈
R \ (−1, 1), i = 2, 3, . . . , n.

For x ∈ [x1, 1], performing a linear transformation on Theorem 1.1, we have

(3.9) ‖p(x)′‖[x1,1] 6
n

1− x1
‖p(x)‖[x1,1] 6 n‖p(x)‖[x1,1].

For x ∈ [−1, x1), from

−p(1)′

p(1)
=

1

x1 − 1
+

n
∑

i=2

1

xi − 1
6 0

we have

0 < − p(x)

p(1)
=

x1 − x

1− x1

n
∏

i=2

x− xi

1− xi
6

x1 − x

1− x1
exp

( n
∑

i=2

x− 1

1− xi

)

6
x1 − x

1− x1
exp

1− x

1− x1
6

x1 − x

1− x1
e2.
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Consequently,

0 6 − p′(x) = p(x)

(

1

x1 − x
+

n
∑

i=2

1

xi − x

)

(3.10)

6
−p(1)

1− x1
e2 + p(x)

∑

xi>1

1

xi − x

6 n+ e2 − 1.

Combining (3.9) and (3.10), we end our proof. �

Remark. With p(x) = x2m+1 (m is a non-negative integer), we see that the order

n in Theorem 1.3 cannot be improved, i.e., (1.5) is asymptotically sharp.
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