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Abstract. We give a classification of Hopf real hypersurfaces in complex hyperbolic two-
plane Grassmannians SU2,m/S(U2·Um) with commuting conditions between the restricted

normal Jacobi operator RNϕ and the shape operator A (or the Ricci tensor S).
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Introduction

A typical example of Hermitian symmetry spaces of rank 2 is the complex two-

plane Grassmannian G2(C
m+2) defined by the set of all complex two-dimensional

linear subspaces in C
m+2. Another one is the complex hyperbolic two-plane Grass-

mannian SU2,m/S(U2·Um), the set of all complex two-dimensional linear subspaces

in the indefinite complex Euclidean space Cm+2

2 .

Characterizing model spaces of real hypersurfaces under certain geometric con-

ditions is one of our main interests in the classification theory in G2(C
m+2) or

SU2,m/S(U2·Um). In this paper, we use the same geometric condition on real hyper-

surfaces in SU2,m/S(U2·Um) as used in G2(C
m+2) to compare the results.

G2(C
m+2) = SU2+m/S(U2·Um) has compact transitive group SU2+m, however

SU2,m/S(U2·Um) has noncompact indefinite transitive group SU2,m. This distinction
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gives various remarkable results. Riemannian symmetric space SU2,m/S(U2·Um)

has a remarkable geometrical structure. It is the unique noncompact, irreducible,

quaternionic Kähler manifold with negative curvature.

Let M be a real hypersurface in complex hyperbolic two-plane Grassmannian

SU2,m/S(U2·Um). Let N be a local unit normal vector field onM . Since the complex

hyperbolic two-plane Grassmannian SU2,m/S(U2·Um) has the Kähler structure J ,

we may define a Reeb vector field ξ = −JN and a 1-dimensional distribution C⊥ =

Span{ ξ}.
Let C be the orthogonal complement of a distribution C⊥ in TpM at p ∈ M . It

is the complex maximal subbundle of TM . Thus the tangent space of M consists

of the direct sum of C and C⊥ as follows: TpM = C ⊕ C⊥. The real hypersurface

M is said to be Hopf if AC ⊂ C, or equivalently, the Reeb vector field ξ is principal

with principal curvature α = g(Aξ, ξ), where g denotes the metric. In this case, the

principal curvature α is said to be a Reeb curvature of M .

Due to the quaternionic Kähler structure J=Span{J1, J2, J3} of SU2,m/S(U2·Um),

there naturally exist almost contact 3-structure vector fields ξν = −JνN , ν = 1, 2, 3.

Let Q⊥ = Span{ ξ1, ξ2, ξ3}. It is a 3-dimensional distribution in the tangent space
TpM of M at p ∈ M . In addition, Q stands for the orthogonal complement of Q⊥

in TpM . It is the quaternionic maximal subbundle of TpM . Thus the tangent space

of M can be split into Q and Q⊥ as follows: TpM = Q⊕Q⊥.

Thus, we have considered two natural geometric conditions for real hypersurfaces

in SU2,m/S(U2·Um) such that the subbundles C and Q of TM are both invariant

under the shape operator. By using these geometric conditions, we will use the

results of Suh in [8], Theorem 1.

On the other hand, a Jacobi field along geodesics of a given Riemannian manifold

(M, g) plays an important role in the study of differential geometry. It satisfies

a well-known differential equation which inspires Jacobi operators. It is defined by

(RX(Y ))(p) = (R(Y,X)X)(p), where R denotes the curvature tensor of M and X , Y

denote any vector fields on M . It is known to be a self-adjoint endomorphism on

the tangent space TpM , p ∈ M . Clearly, each tangent vector field X to M provides

a Jacobi operator with respect to X . Thus the Jacobi operator on a real hypersurface

M of M with respect to N is said to be a normal Jacobi operator and will be denoted

by RN . The Riemannian curvature tensors of M and M are denoted by R and R,

respectively.

For a commuting problem concerned with the structure Jacobi operator Rξ and

the structure tensor ϕ of Hopf hypersurfaceM in SU2,m/S(U2·Um), that is, RξϕA =

ARξϕ, Lee, Suh and Woo in [5] gave a characterization of real hypersurface of

Tube (A) or horosphere A in SU2,m/S(U2·Um). Motivated by this result, we want to

give a classification of Hopf hypersurfaces in SU2,m/S(U2·Um) whose normal Jacobi
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operator RN satisfies

(C-1) RNϕAX = ARNϕX

for any tangent vector field X on M in SU2,m/S(U2·Um). That is, the operator

RNϕ commutes with the shape operator A. The geometric meaning of RNϕAX =

ARNϕX can be explained in such a way that any eigenspace of A on C is invariant
under RNϕ of M in SU2,m/S(U2·Um).

The complex maximal subbundle C can be split into A(λ1)⊕A(λ2)⊕ . . .⊕A(λk),

where each {A(λj)}j=k
j=1 is a principal curvature space of A with principal curva-

ture λj . For any X ∈ A(λj) on C, (C-1) gives ARN (X) = RN (AX) = λjX , that is,

RN (X) ∈ A(λj).

In physics, space-like hypersurface with CMC has an important physical meaning

in general relativity for existence and uniqueness results in the family of cosmolog-

ical models including generalized Robertson Walker space time (see Alías, Romero,

Sánchez [1], [2]). Moreover, it was known that such hypersurfaces play an important

part in relativity, since it was noted that they can be used as initial hypersurfaces

where the constraint equations can be split into a linear system and a nonlinear

elliptic equation (see Latorre and Romero [4]).

Now we want to give a complete classification of Hopf hypersurfaces in complex

hyperbolic two-plane Grassmannians SU2,m/S(U2·Um) with RNϕAX = ARNϕX :

Theorem 1. Let M be a Hopf hypersurface in complex hyperbolic two-plane

Grassmannians SU2,m/S(U2·Um), m > 3, with RNϕA = ARNϕ. Then M is locally

congruent to one of the following:

(i) a tube over a totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) or

(ii) a horosphere in SU2,m/S(U2·Um) where the center at infinity is singular and of

type JX ∈ JX .

From the Riemannian curvature tensor R of M in SU2,m/S(U2·Um) we can define

the Ricci tensor S of M in such a way that

g(SX, Y ) =

4m−1
∑

i=1

g(R(ei, X)Y, ei),

where {e1, . . ., e4m−1} denotes a basis of the tangent space TpM of M , p ∈ M , in

SU2,m/S(U2·Um) (see [11]). Then we can consider another new commuting condition

(C-2) RNϕSX = SRNϕX
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for any tangent vector field X on M . That is, the operator RNϕ commutes with the

Ricci tensor S.

Since the Ricci tensor S is also a symmetric operator, C is decomposed to many
kinds of Einstein subspaces as follows: S(µ1) ⊕ S(µ2) ⊕ . . . ⊕ S(µl), where each

S(µi) = {X ∈ C : SX = µiX} denotes an Einstein subspace of C in TxM , x ∈ M .

Then it follows that SRN (X) = RN (SX) = µjRNX , that is, RN (X) ∈ S(µj) for

any X ∈ S(µj), which means that each Einstein subspace of C is invariant by the
normal Jacobi operator RN . It can be displaced in parallel by the normal Jacobi

operator RN along the normal direction N of M in SU2,m/S(U2·Um). This means

that each dimension of Einstein subspaces can be constant and cannot be contracted

to a smaller dimension along the normal direction N of M in SU2,m/S(U2·Um). Ac-

cordingly it follows that RNϕC = RNC ⊂ C. This gives RNξ = dξ for a smooth

function d on M . Then also by the result due to Berndt and Suh in [3], the hyper-

surface M becomes CMC. In this case we also have the same physical meaning as

in (C-1).

Then by [8], Theorem 1, we also give another classification related to the Ricci

tensor S of M in SU2,m/S(U2·Um):

Theorem 2. Let M be a Hopf hypersurface in complex hyperbolic two-plane

Grassmannians SU2,m/S(U2·Um), m > 3, with RNϕS = SRNϕ. If the smooth

function α = g(Aξ, ξ) is constant along the Reeb direction of ξ, then M is locally

congruent to one of the following:

(i) a tube over a totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) or

(ii) a horosphere in SU2,m/S(U2·Um) where the center at infinity is singular and of

type JX ∈ JX .

We refer [5], [6], [8], [9], [10] and [11] for Riemannian geometric structures of

complex hyperbolic two-plane Grassmannians SU2,m/S(U2·Um), m > 3.

1. Proof of Theorem 1

Let M be a Hopf hypersurface in SU2,m/S(U2·Um) with

(C-1) RNϕAX = ARNϕX.

The normal Jacobi operator RN of M is defined by RNX = R(X,N)N for any

tangent vector X ∈ TpM , p ∈ M . Then for any tangent vector field X on M in
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SU2,m/S(U2·Um), from [5], (1.1), we calculate the normal Jacobi operator RN ,

(1.1) RN (X) = −1

2

[

X + 3η(X)ξ +

3
∑

ν=1

{3ην(X)ξν − ην(ξ)ϕνϕX

+ ην(ξ)η(X)ξν + ην(ϕX)ϕνξ}
]

,

where α denotes the real valued function defined by g(Aξ, ξ).

Now in this section, in order to prove our Theorem 1, we give important lemmas

as follows:

Lemma 1.1. Let M be a Hopf hypersurface in SU2,m/S(U2·Um), m > 3. If M

satisfies the commuting condition RNϕAX = ARNϕX , then the Reeb vector field ξ

belongs to either the maximal quaternionic subbundle Q or its orthogonal comple-
ment Q⊥.

P r o o f. To prove our lemma, without loss of generality, ξ is written as

(∗∗) ξ = η(X0)X0 + η(ξ1)ξ1

where X0 and ξ1 are unit vectors in Q and Q⊥, respectively, and η(X0)η(ξ1) 6= 0.

Let U = {p ∈ M : α(p) 6= 0} be the open subset of M . Hereafter, we discuss our
arguments on U.

From (∗∗) and ϕξ = 0, we have

(1.2)











ϕX0 = −η(ξ1)ϕ1X0,

ϕξ1 = ϕ1ξ = η(X0)ϕ1X0,

ϕ1ϕX0 = η1(ξ)X0.

From (1.1) and (1.2), we have

(1.3)











RN (X0) = −2η(X0)ξ,

RN (ξ1) = −2ξ − 2η(ξ1)ξ1,

RN (ϕX0) = 0.

From this and the fundamental formula in Section 2, ϕ2X = −X + η(X)ξ for any

X ∈ TM , the condition (C-1) becomes

(1.4) ϕAX +

3
∑

ν=1

{3ην(ϕAX)ξν + ην(ξ)ϕνAX − ην(AX)ϕνξ}

= AϕX +

3
∑

ν=1

{3ην(ϕX)Aξν + ην(ξ)AϕνX − ην(X)Aϕνξ}.
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Moreover, if we take the symmetric part of this equation as mentioned before, we

have

AϕX +

3
∑

ν=1

{3ην(X)Aϕξν + ην(ξ)AϕνX + g(ϕνξ,X)Aξν}

= ϕAX +

3
∑

ν=1

{3ην(AX)ϕξν + ην(ξ)ϕνAX + g(Aϕνξ,X)ξν}.

Summing up these two equations, it follows that

(1.5)
3

∑

ν=1

{g(Aϕνξ,X)ξν + ην(AX)ϕξν} =
3

∑

ν=1

{ην(X)Aϕνξ + g(X,ϕνξ)Aξν}.

Taking the inner product of (1.5) with ξ, we obtain Aϕξ1 = αϕξ1 which together

with the elementary formulas and (∗∗) yields

(1.6) AϕX0 = αϕX0

on U. Putting X = X0 in (1.5), it becomes

3
∑

ν=1

{g(Aϕνξ,X0)ξν + ην(AX0)ϕνξ} = 0.

Taking the inner product of this equation with ϕ1ξ, we obtain

(1.7) η1(AX0) = 0 on U.

On the other hand, since M is Hopf, see [5], we have

(1.8) AϕAX =
α

2
(Aϕ+ ϕA)X +

3
∑

ν=1

{η(X)ην(ξ)ϕξν + ην(ξ)ην(ϕX)ξ}

− 1

2
ϕX − 1

2

3
∑

ν=1

{ην(X)ϕξν + ην(ϕX)ξν + ην(ξ)ϕνX}.

We put X = ϕX0 in (1.8) and use (1.7). It follows that

0 =
α

2
Aξ1 + η21(ξ)η(X0)ξ − η(X0)η1(ξ)ξ1 on U.

Taking the inner product of the previous equation with ξ1 and using (2.2), we have

−η1(ξ)η
3(X0) = 0 on U.
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It is a contradiction. Therefore, the point p must belong toM−U, whereM−U =

Int(M − U) ∪ ∂(M − U).

We consider the following two cases:

Case 1. p ∈ Int(M − U). If p ∈ Int(M − U), then α = 0 on the neighborhood

Int(M − U) of p. For this case, the result was proved by the well-known equation

gradα = (ξα)ξ − 2
3
∑

ν=1

ην(ξ)ϕξν .

Case 2. p ∈ ∂(M−U). Since p ∈ ∂(M−U), there exists a sequence of points pn → p

with α(p) = 0 and α(pn) 6= 0. Such a sequence will have an infinite subsequence

where η(ξ1) = 0 (in which case ξ ∈ Q at p, by continuity) or an infinite subsequence
where η(X0) = 0 (in which case ξ ∈ Q⊥ at p).

Now we consider only the case p ∈ ∂(M − U). Then there exists a sequence

{pn} ⊂ U such that pn → p. Since ξ(pn) ∈ Q or ξ(pn) ∈ Q⊥, by continuity we also

have ξ(p) ∈ Q or ξ(p) ∈ Q⊥.

Summing up these discussions, we get a complete proof of our lemma. �

Now let us consider Hopf hypersurfaces M in SU2,m/S(U2·Um) with RNϕA =

ARNϕ. By virtue of Lemma 1.1, the Reeb vector field ξ belongs to either the

distribution Q or the distribution Q⊥.

First we consider the case that ξ belongs to the distribution Q⊥.

Differentiating ξ = ξ1 along any direction X ∈ TM gives us

(1.9) 2η3(AX)ξ2 − 2η2(AX)ξ3 + ϕ1AX − ϕAX = 0.

Then, by using the symmetric (or skew-symmetric) property of the shape opera-

tor A (respectively, the structure tensor field ϕ), we have

(1.10) 2η3(X)Aξ2 − 2η2(X)Aξ3 +Aϕ1X −AϕX = 0.

Applying ϕ1 to (1.10), we have

(1.11) ϕ1ϕAX = 2η3(AX)ξ3 + 2η2(AX)ξ2 −AX + αη(X)ξ.

Lemma 1.2. Let M be a Hopf hypersurface in SU2,m/S(U2·Um), m > 3, with

RNϕA = ARNϕ. If the Reeb vector field ξ belongs to the distribution Q⊥, then the

shape operator A commutes with the structure tensor field ϕ.

P r o o f. Let M be a Hopf hypersurface of SU2,m/S(U2·Um), m > 3, such that

the Reeb vector field ξ is tangential to the distribution Q⊥ everywhere. Then the

commuting condition (C-1) is equivalent to M having isometric Reeb flow.
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Since ξ ∈ Q⊥, we may put ξ = ξ1 for our convenience sake. Then (C-1) is

equivalent to

(1.12) ϕAX + ϕ1AX + 2η3(AX)ξ2 − 2η2(AX)ξ3

= AϕX + 2η3(X)Aξ2 − 2η2(X)Aξ3 +Aϕ1X.

From (1.9), (1.10) and (1.12), we see that (Aϕ − ϕA) vanishes on U. Actually, Suh

gave an equivalent property for the isometric Reeb flow (see [8]). By virtue of this

work, we assert that the commuting condition (C-1) with respect to the normal

Jacobi operator RN on M is equivalent to the Reeb flow on M being isometric, that

is, M is locally congruent to a real hypersurface of TA or HA.

Next, if p ∈ Int(M −U), we see that α(p) = 0. From this, the equation (1.6) gives

(Aϕ− ϕA)X(p) = 0.

Finally, let us assume that p ∈ ∂(M − U), where ∂(M − U) is the bound-

ary of M − U. Then there exists a subsequence {pn} ⊂ U such that pn → p.

Since (Aϕ − ϕA)X(pn) = 0 on an open subset U in M , by continuity we also get

(Aϕ− ϕA)X(p) = 0. �

To summarize, it is natural that the shape operator A of M commutes with the

structure tensor field ϕ of M under our assumption. Thus, by [7], we assert M is

locally congruent to a real hypersurface of TA, HA.

By [7] we assert that M with the assumptions given in Lemma 1.2 is locally

congruent to one of the following hypersurfaces:

(TA) a tube over a totally geodesic SU2,m−1/S(U2·Um−1) in SU2,m/S(U2·Um) or,

(HA) a horosphere in SU2,m/S(U2·Um) whose center at infinity is singular and of

type JX ∈ JX .

From [6], we have some information related to the shape operator A of TA and
HA as follows:

Proposition A. Let M be a connected real hypersurface in complex hyperbolic

two-plane Grassmannians SU2,m/S(U2·Um), m > 3. Assume that the maximal com-

plex subbundle C of TM and the maximal quaternionic subbundle Q of TM are

both invariant under the shape operator ofM . If JN ∈ JN , then one of the following

statements holds:

(TA) M has exactly four distinct constant principal curvatures

α = 2 coth(2r), β = coth(r), λ1 = tanh(r), λ2 = 0,

and the corresponding principal curvature spaces are

Tα = TM ⊖ C, Tβ = C ⊖ Q, Tλ1
= E−1, Tλ2

= E+1.
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The principal curvature spaces Tλ1
and Tλ2

are complex (with respect to J)

and totally complex (with respect to J).

(HA) M has exactly three distinct constant principal curvatures

α = 2, β = 1, λ = 0

with the corresponding principal curvature spaces

Tα = TM ⊖ C, Tβ = (C ⊖ Q)⊕ E−1, Tλ = E+1.

Here, E+1 and E−1 are the eigenbundles of ϕϕ1|Q with respect to the eigen-
value +1 and −1, respectively.

Combining the above formulas, we conclude that

(RNϕ)AX −A(RNϕ)X =























0 if X = ξ ∈ Tα1
= Tα,

0 if X = ξl ∈ Tα2
= Tβ ,

0 if X ∈ Tα3
= Tλ,

0 if X ∈ Tα4
= Tµ.

Thus, Hopf hypersurfaces M with RNϕAX = ARNϕX are locally congruent to

real hypersurfaces of TA, HA and vice versa.

Due to Lemma 1.1, let us suppose that ξ ∈ Q (i.e., JN ⊥ JN) in this section.

Related to this condition, Suh in [8] proved:

Theorem B. Let M be a Hopf hypersurface in complex hyperbolic two-plane

Grassmannian SU2,m/S(U2·Um), m > 3, with the Reeb vector field belonging to the

maximal quaternionic subbundle Q. Then one of the following statements holds
(TB) M is an open part of a tube around a totally geodesic quaternionic hyperbolic

space HHn in SU2,2n/S(U2·U2n), m = 2n,

(HB) M is an open part of a horosphere in SU2,m/S(U2·Um) whose center at infinity

is singular and of type JN ⊥ JN , or

(E) the normal bundle νM of M consists of singular tangent vectors of type JX ⊥
JX .

By virtue of this result, we assert that a real hypersurface M in SU2,m/S(U2·Um)

satisfying the hypotheses of our main theorem is locally congruent to an open part

of one of the model spaces mentioned in the above theorem. Hereafter, let us check

whether the shape operator A of a model space of TB , HB or E satisfies our condi-
tions, conversely. In order to do this, let us introduce the following proposition given

by [6].
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Proposition C. LetM be a connected hypersurface in SU2,m/S(U2·Um), m > 3.

Assume that the maximal complex subbundle C of TM and the maximal quater-

nionic subbundle Q of TM are both invariant under the shape operator of M . If

JN ⊥ JN , then one of the following statements holds:

(TB) M has five (four for r =
√
2 tanh−1(1/

√
3) in which case α = λ2) distinct

constant principal curvatures

α =
√
2 tanh

(
√
2r
)

, β =
√
2 coth

(
√
2r
)

, γ = 0,

λ1 =
1√
2
tanh

( 1√
2
r
)

, λ2 =
1√
2
coth

( 1√
2
r
)

,

and the corresponding principal curvature spaces are

Tα = TM ⊖ C, Tβ = TM ⊖Q, Tγ = J(TM ⊖Q) = JTβ .

The principal curvature spaces Tλ1
and Tλ2

are invariant under J and are

mapped onto each other by J . In particular, the quaternionic dimension of

SU2,m/S(U2·Um) must be even.

(HB) M has exactly three distinct constant principal curvatures

α = β =
√
2, γ = 0, λ =

1√
2

with the corresponding principal curvature spaces

Tα = TM ⊖ (C ∩ Q), Tγ = J(TM ⊖Q), Tλ = C ∩ Q ∩ JQ.

(E) M has at least four distinct principal curvatures, three of which are given by

α = β =
√
2, γ = 0, λ =

1√
2

with the corresponding principal curvature spaces

Tα = TM ⊖ (C ∩ Q), Tγ = J(TM ⊖Q), Tλ ⊂ C ∩Q ∩ JQ.

If µ is another (possibly nonconstant) principal curvature function, then

JTµ ⊂ Tλ and JTµ ⊂ Tλ. Thus, the corresponding multiplicities are

m(α) = 4, m(γ) = 3, m(λ), m(µ).
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Next, we will check whether the normal Jacobi operator RN of a model hyper-

surface of TB , HB or E satisfies the condition (C-1). It will turn out that the case
that ξ belongs to the distribution Q cannot actually occur.
In order to do this, let us assume that the normal Jacobi operator RN of MBTB,

HB or E satisfies the condition (C-1).
Since ξ ∈ Q and ϕϕνξ = ϕ2ξν = −ξν , we have RN (ξ1) = −2ξ1 and RN (ϕξ1) = 0.

The tangent space of MB can be split into

TMB = Tα1
⊕ Tα2

⊕ Tα3
⊕ Tα4

⊕ Tα5

where Tα1
= [ξ], Tα2

= span{ξ1, ξ2, ξ3}, Tα3
= span{ϕξ1, ϕξ2, ϕξ3} and Tα4

⊕ Tα5
is

the orthogonal complement of Tα1
⊕ Tα2

⊕ Tα3
in TM . JTα5

⊂ Tα4
(see [9]).

Putting X = ϕξ1 into (C-1), we have

RNϕAϕξ1 −ARNϕξ1 = 2α2ξ1.

This implies that the eigenvalue α2 vanishes, since ξ1 is a unit tangent vector field.

But in [6], we see that the eigenvalue α2 never vanishes neither in TB, HB nor E ,
which gives us a contradiction.

Summing up these observations, we assert that the shape operator A of three

model spaces TB, HB and E in SU2,m/S(U2·Um) does not satisfy the condition

RNϕAX = ARNϕX .

2. Proof of Theorem 2

In this section, by using geometric quantities in [5] and [9], we give a complete

proof of Theorem 2. To prove it, we assume that M is a Hopf hypersurface in

SU2,m/S(U2·Um) with (C-2), that is,

(C-2) (RNϕ)SX = S(RNϕ)X.

From the definition of the Ricci tensor S and the fundamental formulas in [11],

Section 2, we have that the Ricci tensor S of M in SU2,m/S(U2·Um) is given by

(2.1) 2SX = −(4m+ 7)X + 3η(X)ξ + 2hAX − 2A2X

+

3
∑

ν=1

{3ην(X)ξν − ην(ξ)ϕνϕX + ην(ϕX)ϕνξ + η(X)ην(ξ)ξν}

where h denotes the trace of the shape operator A (see [11]).
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Using the equations (C-2) and (2.1), we prove that the Reeb vector field ξ of M

belongs to either Q or Q⊥.

Lemma 2.1. Let M be a Hopf hypersurface in SU2,m/S(U2·Um), m > 3, with

(C-2). If the principal curvature α = g(Aξ, ξ) is constant along the Reeb direc-

tion of ξ, then the Reeb vector field ξ belongs to either the distribution Q or the
distribution Q⊥.

P r o o f. In order to prove this lemma, for some unit vectors X0 ∈ Q, ξ1 ∈ Q⊥,

we put

(∗∗) ξ = η(X0)X0 + η(ξ1)ξ1,

where η(X0)η(ξ1) 6= 0 is the assumption we will disprove by contradiction.

Let U = {p ∈ M : α(p) 6= 0} be the open subset of M . Now we discuss our
arguments on U (see [5]).

By virtue of [5], Lemma 2.2, ξα = 0 gives AX0 = αX0 and Aξ1 = αξ1.

From (2.1), we have

(2.2)























SϕX0 = κϕX0,

SX0 = (−2m− 4 + 2η2(X0) + hα− α2)X0 + 2η1(ξ)η(X0)ξ1,

Sξ1 = (−2m− 2 + hα− α2)ξ1 + 2η(ξ1)ξ,

Sξ = (−2m− 2 + hα− α2)ξ + 2η1(ξ)ξ1,

where κ := −2m− 4 + hσ − σ2 and σ = (α2 − 2η2(X0))/α.

Putting X = ϕX0 in (C-2) and using (1.2), (1.3), (2.2), it follows that

−2ση(X0)ξ1(ξ)ξ1 = −2η(X0)η1(ξ)Sξ1.

Taking the inner product with X0 of the previous equation, we have

0 = −4η2(X0)η
2
1(ξ).

Therefore, p does not belong to U, and thus it must be p ∈ (M − U). Since

(M −U) = Int(M −U)∪ ∂(M −U), where Int and ∂ denote respectively the interior

and the boundary of M − U, we consider the following two cases:

Case 1. p ∈ Int(M − U). If p ∈ Int(M − U), then α = 0 on this neighborhood

Int(M − U) of p.

Case 2. p ∈ ∂(M−U). Since p ∈ ∂(M−U), there exists a sequence of points pn → p

with α(p) = 0 and α(pn) 6= 0. Such a sequence will have an infinite subsequence

where η(ξ1) = 0 (in which case ξ ∈ Q at p, by continuity) or an infinite subsequence
where η(X0) = 0 (in which case ξ ∈ Q⊥ at p). Accordingly, we get a complete proof

of our lemma. �
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Now, we shall divide our consideration into two cases when ξ belongs to either Q⊥

or Q, respectively.
Now, we further study the case ξ ∈ Q⊥. We may put ξ = ξ1 ∈ Q⊥ for our

convenience sake.

Let M be a Hopf hypersurface in SU2,m/S(U2·Um). If the Reeb vector field ξ

belongs to Q⊥, then the Ricci tensor S commutes with the shape operator A, that

is, SA = AS (see [5], equation (4.7)).

Bearing in mind that ξ = ξ1 ∈ Q⊥, (2.1) is simplified to

(2.3) 2SX = −(4m+7)X+7η(X)ξ+2η2(X)ξ2+2η3(X)ξ3−ϕ1ϕX+2hAX−2A2X.

Here replacing X by ϕX in (2.3) (or applaying ϕ to (2.3)), we have

(2.4)

{

2SϕX = −[(4m+7)ϕX−ϕ1X+2η2(X)ξ3−2η3(X)ξ2]+2hAϕX−2A2ϕX,

2ϕSX = −[(4m+7)ϕX−ϕ1X+2η2(X)ξ3−2η3(X)ξ2]+2hϕAX−2ϕA2X.

On the other hand, the equations (1.9) and (2.3) give us

(2.5) 2η3(SX)ξ2 − 2η2(SX)ξ3 + ϕ1SX − ϕSX

= (2m+ 4){2η3(X)ξ2 − 2η2(X)ξ3 + ϕX − ϕ1X} := Rem(X).

Taking the symmetric part of (2.5), we obtain

(2.6) 2η3(X)Sξ2 − 2η2(X)Sξ3 + Sϕ1X − SϕX = Rem(X).

By virtue of SA = AS, (2.5) and (2.6) we assert the following:

Lemma 2.2. Let M be a Hopf hypersurface in SU2,m/S(U2·Um) with (C-1). If

the Reeb vector field ξ belongs to the distribution Q⊥, that is, ξ ∈ Q⊥, then we have

Sϕ = ϕS.

P r o o f. By (2.5) and (2.6) we have the left side of (C-2) and the right side of

(C-2), respectively, as follows:

(2.7)

{

RNϕSX = −ϕSX + 1

2
Rem(X),

SRNϕX = −SϕX + 1

2
Rem(X).

Combining the equations in (2.7), we have

(2.8) SRNϕX −RNϕSX = −SϕX + ϕSX.

�
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When ξ ∈ Q⊥, (C-2) is equivalent to (2.8). Summing up Lemmas 2.1, 2.2 and [9],

Theorem, in the case of ξ ∈ Q⊥,M is a Hopf hypersurface in complex hyperbolic two-

plane Grassmannians SU2,m/S(U2·Um) satisfying (C-2), henceM is locally congruent

to hypersurface TA or HA.

Combining the above formulas, it follows that

(RNϕ)SX − S(RNϕ)X =























0 if X = ξ ∈ Tα1
= Tα,

0 if X = ξl ∈ Tα2
= Tβ,

0 if X ∈ Tα3
= Tλ,

0 if X ∈ Tα4
= Tµ.

Thus, if ξα = 0, then Hopf hypersurfaces M with RNϕSX = SRNϕX are locally

congruent to real hypersurfaces of TA, HA and vice versa.

When ξ ∈ Q, a Hopf hypersurface M in SU2,m/S(U2·Um) is locally congruent to

a hypersurface of TB , HB or E by virtue of [8], Theorem.
We will now show that a hypersurface of TB, HB or E cannot satisfy condition

(C-2), and thus cannot occur in our situation. For this purpose, we consider a model

space of TB , HB or E , which will be denoted by MB. We calculate (RNϕ)S =

S(RNϕ) for MB. The tangent space of MB can be split into

TMB = Tα1
⊕ Tα2

⊕ Tα3
⊕ Tα4

⊕ Tα5
,

where Tα1
= [ξ], Tα2

= span{ξ1, ξ2, ξ3}, Tα3
= span{ϕξ1, ϕξ2, ϕξ3} and Tα4

⊕ Tα5
is

the orthogonal complement of Tα1
⊕Tα2

⊕Tα3
in TM . Further, JTα5

⊂ Tα4
(see [9]).

From [11], we obtain

(2.9) SX =















































(−2m− 2 + hα1 − α2
1)ξ if X = ξ ∈ Tα1

,

(−2m− 2 + hα2 − α2
2)ξl if X = ξl ∈ Tα2

,

(−2m− 4)ϕξl if X = ϕξl ∈ Tα3
,

(

−2m− 7

2
+ hα4 − α2

4

)

X if X ∈ Tα4
,

(

−2m− 7

2
+ hα5 − α2

5

)

X if X ∈ Tα5
,

(2.10) RN (X) =



































−2ξ if X = ξ ∈ Tα1
,

−2ξl if X = ξl ∈ Tα2
,

0 if X = ϕξl ∈ Tα3
,

− 1

2
X if X ∈ Tα4

,

− 1

2
X if X ∈ Tα5

.
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In order to check whether model spaces TB , HB or E satisfy (C-2) or not, we
should verify that the following equations vanish for all cases:

(2.11) G(X) := (RNϕ)SX − S(RNϕ)X.

Case 1. Tube TB . By calculation, we have λ + µ = β on TB . Thus we obtain
h = α+ 3β + (4n− 4)(λ+ µ) = α+ (4n− 1)β.

By putting X = ϕξl into (2.11), we have

(2.12) G(ϕξl) := (RNϕ)Sϕξl − S(RNϕ)ϕξl = (−4− 2hβ + 2β2)ξl.

Since h = α+ (4n− 1)β, (2.12) becomes

(2.13) 0 = (−8− 4(2n− 1)β2)ξl.

Since −8− 4(2n− 1)β2 < 0, (2.13) means ξl = 0. This is a contradiction.

Case 2. Horosphere HB. In this case, we have h = 4nα = 4
√
2n.

By putting X = ϕξl into (2.11) and applying h = 4
√
2n, we have 0 = −16nξl.

This means ξl = 0, which is a contradiction.

Case 3. Exceptional case E . If λ = µ, then it is the same as Case 2. Thus we may

assume λ 6= µ. We have

(2.14) h = 4α+m(λ)λ +m(µ)µ,

where m(λ) > m(µ) and m(λ) +m(µ) = 8n− 8.

By putting X = ϕξl ∈ Tγ , we obtain G(ϕξl) = −2
√
2hξl. This gives h = 0.

For X ∈ Tµ, G(X) = (µ− λ)(h− µ− λ)ϕX . Since ϕX never vanishes, naturally

we have

(2.15) (µ− λ)(h− µ− λ) = 0.

Because µ 6= λ, h = 0 and λ = 2−1/2, (2.15) should imply µ = −2−1/2. Moreover,

since JTµ ⊂ Tλ and JTµ ⊂ Tλ, we see that the corresponding multiplicities of

the eigenvalues λ and µ satisfy m(λ) > m(µ). Since m(α) = 4, m(γ) = 3 and

m(λ)+m(µ) = 8n−8 on E , the trace of the shape operator A denoted by h becomes
h = 4α + 3γ + m(λ)λ + m(µ)µ = 4 · 21/2 + 2−1/2(m(λ) − m(µ)), which leads to

a contradiction. In fact, we obtained h = 0, which yields (m(λ) −m(µ)) = −8 < 0.

Thus, this case does not occur.

This shows that a hypersurface of TB, HB or E cannot satisfy the condition (C-2),
and therefore in the situation of Theorem 2, the case X ∈ Q cannot occur. This
completes the proof of Theorem 2. �
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