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Abstract. We consider separately radial (with corresponding group T
n) and radial (with

corresponding group U(n)) symbols on the projective space Pn(C), as well as the associated
Toeplitz operators on the weighted Bergman spaces. It is known that the C∗-algebras gen-
erated by each family of such Toeplitz operators are commutative (see R.Quiroga-Barranco
and A. Sanchez-Nungaray (2011)). We present a new representation theoretic proof of such
commutativity. Our method is easier and more enlightening as it shows that the commu-
tativity of the C∗-algebras is a consequence of the existence of multiplicity-free representa-
tions. Furthermore, our method shows how to extend the current formulas for the spectra
of the corresponding Toeplitz operators to any closed group lying between T

n and U(n).
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1. Introduction

The study of families of Toeplitz operators with special properties is already promi-

nent in operator theory. This is particularly so given the abundance of commutative

algebras generated by Toeplitz operators on complex spaces. With this respect, the

results from [1] have special relevance as they prove the existence of nontrivial com-

mutative C∗-algebras generated by Toeplitz operators on every weighted Bergman

space over every irreducible bounded symmetric domain. The first fundamental in-

gredient to prove the latter is one which has become very important for Toeplitz

operators in the last years: group theory. The origins of this fact include a classifi-

cation of commutative C∗-algebras generated by Toeplitz operators on the unit disk
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(see [5]) and the first examples of large families of commuting Toeplitz operators on

the unit ball (see [9] and [10]). The second fundamental ingredient for the findings

presented in [1] is the representation theory of semisimple Lie groups and its study

of the holomorphic discrete series for simple Lie groups of Hermitian type.

On the other hand, the existence of commutative C∗-algebras of Toeplitz operators

on Bergman spaces over complex projective spaces has been established in [8]. The

Toeplitz operators in this earlier work are those whose symbols are invariant under

the action of a maximal torus of isometries. These symbols are called separately ra-

dial (see Section 4 for further details). The use of group theory in the results obtained

in [8] is already patent in the definition of the separately radial symbols in terms of

group actions. Nevertheless, the proof found in [8] for the commutativity of the C∗-

algebras generated by Toeplitz operators with separately radial symbols is a rather

straightforward computation. In other words, no representation theory is involved.

The first main goal of this work is to explore the relationship between the rep-

resentation theory associated to the projective space Pn(C) and the commutativity

of the C∗-algebra T (m)(AT
n

) generated by Toeplitz operators with separately radial

symbols. We observe that Tn stands for the n-dimensional torus acting component-

wise on inhomogeneous coordinates of Pn(C); we refer to Section 4 for further details

and for the moment we note that AK denotes the space of symbols invariant under

a group K. Our first goal is achieved in Section 4, where we present in Theorem 4.1

a purely representation theoretic proof of the commutativity of T (m)(AT
n

). A com-

parison with the corresponding proof found in [8] clearly shows the efficiency of our

new representation theoretic proof. Furthermore, our new proof is more enlightening

as it shows the reason for the commutativity of these C∗-algebras: the presence of

a multiplicity-free action of the group Tn (see Section 3 for further details). Also, our

method continues to provide the simultaneous diagonalization that allows to analyze

the spectra of the Toeplitz operators involved.

An important case considered in [1] is the set of symbols that are invariant under

the maximal compact subgroups of isometries of an irreducible bounded symmetric

domain. For the projective space Pn(C), the group of isometries is given by an action

of the projective unitary group PU(n+1) for which the subgroup of isometries fixing

a given point is (up to conjugacy) realized by the subgroup U(n). The second

main goal of this paper is to consider symbols invariant under the action of U(n)

(radial symbols) and establish the commutativity of the C∗-algebras T (m)(AU(n))

generated by Toeplitz operators with such radial symbols. Again, our method is

representation theoretic and far easier than the corresponding straightforward proof

(compare with the methods of [4]), as well as more enlightening since a multiplicity-

free representation is still involved but now for U(n). The main result in this case is

Theorem 5.4.
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On the other hand, if we let K be a closed group such that Tn ⊂ K ⊂ U(n),

then with the above notation we have AU(n) ⊂ AK ⊂ AT
n

. This implies the cor-

responding inclusions T (m)(AU(n)) ⊂ T (m)(AK) ⊂ T (m)(AT
n

). In particular, the

commutativity (however it is proved) of the C∗-algebra generated by Toeplitz oper-

ators with separately radial symbols implies the commutativity of the corresponding

C∗-algebra for the group K. Nevertheless, our representation theoretic proof has the

advantage of providing a general method for describing the spectra of the Toeplitz

operators in T (m)(AK) as long as the group K is explicitly given: this is the content

of Theorem 6.1.

2. Bergman spaces and Toeplitz operators on the projective space

We denote by P
n(C) the n-dimensional complex projective space which consists

of the classes [w] = Cw \ {0} where w ∈ C
n+1. For every j = 0, . . . , n we consider

the inhomogeneous coordinates ϕj : Uj → C
n given by

[w] 7→ (z1, . . . , zn) =
1

wj
(w0 . . . , ŵj , . . . , wn),

where Uj is the open set of the classes [w] such that wj 6= 0.

We will denote by ω the canonical symplectic form on P
n(C) which yields the

Fubini-study geometric structure (see [8] for further details). And Ω will denote the

corresponding volume form on P
n(C).

If we view T as the subgroup of U(n+1) that consists of multiples of the identity,

then we have a natural quotient map of Lie groups

U(n+ 1) → U(n+ 1)

T
= PU(n+ 1)

where PU(n+1) is the projective unitary group. The image of a matrix A ∈ U(n+1)

will be denoted by [A]. Recall that PU(n+1) is precisely the group of biholomorphic

isometries of Pn(C) through the action

PU(n+ 1)× P
n(C) → P

n(C)

([A], [z]) 7→ [Az].

The isotropy subgroup for this action corresponding to the point [(1, 0, . . . , 0)t] is

given by the subgroup

{[
t 0

0 A

]
: t ∈ U(1), A ∈ U(n)

}
=

{[
1 0

0 A

]
: A ∈ U(n)

}
.
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Since this is canonically isomorphic to U(n), we will use the latter to denote both

the isotropy subgroup and the corresponding group of n× n matrices. On the other

hand, by the corresponding quotient map, the group U(n+1) acts on Pn(C) biholo-

morphically with isotropy subgroup for the point [(1, 0, . . . , 0)t] given by

U(1)×U(n) =

{(
t 0

0 A

)
: t ∈ U(1), A ∈ U(n)

}
.

In particular, we have

P
n(C) ∼= PU(n+ 1)

U(n)
∼= U(n+ 1)

U(1)×U(n)
.

For every m ∈ Z, we consider the character χm : U(1) × U(n) → T given by

χm(t) = tm. This yields the associated line bundle over Pn(C) defined by

Lm = U(n+ 1)×χm
C → P

n(C).

As usual, the elements of this bundle are the classes [A, λ] for the equivalence relation

on U(n+ 1)× C given by

(A1, λ1) ∼ (A2, λ2) ⇐⇒ (A2, λ2) = (A1B,χm(B)−1λ1) for some B ∈ U(1)×U(n).

By construction, these line bundles admit U(n+ 1)-actions that preserve Hermitian

metrics inherited from the metric on the standard fiber C.

We are interested in the hyperplane line bundle H = L−1 and its tensor powers

Hm = L−m for m ∈ N0. These are precisely the line bundles over P
n(C) that admit

holomorphic sections. For every m ∈ N0, the space of holomorphic sections of H
m

is called the weighted Bergman space A2
m(Pn(C)) with weight m.

If we denote by hm the Hermitian metric ofHm, then we can define L2(Pn(C), Hm)

as the Hilbert space of measurable sections f of Hm that satisfy

∫

Pn(C)

hm(f, f)Ω < ∞,

which is endowed with the corresponding inner product. It follows that A2
m(Pn(C))

is a finite dimensional and so a closed subspace of the Hilbert space L2(Pn(C), Hm).

The line bundlesHm can be trivialized on every open set Uj as above. For example,

on the open set U0 the holomorphic map

Hm|U0
→ C

n × C,

[A, λ] 7→
(
[Ae1],

λ

wm
0

)
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yields a trivialization, where Ae1 = (w0, . . . , wn). It is well known that, with respect

to this trivialization, the Bergman space A2
m(Pn(C)) corresponds precisely to the

space Pm(Cn) of polynomials with degree at most m on C
n.

We will use the trivialization Hm|U0
∼= C

n × C and the corresponding identifica-

tions for the spaces of sections to perform our computations using inhomogeneous

coordinates. In particular, for every m ∈ N0 let us define the measure on C
n given

by

dνm(z) =
(n+m)!

π
nm!

dz

(1 + |z1|2 + . . .+ |zn|2)n+m+1
.

This yields the Hilbert space L2(Cn, νm) which clearly contains Pm(Cn) as a finite

dimensional and so a closed subspace. It follows from [8] that for every m ∈ N0

there is an isometry L2(Pn(C), Hm) → L2(Cn, νm) obtained from the trivialization

of Hm|U0
described above that maps A2

m(Pn(C)) onto Pm(Cn). Furthermore, the

Bergman projection Bm : L2(Cn, νm) → Pm(Cn) is given by

Bm(f)(z) =

∫

Cn

f(w)Km(z, w) dνm(w),

where Km(z, w) = (1 + z1w1 + . . .+ znwn)
m.

In particular, in the realization of the Bergman spaces and Bergman projections

described above, the Toeplitz operator with symbol a ∈ L∞(Cn) is given by

T (m)
a : Pm(Cn) → Pm(Cn)

T (m)
a (f)(z) =

(n+m)!

π
nm!

∫

Cn

a(w)f(w)(1 + z1w1 + . . .+ znwn)
m dw

(1 + |w1|2 + . . .+ |wn|2)n+m+1
.

Next we observe that the natural isometric action of U(n+1) on the line bundleHm

induces a unitary representation on the Hilbert space L2(Pn(C), Hm). This represen-

tation leaves invariant the corresponding Bergman space A2
m(Pn(C)) which, by the

Bott-Borel-Weil theorem, yields an irreducible unitary representation of U(n+ 1).

We note that for the projection map U(n+1) → PU(n+1), the subgroup U(n) of

PU(n+1) is already the image of the subgroup {1}×U(n) ⊂ U(1)×U(n) ⊂ U(n+1).

This allows to obtain a representation of the subgroup U(n) of PU(n + 1) on the

space of sections of Hm. Furthermore, for the trivialization of Hm|U0
we conclude

that the corresponding action is given by

(2.1) (Af)(z) = f(A−1z)

for every A ∈ U(n), f : C
n → C and z ∈ C

n. As a particular case, the expres-

sion (2.1) yields a unitary representation of U(n) on L2(Cn, νm) (corresponding to
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the representation on L2(Pn(C), Hm)) that preserves Pm(Cn) (corresponding to the

Bergman space A2
m(Pn(C))).

In the rest of this work we will make use of such realizations of these unitary

representations of U(n). And we will denote by πm the unitary representation of

U(n) on the Bergman space A2
m(Pn(C)) ∼= Pm(Cn).

3. Invariant symbols, Toeplitz operators and intertwining maps

Let us fix a closed subgroup K of U(n) and consider the vector subspace AK of

L∞(Pn(C)) of K-invariant symbols. More precisely, we have a ∈ AK if and only if

a(kz) = a(z)

for all k ∈ K and for a.e. z ∈ C
n. Correspondingly, for every m ∈ N0 we will denote

by T (m)(AK) the C∗-algebra generated by the Toeplitz operators on A2
m(Pn(C))

with symbols in AK .

Since K is a subgroup of U(n), the unitary representation πm of U(n) on

A2
m(Pn(C)) restricted to K is itself a unitary representation which we will de-

note by πm|K . The following result is an easy consequence of the definitions (see
Corollary 3.3 from [1]).

Proposition 3.1. Let K be a closed subgroup of U(n) and a ∈ L∞(Pn(C))

a bounded symbol. If the symbol a belongs to AK , then for every m ∈ N0 the

Toeplitz operator T
(m)
a intertwines the restriction πm|K , in other words, we have

πm(k) ◦ T (m)
a = T (m)

a ◦ πm(k)

for all k ∈ K.

For K a closed subgroup of U(n) as above, we denote by EndK(A2
m(Pn(C)))

the space of πm|K-intertwining linear maps of A2
m(Pn(C)), i.e., the linear maps

T : A2
m(Pn(C)) → A2

m(Pn(C)) that satisfy

πm(k) ◦ T = T ◦ πm(k)

for all k ∈ K.

With the previous notation, Proposition 3.1 establishes that

T (m)(AK) ⊂ EndK(A2
m(Pn(C)))
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for every closed subgroup K ⊂ U(n). On the other hand, by definition we clearly

have

T (m)(A) ⊂ End(A2
m(Pn(C))).

We will see that these inclusions are in fact identities.

The following result can be obtained by an easy adaption of the arguments found

in [2]. See also Section 5 from [6] for an alternative proof.

Theorem 3.2. Every linear map A2
m(Pn(C)) → A2

m(Pn(C)) can be realized as

a Toeplitz operator with a bounded symbol. In other words, we have

End(A2
m(Pn(C))) = T (m)(L∞(Pn(C))).

For the next result we will follow the arguments found in [1]. For this we introduce

some notation.

Let K be a closed subgroup of U(n). For every a ∈ L∞(Pn(C)) let us denote

ã(z) =

∫

K

a(k−1z) dk,

where the integral is computed with respect to the Haar measure of K. Note that

ã ∈ L∞(Pn(C)) by the compactness of K. Furthermore, the invariance of the Haar

measure clearly implies that ã ∈ AK for every a ∈ L∞(Pn(C)). We also have ˜̃a = ã

for every a ∈ L∞(Pn(C)). In particular, the map a 7→ ã defines a linear projection

L∞(Pn(C)) → AK .

For K as above, a similar construction can be performed for linear maps on

A2
m(Pn(C)). For a linear map T : A2

m(Pn(C)) → A2
m(Pn(C)) we define

T̃ =

∫

K

πm(k) ◦ T ◦ πm(k)−1 dk.

Hence, it is easily seen that T̃ ∈ EndK(A2
m(Pn(C))) and that the map T 7→ T̃

defines a linear projection End(A2
m(Pn(C))) → EndK(A2

m(Pn(C))).

A straightforward computation proves (see [1]) that for every a ∈ L∞(Pn(C)) and

m ∈ N0 we have

T̃
(m)

a = T
(m)
ã .

As a consequence we obtain the following result.

Theorem 3.3. Let K be a closed subgroup of U(n). EveryK-intertwining linear

map A2
m(Pn(C)) → A2

m(Pn(C)) can be realized as a Toeplitz operator with a K-

invariant bounded symbol. In other words, we have

EndK(A2
m(Pn(C))) = T (m)(AK).
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P r o o f. Let T ∈ EndK(A2(Pn(C))) be given. By Theorem 3.2 there exists a ∈
L∞(Pn(C)) such that T = T

(m)
a . And so we have

T = T̃ = T̃
(m)

a = T
(m)
ã .

Since ã ∈ AK the result follows. �

The previous result reduces the study of the C∗-algebra T (m)(AK) to the study

of the representation of K on A2
m(Pn(C)).

Let us fix a closed subgroup K of U(n). Since K is compact and A2
m(Pn(C)) is

finite dimensional there is a collection U1, . . . , Ul of mutually inequivalent irreducible

K-modules and a K-invariant direct sum decomposition

(3.1) A2
m(Pn(C)) =

l⊕

j=1

Vj

so that the subspace Vj is a direct sum of irreducibleK-submodules isomorphic to Uj .

This is called the isotypic decomposition of the K-module A2
m(Pn(C)). We recall

that the number of linearly independent summands in Vj isomorphic to Uj is called

the multiplicity (of the latter in the former).

With respect to the isotypic decomposition (3.1), the fact that the K-modules Uj

are mutually inequivalent implies that

(3.2) EndK(A2
m(Pn(C))) =

l⊕

j=1

EndK(Vj),

as complex algebras. Hence, to understand the structure of EndK(A2
m(Pn(C))) it is

enough to consider a K-module V given by a direct sum of copies of an irreducible

K-module and describe EndK(V ). And we recall that EndK(V ) ∼= Mr(C), where r

is the multiplicity of U in V .

From the previous discussion we conclude the following result. We recall that the

representation of K on A2
m(Pn(C)) is called multiplicity-free if the isotypic decom-

position (3.1) has multiplicity 1 on each summand.

Theorem 3.4. Let K be a closed subgroup of U(n). Then we have

T (m)(AK) ∼=
l⊕

j=1

Mrj(C)

as C∗-algebras, where rj is the multiplicity of Uj in Vj in the isotypic decomposi-

tion (3.1).
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In particular, for every m ∈ N0 the following conditions are equivalent.

(1) The C∗-algebra T (m)(AK) is commutative.

(2) The representation of K on A2
m(Pn(C)) is multiplicity-free.

4. Toeplitz operators with separately radial symbols

Here we apply the previous discussion to the case K = T
n, the subgroup of

U(n) consisting of the diagonal matrices. The elements of AT
n

are called separately

radial symbols. The results in this section may be compared with those from [8],

particularly Section 5 and Theorem 5.5 therein.

By applying Theorem 3.4 we obtain the isotypic decomposition of the representa-

tion of Tn on A2
m(Pn(C)). We recall from Section 2 the identification of A2

m(Pn(C))

with the space Pm(Cn) of complex polynomials on C
n with dimension at most m.

We will freely use the multi-index notation and we will also consider the set

Jn(m) = {p ∈ N0 : |p| 6 m},

where m ∈ N0.

Hence, the set of monomials zp, where p ∈ Jn(m), is a basis for Pm(Cn). Further-

more, we have

πm|Tn(t)zp = t−pzp

for every t ∈ T
n and p ∈ Jn(m). It follows that the decomposition into irreducible

submodules of the representation of Tn on Pm(Cn) is given by

(4.1) Pm(Cn) =
⊕

p∈N0, |p|6m

Czp.

Moreover, for p ∈ N0 with |p| 6 m, the submodule Czp has character χp given by

χp : T
n → T,

t 7→ t−p.

Since all such characters are distinct, it follows that (4.1) is in fact the isotypic

decomposition, which is then multiplicity-free.

On the other hand, an easy computation shows that (see [8])

{
ep(z) =

( m!

p!(m− |p|)!
)1/2

zp : p ∈ Jn(m)
}
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is an orthonormal basis. In particular, the map given by

R : A2
m(Pn(C)) → l2(Jn(m)),

f 7→ (〈f, ep〉m)p∈Jn(m),

is an isometry.

We now present an elementary proof of Theorem 5.5 from [8].

Theorem 4.1. For everym ∈ N0 the C
∗-algebra T (m)(AT

n

) of Toeplitz operators

with Tn-invariant symbols is commutative. Furthermore, for every a ∈ AT
n

we have

RT (m)
a R∗ = γa,mI

where the function γa,m : Jn(m) → C is given by

γa,m(p) = 〈T (m)
a (ep), ep〉m = 〈aep, ep〉m

=
2nm!

p!(m− |p|)!

∫

Rn
+

a(r1, . . . , rn)r
2p1+1 . . . r2pn+1 dr1 . . . drn

(1 + r21 + . . .+ r2n)
n+m+1

=
m!

p!(m− |p|)!

∫

Rn
+

a(
√
r1, . . . ,

√
rn)r

p1+1 . . . rpn+1 dr1 . . . drn
(1 + r1 + . . .+ rn)n+m+1

.

P r o o f. That R is an isometry follows from the fact that the monomials ep form

an orthonormal basis.

On the other hand, using the isotypic decomposition (4.1), Theorem 3.4 implies

that T (m)(AT
n

) is commutative. Furthermore, it follows that for every a ∈ AT
n

and

p ∈ Jn(m) we have

T (m)
a (ep) = γa,m(p)ep

for some complex number γa,m(p), thus also showing that

γa,m(p) = 〈T (m)
a (ep), ep〉m = 〈aep, ep〉m.

If we denote by ẽp, p ∈ Jn(m), the elements of the canonical basis of l2(Jn(m)), then

R(ep) = ẽp for every p and so we have

RT (m)
a R∗(ẽp) = RT (m)

a (ep) = R(γa,m(p)ep) = γa,m(p)ẽp,

which shows that RT
(m)
a R∗ = γa,mI.

Finally, to write down the function γa,m explicitly we use

γa,m(p) = 〈aep, ep〉m =
(n+m)!

π
np!(m− |p|)!

∫

Cn

a(z)|zp|2 dz
(1 + |z|2)n+m+1

and apply polar coordinates to each complex coordinate to obtain the first integral

expression. This uses the fact that a(z1, . . . , zn) = a(|z1|, . . . , |zn|). The second
integral expression is obtained by the change of coordinates r 7→ r2. �
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5. Toeplitz operators with radial symbols

We now consider the case K = U(n), the group of isometries of Pn(C) that fix the

point [(1, 0, . . . , 0)t]. The elements of AU(n) are called radial symbols. The results in

this section are dual to those considered in [4] and [7].

To understand this case, we need to obtain the isotypic decomposition (3.1) for

K = U(n). By the identification of A2
m(Pn(C)) with Pm(Cn) the following result

provides such decomposition.

Proposition 5.1. For every k ∈ N0, denote by Pk(Cn) the space of homoge-

neous polynomials with degree k on C
n. Then, the isotypic decomposition of the

representation of U(n) on Pm(Cn) is given by

Pm(Cn) =

m⊕

k=0

Pk(Cn),

where the summands Pk(Cn) are irreducible and inequivalent as U(n)-modules.

Hence, the representation of U(n) on A2
m(Cn) is multiplicity-free for every m ∈ N0.

P r o o f. The direct sum above holds trivially and it is a decomposition into U(n)-

submodules since the representation of U(n) is linear in the variable z ∈ C
n. Hence, it

is enough to show that the spaces Pk(Cn) are irreducible and inequivalent over U(n).

First we note that the U(n) representation on Pk(Cn) is the restriction of the

rational representation

GL(n,C)× Pk(Cn) → Pk(Cn),

(A, f(z)) 7→ f(A−1z).

Furthermore, by classical invariant theory (see [3]) it is known that Pk(Cn) is an

irreducible GL(n,C)-module for every k > 0. On the other hand, U(n) is a real

form and so a Zariski dense subgroup of GL(n,C). In particular, any subspace of

Pk(Cn) is invariant under GL(n,C) if and only if it is invariant under U(n). As

a consequence, Pk(Cn) is an irreducible module over U(n) as well. Finally, since

the dimensions of the spaces Pk(Cn) are all different these spaces are necessarily

inequivalent over U(n) by their irreducibility. �

As a consequence of the previous results, if T ∈ EndU(n)(A2
m(Pn(C))), then we

have

T (Pk(Cn)) ⊂ Pk(Cn)

for every k = 0, . . . ,m, with T acting as a multiple of the identity ckI on every such

space. If for each k we let uk ∈ Pk(Cn) be a unitary vector, then we can compute
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the scalar ck by

ck = 〈Tuk, uk〉m.

For our purposes it will be useful to consider for every k = 0, . . . ,m the homoge-

neous polynomial

fk(z) =
∑

p∈N
n
0

|p|=k

√(
k

p

)
zp

where the multinomial coefficients are defined by

(
k

p

)
=

k!

p1! . . . pn!

for every p ∈ N
n
0 such that |p| = k.

Lemma 5.2. For every k,m ∈ N0 with k 6 m, we have

‖fk‖2m =
2(n+m)!

m!(n− 1)!

∫ ∞

0

r2n+2k−1

(1 + r2)n+m+1
dr.

P r o o f. For every k 6 m we compute

〈fk, fk〉m =
∑

p,q∈N
n
0

|p|=|q|=k

√(
k

p

)√(
k

q

)
(n+m)!

π
nm!

∫

Cn

zp zq dz

(1 + |z|2)n+m+1
;

by the orthonormality of the monomials used in Section 4 we have

〈fk, fk〉m =
(n+m)!

π
nm!

∫

Cn

∑

p∈N
n
0

|p|=k

(
k

p

)
|z1|2p1 . . . |zn|2pn

dz

(1 + |z|2)n+m+1

=
(n+m)!

π
nm!

∫

Cn

(|z1|2 + . . .+ |zn|2)k
dz

(1 + |z|2)n+m+1

and introducing spherical coordinates with dσ the normalized volume of the unit

sphere Sn in C
n we obtain

〈fk, fk〉m =
(n+m)!

π
nm!

∫ ∞

0

∫

Sn

r2k

(1 + r2)n+m+1

2π
n

(n− 1)!
r2n−1 dr dσ

=
2(n+m)!

m!(n− 1)!

∫ ∞

0

r2n+2k−1

(1 + r2)n+m+1
dr.

�

1016



Note that the set (
uk =

1

‖fk‖m
fk

)
k=0,...,m

is orthonormal in A2
m(Pn(C)) with exactly one vector chosen from each of the sum-

mands in the decomposition from Proposition 5.1. And Lemma 5.2 provides an

explicit formula for the norms ‖fk‖m.

Lemma 5.3. If m ∈ N0 and a ∈ AU(n) are given, then

〈aep, eq〉m = 0

for any two different elements p, q ∈ Jn(m).

P r o o f. Let p 6= q as above be given. Hence, with the character notation used in

Section 4, there exists t ∈ T
n such that

χp(t) 6= χq(t).

Consider the unitary transformation given by z 7→ (t1z1, . . . , tnzn). Since the mea-

sure a(z) dνm(z) is invariant under unitary transformations we conclude that

〈aep, eq〉m =

∫

Cn

ep(z)eq(z)a(z) dνm(z)

= χp(t)χq(t)

∫

Cn

ep(z)eq(z)a(z) dνm(z)

= χp(t)χq(t)〈aep, eq〉m,

from which our result follows. �

Theorem 5.4. For every m ∈ N0 the C
∗-algebra T (m)(AU(n)) of Toeplitz opera-

tors with U(n)-invariant symbols is commutative. Furthermore, for every a ∈ AU(n)

we have

RT (m)
a R∗ = γa,mI,

where the complex function γa,m : Jn(m) → C satisfies

γa,m(p) = γa,m(q)

whenever |p| = |q|. The induced complex function γ̂a,m defined by

γ̂a,m(|p|) = γa,m(p)
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for p ∈ Jn(m) can be computed by

γ̂a,m(k) = 〈T (m)
a uk, uk〉m = 〈auk, uk〉m

=

∫ ∞

0

a(r)r2n+2k−1 dr

(1 + r2)n+m+1

/ ∫ ∞

0

r2n+2k−1 dr

(1 + r2)n+m+1

=
(n+m)!

(n+ k − 1)!(m− k)!

∫ ∞

0

a(
√
r)rn+k−1 dr

(1 + r)n+m+1
,

for every k 6 m.

P r o o f. The commutativity of T (m)(AU(n)) follows from Theorem 3.4 and Propo-

sition 5.1. Let us now choose a ∈ AU(n).

Since the irreducible summands in the isotypic decomposition have orthogonal

bases given by subsets of (ep)p∈Jn(m) the existence of γa,m follows with the same

proof as in Theorem 4.1.

On the other hand, as noted above in this section we have

T (m)
a u = cu

for every u ∈ Pk(Cn) where the constant depends only on k. Hence, the function γa,m
is constant on the collection of p ∈ Jn(m) such that |p| = k is fixed. In particular,

the function γ̂a,m is well defined.

To compute γ̂a,m we note that from the previous remarks we have

γ̂a,m(k) = 〈T (m)
a uk, uk〉m = 〈auk, uk〉m =

〈afk, fk〉m
〈fk, fk〉m

.

Then, the inner product in the denominator is obtained from Lemma 5.2 and the

inner product in the numerator can be computed similarly to obtaining the first

integral expression. The second integral expression is obtained by the change of

coordinates r 7→ r2. �

6. Final remarks

In this work we have considered the isometry group PU(n + 1) of the projective

space Pn(C), paying particular attention to the maximal subgroup U(n). Neverthe-

less it is natural to ask for Toeplitz operators with symbols invariant under some

other closed subgroups not necessarily contained in U(n). In the picture provided by

the group U(n+1) this corresponds to the maximal compact subgroup U(1)×U(n).

And it is also well known that U(n + 1) contains maximal subgroups inequivalent
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(under conjugation) to U(1) × U(n). Some examples are given by the subgroups

U(j) × U(k) where j + k = n + 1. But we recall that the corresponding quotient

U(n+ 1)/(U(j)×U(k)) is the complex Grassmannian of j-planes in C
n+1. It seems

more reasonable to study this setup in the context of such spaces.

On the other hand, the methods of Sections 4 and 5 can be applied to other sub-

groups of U(n). More precisely, for a given closed subgroup K of U(n), and to study

the C∗-algebra T (m)(AK) we first apply Theorem 3.4 to reduce its structure to the

representation of K on A2
m(Pn(C)) ∼= Pm(Cn). The important piece of information

is the isotypic decomposition described in (3.1). When the group K is explicitly

given, it is possible to use the character theory of compact groups to write down

such decomposition.

The multiplicity-free case is particularly interesting and admits a more direct

approach. In such case, let us denote by qj = dim Vj the dimension of the irreducible

components. Also choose an orthonormal basis vj1, . . . , v
j
qj for the space Vj . We

recall that all such summands are mutually perpendicular since the representation

is unitary. Hence, the set

{vjk : j = 1, . . . , l, k = 1, . . . , qj}

is an orthonormal basis for A2
m(Pn(C)). As before, we can consider the unitary map

R : A2
m(Pn(C)) → l2(q1)× . . .× l2(ql) = l2(|q|),

f 7→
(〈
f, vjk

〉
m

)
j=1,...,l,
k=1,...,qj

where q = (q1, . . . , ql). Then the following result provides a generalization of The-

orems 4.1 and 5.4 that can be used to describe the structure of T (m)(AK) and the

spectra of its elements. For simplicity, we will denote

[|q|] = [1 : q1] ∪̇ . . . ∪̇ [1 : ql]

where [1 : qj ] = {1, . . . , qj} and ∪̇ denotes disjoint union.

Theorem 6.1. Let m ∈ N0 and K a closed subgroup of U(n) be given such

that the representation of K on A2
m(Pn(C)) is multiplicity-free so that T (m)(AK) is

commutative. Then for every a ∈ AK and for the notation as above we have

RT (m)
a R∗ = γa,mI

where the function γa,m : [|q|] → C is constant on the interval [1 : qj ] for every

j = 1, . . . , l. This induces a function γ̂a,m : [1 : l] → C such that

γ̂a,m(j) = γa,m(k)
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for every j = 1, . . . , l and k ∈ [1 : qj ]. Furthermore, if we choose for every j a nonzero

element fj ∈ Vj , then we have

γ̂a,m(j) =
〈T (m)

a fj, fj〉m
〈fj , fj〉m

=
〈afj , fj〉m
〈fj , fj〉m

for every j = 1, . . . , l.

The proof of the previous result follows the same arguments as those used in

Sections 4 and 5.
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