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Abstract. The least concave majorant, F̂ , of a continuous function F on a closed inter-
val, I , is defined by

F̂ (x) = inf{G(x) : G > F, G concave}, x ∈ I.

We present an algorithm, in the spirit of the Jarvis March, to approximate the least concave
majorant of a differentiable piecewise polynomial function of degree at most three on I .
Given any function F ∈ C4(I), it can be well-approximated on I by a clamped cubic

spline S. We show that Ŝ is then a good approximation to F̂ .
We give two examples, one to illustrate, the other to apply our algorithm.
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1. Introduction

Suppose F is a continuous function on the interval I = [a, b]. Denote by F̂ the

least concave majorant of F , namely,

F̂ (x) = inf{G(x) : G > F, G concave},

which can be shown to be given by

F̂ (x) = sup
{β − x

β − α
F (α) +

x− α

β − α
F (β) : a 6 α 6 x 6 β 6 b

}

, x ∈ I.
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This concave function has application in such diverse areas as mathematical eco-

nomics, statistics, and abstract interpolation theory. See, for example, [3], [2], [11],

[1], [10] and [8]. We observe that F̂ is continuous on I, and it is differentiable there

when F is.

Our aim in this paper is to give a new algorithm to approximate F̂ , together with

an estimate of the error entailed. If F is a continuous or, stronger yet, a differen-

tiable piecewise polynomial of degree at most three, then so is F̂ . If not, then F

may be approximated by a clamped cubic spline and the least concave majorant of

the approximating function is seen to be a good approximation to F̂ . To estimate

the error in Theorem 16 below we use a known result for the approximation error

involving such cubic splines from [4], together with a new result on (F̂ )′, which in [9],

page 70, and [5] is denoted by (F ′)◦ and is referred to as the level function of F ′ in

the unweighted case. See the aforementioned Theorem 16.

The simple structure of F̂ will be the basis of our algorithm. Since F and F̂

are continuous, the zero set, ZF , of F̂ − F is closed; of course, F̂ = F on ZF . The

connected components of Zc
F are intervals open in the relative topology of I on which

F̂ is a strict linear majorant of F ; indeed, if, for definiteness, the component interval

with endpoints α and β is a subset of the interior of I, then

(1) F̂ (α) = F (α), F̂ (β) = F (β),

(2) F (x) < F̂ (x) = F (α) + (x− α)
F (β) − F (α)

β − α
, α < x < β,

and, if F is differentiable on I,

(3) (F̂ )′(α) = F ′(α) =
F (β)− F (α)

β − α
= F ′(β) = (F̂ )′(β).

Our task is thus to find the component intervals of Zc
F . This will be done using

a refinement of the Jarvis March algorithm; see [7]. To begin, we determine the set

of points, D, at which F attains its maximum value, M , and then take C = [c1, c2]

to be the smallest closed interval containing D. Of course, in many cases D consists

of one point and c1 = c2.

It turns out that F̂ increases to M on [a, c1], is identically equal to M on C, then

decreases on [c2, b].

To describe in general terms how the algorithm works we focus on [a, c1], a < c1,

and take F to be a differentiable function which is piecewise cubic. As such, there

is a partition, P , of [a, c1] on each subinterval of which F is a cubic polynomial. By

refining the partition, if necessary, to include critical points and points of inflection
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of F , we may assume that this polynomial is either strictly concave, linear or strictly

convex, and is either increasing or decreasing on its subinterval. It is the subintervals

where the associated cubic polynomial is increasing and strictly concave that are of

interest. It is important to point out that for a piecewise cubic function, Zc
F has

only finitely many components.

Now, F̂ on a component of Zc
F may be thought of as a kind of linear bridge over

a convex part of F . With this in mind, we call an interval, say J = (α, β), a bridge

interval if, on it, F satisfies

(4) F (x) < F (α) + (x− α)
F (β) − F (α)

β − α
, α < x < β,

and

(5) F ′(α) =
F (β)− F (α)

β − α
= F ′(β).

We include endpoints of I as possible endpoints of bridge intervals. In such case, the

corresponding part of (5) is omitted. An illustrating example of bridge intervals and

least concave majorant of a function can be found in Figure 7. It might be helpful to

reader to check the demonstrative Example 1 in Section 7 while reading the formal

description of algorithm. The algorithm is there applied to a particular spline.

Proceeding systematically from c1 to a (the procedure from c2 to b is similar)

our algorithm determines, in a finite number of steps, a finite number of pairwise

disjoint bridge intervals with endpoints in the intervals of increasing strict concavity

referred to in the above paragraph. The desired components are among these bridge

intervals.

The technical details of all this are elaborated in Section 2. Proofs of results

stated in that section are given in the next one and the algorithm itself is justified in

the one following that. Remarks on the implementation of the procedure are made

in Section 5. Section 6 has estimates of the error incurred when approximating an

absolutely continuous function by a clamped cubic spline, while in the final section

two examples are given.

2. The algorithm

In this section we describe our algorithm in more detail. This will require us to

first state some lemmas whose proof will be given in the next section.

Suppose that F is a continuous function on some interval I = [a, b] and let F̂ , Zc
F ,

M , D and C = [c1, c2] be as in the introduction.
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Lemma 1. If F is a continuous function on I, then the least concave majorant,

F̂ , of F on I = [a, b] is continuous on I, with F̂ (a) = F (a) and F̂ (b) = F (b).

Moreover, on each component interval, J , of Zc
F , with endpoints α and β, F̂ is the

linear function, l, interpolating F at the points α and β.

Lemma 2. Suppose F is differentiable on (a, b) and (α, β) is a component

of Zc
F . Then F̂ is differentiable on (a, b), (F̂ )′(x) = F ′(x) for x ∈ (a, b) ∩ ZF , and

(F̂ )′(x) = (F (β) − F (α))/(β − α) for x ∈ [α, β]. In particular, F ′(x) = (F̂ )′(x) =

(F (β) − F (α))/(β − α) if x = α ∈ (a, b) or x = β ∈ (a, b). Moreover, if F ′ is

continuous on (a, b), then so is (F̂ )′.

Lemma 3. Let F be a continuous function on I, then F̂ ≡ M on C. Moreover,

F̂ is strictly increasing on (a, c1) and strictly decreasing on (c2, b).

Lemma 4. Let F be a continuous function, suppose C = [c1, c2] is as in the

introduction, and suppose x, y, z ∈ (a, b) are such that F is strictly convex on (x, z)

and y ∈ (x, z). Then F (y) 6= F̂ (y).

Suppose F is differentiable as well. If y ∈ (a, c1) and F
′(y) 6 0 then F (y) 6= F̂ (y).

Analogously, if y ∈ (c2, b) and F ′(y) > 0 then F (y) 6= F̂ (y).

Lemma 5. Let F be a continuous function. If J = (α, β) is a component interval

of Zc
F then either J ⊂ (a, c1), J ⊂ (c1, c2) or J ⊂ (c2, b).

Suppose that F is piecewise cubic and differentiable on I, and suppose J ⊂ [a, c1].

Denote by P the closed intervals determined by the partition of [a, c1] inherited from

the piecewise cubic structure of F , together with any critical points and points of

inflection of F in [a, c1].

Lemma 6. Suppose that F is piecewise cubic and differentiable on I. Let J =

(α, β) ⊂ [a, c1) be a component interval of Zc
F . Then either α = a or there is an

interval K = [k1, k2] in P containing α on which F is strictly concave and increasing.

Similarly, either β = c1 or there is an interval L = [l1, l2] in P containing β on which

F is strictly concave and increasing. Moreover, K 6= L.

Leaving aside the case c1 = c2 = b our goal is to select the components of Zc
F from

among the bridge intervals of the form [a, b1) or (a1, b1), a1 > a, such that a1 and

b1 lie in distinct intervals in P with disjoint interiors on which intervals F is strictly
concave and increasing.

Let P be the collection of intervals in P where F is strictly concave and increasing.
Given a pair of intervals in P that can have the endpoints of a bridge interval in

them, one determines those endpoints, if they exist, by the study of a certain sextic
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polynomial equation. The details of the most complicated case are described in the

following lemma.

Lemma 7. Let L = [l1, l2] and R = [r1, r2] belong to P with l2 6 r1. Suppose

F (x) =

{

PL(x) = Ax3 +Bx2 + Cx+D on L,

PR(x) = Wx3 +Xx2 + Y x+ Z on R,

with AW 6= 0. Assume

J = P ′

L(L) ∩ P ′

R(R) 6= ∅.

Then, if there is a bridge interval I1 = (a1, b1) with a1 ∈ L and b1 ∈ R, this bridge

interval is such that

(6) a1 = (P ′

L)
−1(y0) and b1 = (P ′

R)
−1(y0),

where y0 is a point in J satisfying the sextic equation

(µ2
1 − µ2

2 − µ2
3δ)

2 − 4µ2
2µ

2
3γδ = 0,

in which

γ = 3Ay +B2 − 3AC, δ = 3Wy +X2 − 3WY, µ2 =
−2γ

27A2
, µ3 =

2δ

27W 2

and

µ1 =
1

3

(X

W
− B

A

)

y +
(

Z +
2X3

27W 2
− Y X

3W

)

−
(

D +
2B3

27A2
− BC

3A

)

.

The verification that a given interval J = (α, β) ⊂ (a, c1) satisfies condition (4)

can be achieved using the following criterion: Assume that α ∈ L = [l1, l2] ∈ P ,
β ∈ R = [r1, r2] ∈ P , l2 < r1, and that l is a linear function interpolating F on J .

Then J satisfies (4) if for every K = [k1, k2] in P with K ⊂ [l2, r1],

l(k1)− F (k1) > 0 and l(k2)− F (k2) > 0,

and, in addition, if K ∈ P , then

l(̺)− F (̺) > 0

for any root, ̺, in K of the quadratic

F ′(x) =
F (β) − F (α)

β − α
.
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Obvious modifications of the above must also hold for [a1, l2] and [r1, b2]. This

criterion can be proved using elementary calculus.

We are now able to describe an iterative procedure that selects the component

intervals of Zc
F from a class of bridge intervals. We will focus our description on

the case of finding all component intervals contained in (a, c1) as the case in which

the component intervals are contained in (c2, b) is analogous while the component

intervals in (c1, c2) are determined trivially by Lemma 3.

If a = c1, then there is no such component interval. In the following, we exclude,

at first, the case c1 = c2 = b, so that c1 < b. Set P0 = P .
We claim that P0 cannot be empty. As a consequence of Lemma 5 we have that

F̂ (c1) = F (c1), since c1 cannot be in the interior of any component interval. The

point c1 is a local maximum of F . The choice of P ensures that there is an interval

(x, c1) such that F is increasing and concave on it, hence P0 must contain at least

one interval.

Assume P0 has exactly one interval. The fact that c1 is a local maximum of F

ensures that this interval is of a form [x, c1). Suppose now that x = a, then F = F̂

on [a, c1], since the function

m(t) =

{

F (t), t ∈ [a, c1],

M, t ∈ (c1, b],

is a concave majorant of F . (It is a concave function extended linearly with slope

equel to that of the tangent line at the endpoint.)

Suppose now that x 6= a. We have F 6= F̂ on (a, x) — if there were y ∈ (a, x)

such that F (y) = F̂ (y), then F would have to be increasing and strictly concave

on some neighbourhood by Lemma 4 and Lemma 6. This is a contradiction to the

assumption that [x, c1] is the only interval in P0. Since F 6= F̂ on (a, x) there must

be a component interval containing (a, x). On the other hand, Lemma 3 implies that

F (c1) = F̂ (c1), hence this component interval must be a subset of (a, c1).

The desired component interval is of a form (a, β), β ∈ [x, c1). If we choose β to

be the unique solution to the equation

F ′(β) =
F (β)− F (a)

β − a
,

then the interval (a, β) will be the component interval, since it is the only interval

which satisfies the necessary conditions (3).

Suppose next that P0 has at least two intervals and take R = [r1, r2] to be that

interval in P0 closest to c1.
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We seek first a component interval of the form (a, r), r ∈ R, as if R were the only

interval in P0. If no such interval exists, let L = [l1, l2] be the interval in P0 closest

to a, then use Lemma 7 to test for a bridge interval W = (w1, w2) with w1 ∈ L and

w2 ∈ R.

It is important to point out that Lemma 7 only places a restriction on bridge inter-

vals, it does not guarantee them. Once the sextic is solved, condition (2) must still

be verified for the proposed bridge interval. This means iterating through each par-

tition subinterval contained in the proposed bridge interval and solving a maximum

problem to verify that F lies underneath the proposed linear F̂ .

In a true Jarvis March points, rather than intervals, are ordered according to the

angle of a tangent line. In the case of intervals associated to piecewise cubic functions

such an ordering is computationally expensive.

Should there be no such W carry out the same test on the interval in P0 closest

to the right of L, if one exists.

If, in moving systematically to the right in this way, we find no W , we discard R

from P0 to get P1 and repeat the above procedure.

If, on the contrary, we find such a W , it will be a component interval. Say

w1 ∈ N = [n1, n2], N ∈ P0.

We next form P1 by discarding from P0 all intervals to the right of the point w1, for

example R, and, in addition, replace N by the interval [n1, w1] (if n1 < w1, otherwise

just discardN). We then carry out the above-described procedure with P1, if P1 6= ∅.
Continuing in this way we see that Pn+1 has at least one less interval than Pn, so

the algorithm terminates after a finite number of steps.

Finally, in the case c1 = c2 = b there may be a component interval of Zc
F of the

form (r, b), r ∈ [a, b). This may be found in a way similar to those of the form (a, r).

Remark 8. We now comment briefly on how one can modify our algorithm to

deal with piecewise cubic functions that are only continuous. In this case the notion

of a bridge interval has to be changed since the function F might not be differentiable

at the endpoint of a component intervals of Zc
F and hence that end point needn’t

belong to an interval of strict concavity. Accordingly, we say that (α, β) is a bridge

interval if conditions (4) and (5) hold and, in addition,

F ′(α−) >
F (β)− F (α)

β − α
> F ′(α+) and F ′(β−) >

F (β)− F (α)

β − α
> F ′(β+).

Again, Lemma 6 must be modified to compensate for the F need not be differen-

tiable. To do this we allow for three possibilities, namely, α = a, α is contained in an

interval of strict concavity of F or α is one of the points at which F ′(α−) > F ′(α+);

a similar change must be made at the β. These changes necessitate our including all

points of discontinuity of F ′ as degenerate intervals in P .
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The iterations of our algorithm proceed much as in the differentiable case, with

the difference that when some point, say x, is selected from Pi we must check if

(α, x) (or (β, x)) is a bridge interval in the new sense. This can be done in a manner

similar to the one we described for determining if (α, β) is a bridge interval in the

old sense.

3. Proof of Lemmas 1–7

P r o o f of Lemma 1. Since F̂ is concave it is continuous on the interior of I.

This continuity ensures that for all ε > 0, there exists a slope m such that the graph

of F lies under the line

la(x) = F (a) +m(x− a) + ε.

But then la would be a concave majorant of F , so

F (x) 6 F̂ (x) 6 la(x), x ∈ I.

As ε > 0 is arbitrary, F̂ is continuous at a, with F̂ (a) = F (a). A similar argument

shows F̂ is continuous at b, with F̂ (b) = F (b).

Let J and l be as in the statement of Lemma 1 and suppose y is a point at which

F − l achieves its maximum value on I. Since F lies below the line l + F (y)− l(y),

so does F̂ . In particular, F̂ (y) 6 F (y), so F̂ (y) = F (y) and hence y /∈ J◦. But,

F̂ (α) = F (α) and F̂ (β) = F (β), so, by concavity, F̂ lies above l on J and below l

off J◦. Thus,

F (y)− l(y) 6 F̂ (y)− l(y) 6 0,

whence

F 6 l + F (y)− l(y) 6 l.

This means F̂ lies below l on J . It follows that F̂ = l on J . �

P r o o f of Lemma 2. If x ∈ (a, b) ∩ ZF then F̂ (x) = F (x). Since F̂ is a concave

majorant of F for any w and y satisfying a < w < x < y < b we have

F (y)− F (x)

y − x
6

F̂ (y)− F̂ (x)

y − x
6

F̂ (x)− F̂ (w)

x− w
6

F (x)− F (w)

x− w
=

F (w) − F (x)

w − x
.

Since F is differentiable at x, the squeeze theorem shows that (F̂ )′(x) exists and

equals F ′(x).

Lemma 1 shows that, on (α, β), F̂ is a line with slope (F (β) − F (α))/(β − α).

So it is differentiable on (α, β) and has one-sided derivatives at the points α and β.
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If α or β is in (a, b) ∩ ZF the derivative of F̂ exists there and, of course, coincides

with its one-sided derivative. If α = a or β = b, the endpoints of the domain of F̂ ,

then (F̂ )′ is a necessarily just a one-sided derivative. We conclude that (F̂ )′ =

(F (β) − F (α))/(β − α) on the closed interval [α, β].

Evidently, (F̂ )′ is continuous at each x ∈ Xc
F . Suppose F

′ is continuous at x ∈
(a, b) ∩ ZF . If a < w < x < y < b then any component of Zc

F that intersects (w, y)

has at least one endpoint in (w, y). It follows that (F̂ )′(w, y) ⊂ F ′(w, y). Since F ′ is

continuous at x, so is (F̂ )′. �

P r o o f of Lemma 3. To verify the first statement, one needs only to observe

that between two points in D (at which F = M) F̂ = M .

The second statement follows from a simple contradiction argument: Assume that

there are x1, x2 ∈ (a, c1), x1 < x2, such that F̂ (x1) > F̂ (x2). Then F̂ (x1) < F̂ (c1)

implies that

F̂ (x2) < F̂ (x1)
c1 − x2

c1 − x1
+ F̂ (c1)

(

1− c1 − x2

c1 − x1

)

.

But this contradicts the concavity of F̂ . Consequently, we have F̂ (x1) < F̂ (x2). An

analogous argument shows that F̂ is strictly decreasing on (c2, b). �

P r o o f of Lemma 4. The second part follows from Lemma 3, as F̂ is strictly

increasing on (a, c1) and strictly decreasing on (c2, b). This leads to contradiction as

if F (y) = F̂ (y) then F ′(y) = (F̂ )′(y) by Lemma 2 if y is an isolated point of ZF and

trivially otherwise.

To prove the first part: suppose for contradiction that F̂ (y) = F (y). Then

F̂ (y) = F (y) 6 F (x)
y − x

z − x
+ F (z)

z − y

z − x
6 F̂ (x)

y − x

z − x
+ F̂ (z)

z − y

z − x
,

which is in contradiction with the strict concavity of F̂ . �

P r o o f of Lemma 5. For x in a bridge interval J = (α, β), condition (4) yields

F (x) 6 F (α)
β − x

β − α
+ F (β)

x − α

β − α
6 M,

with equality only with F (α) = F (β) = M . Thus, J intersects C only if both

endpoints are contained in C. The conclusion follows. �

P r o o f of Lemma 6. When a = α or b = c1 = β there is nothing to prove.

Assume first, then, that α > a and choose K = [k1, k2] ∈ P such that α ∈ [k1, k2).

For any x ∈ J ∩ (α, k2), Lemmas 2 and 3 combine to give

F (x) < F̂ (x) = F (α) + (x− α)F ′(α).
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Since F lies below its tangent line, it is neither linear nor strictly convex on [k1, k2].

Thus, F must be strictly concave on K. Lemma 3 implies that F̂ is strictly

increasing on (a, c1), hence (F̂ )′(α) > 0. Lemma 2 yields that (F̂ )′ exists and

(F̂ )′(α) = F ′(α). The choice of P ensures that F is monotone on K. Hence F

is increasing on K.

A similar argument yields F strictly concave and increasing on L = [l1, l2] when

β < c1. �

P r o o f of Lemma 7. Since F ′ is decreasing on L and R, J = [c, d], with c =

max[F ′(l2), F
′(r2)] and d = min[F ′(l1), F

′(r1)].

Now,

F ′(x) =

{

P ′

L(x) = 3Ax2 + 2Bx+ C on L,

P ′

R(x) = 3Wx2 + 2Xx+ Y on R,

with F ′ decreasing on both intervals. So, the unique roots, a(y) and b(y), of

P ′

L(a(y)) = y and P ′

R(b(y)) = y, y ∈ J,

can be obtained from the formulas

a(y) = − 1

3A

[

B ±
√

3Ay +B2 − 3AC
]

and

b(y) = − 1

3W

[

X ±
√

3Wy +X2 − 3WY
]

.

We now seek y ∈ J such that

F (b(y))− F (a(y))

b(y)− a(y)
= y

or

(7) F (b(y))− yb(y)− (F (a(y))− ya(y)) = 0.

Figures 1 and Figures 2 below illustrate the geometric meaning of equation (7).

Letting

γ(y) = 3Ay +B2 − 3AC and δ(y) = 3Wy +X2 − 3WY,

equation (7) is equivalent to

(8) µ1 + µ2
√
γ + µ3

√
δ = 0,
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a(y) b(y)

PL

PR

Figure 1. For each y ∈ (PL)
′(L) ∩ (PR)

′(R) there exist exactly one a(y) ∈ L and b(y) ∈ R
such that P ′

L(a(y)) = R′

L(b(y)) = y.

a(y) b(y)

PL

PR

Figure 2. There is a y0 ∈ (PL)
′(L) ∩ (PR)

′(R) such that the corresponding a(y0) and
b(y0) referred to in the caption of Figure 1 satisfy y0 = (F (b(y0))− F (a(y0)))/
(b(y0)− a(y0)) = (PR(b(y0))− PL(a(y0)))/(b(y0)− a(y0)), whence P

′

L(a(y0)) =
P ′

R(b(y0)) = y0 = (F (b(y0))− F (a(y0)))/(b(y0)− a(y0)).

with µ1, µ2, µ3 linear functions of y, namely,

µ2(y) = − 2γ

27A2
, µ3 =

2δ

27W 2
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and

µ1(y) =
1

3

(X

W
− B

A

)

y +
(

Z +
2X2

27W 2
− Y X

3W

)

−
(

D +
2B2

27A2
− CB

3A

)

.

We claim the solution of (7) is a root of the sextic polynomial equation

(9) (µ2
1 − µ2

2γ − µ2
3δ)

2 − 4µ2
2µ

2
3γδ = 0.

Indeed, isolating µ1 in (8), then squaring both sides gives

(10) µ2
1 = µ2

2γ + µ2
3δ + 2µ2µ3

√
γ
√
δ.

Isolating the term in (10) with the square roots and squaring both sides yields (9).

�

The following remark is given to make the appearance of the sextic equation seem

more natural.

Remark 9. Suppose, for definiteness, the a(y) and b(y) referred to in the proof

of Lemma 7 are given by

a(y) =
−B

3A
+

1

3A

√

3Ay +B2 − 3AC and b(y) =
−X

3W
+

1

3W

√

3WY +X2 − 3WY .

Then, equation (7) can be written as

PR

(−X

3W
+

1

3W

√

3WY +X2 − 3WY
)

− PL

(−B

3A
+

1

3A

√

3Ay +B2 − 3AC
)

= y
(−X

3W
+

B

3A
+

1

3W

√

3WY +X2 − 3WY − 1

3A

√

3Ay +B2 − 3AC
)

.

In our original proof of Lemma 7 we rearranged the terms in this version of (7), then

squared both sides. We repeated this procedure a few times to get rid of the square

roots and so arrive at the sextic equation (9).

4. Justification of the algorithm

The purpose of this section is to prove

Theorem 10. Let F be a differentiable piecewise cubic function. Then the bridge

intervals coming out of the algorithm are precisely the component intervals of Zc
f .

For simplicity, we consider only the components in [a, c1). We begin with the

preparatory
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Lemma 11. Suppose that F is absolutely continuous on I0 = [a, b]. Let I =

(a1, b1) be a bridge interval with the right hand endpoint in an interval R on which

F is strictly concave and increasing. If J = (a2, b2) is another bridge interval such

that I ∩ J 6= ∅, b2 ∈ R and b1 < b2, then a2 < a1.

P r o o f. Let

lI(x) = F (a1) + (x − a1)
F (b1)− F (a1)

b1 − a1

and, similarly,

lJ(x) = F (a2) + (x− a2)
F (b2)− F (a2)

b2 − a2
.

Assume, if possible, a1 < a2. Then, a2 < b1, otherwise I ∩ J = ∅. So,

(11) lJ(a2) = F (a2) < lI(a2),

since I is a bridge interval. The latter also implies

F (b2) = lI(a2) + (b1 − a2)F
′(b1) +

∫ b2

b1

F ′(t) dt;

further, J being a bridge interval, we have

F (b2) = lJ(a2) + (b2 − a2)F
′(b2).

Therefore,

0 = lJ(a2)− lI(a2) + (b2 − a2)F
′(b2)− (b1 − a2)F

′(b1)−
∫ b2

b1

F ′(t) dt.

The strict concavity of F on R ensures that F ′(t) > F ′(b2) for t ∈ R, t < b2. Thus

lI(a2)− lJ (a2) = (b2 − a2)F
′(b2)− (b1 − a2)F

′(b1)−
∫ b2

b1

F ′(t) dt

< (b2 − a2)F
′(b2)− (b1 − a2)F

′(b2)−
∫ b2

b1

F ′(t) dt

= (b2 − b1)F
′(b2)−

∫ b2

b1

F ′(t) dt < 0.

Consequently,

lI(a2)− lJ(a2) < 0,

thereby contradicting (11). �
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P r o o f of Theorem 10. As a consequence of Lemma 5 one gets that the compo-

nent intervals are split into three groups: component intervals contained in [a, c1],

[c1, c2] and component intervals which are subsets of [c2, b]. We begin by observing

that component intervals of Zc
F in [a, c1] are the maximal bridge intervals there.

To the end of showing every bridge interval coming out of the algorithm is a com-

ponent interval of Zc
F , fix an iteration, say the nth, of the procedure. Let R = [r1, r2]

be that interval in Pn closest to c1. According to Lemma 11, if there are bridge in-

tervals with righthand endpoint in R, the one closest to c1 will be the bridge interval

chosen by the algorithm and, moreover, will be a maximal bridge interval.

We next prove all component intervals of Zc
F (in [a, c1)) come out of the algorithm.

Assume, if possible, M = (m1,m2) is a component not obtained by the algorithm.

Let S = [s1, s2] be that member of P such that m2 ∈ S.

Now, either S was chosen as an R in some iteration or it was not. If it was

chosen and M is not the bridge interval with righthand endpoint in S closest to c1,

then another bridge interval, N = (n1, n2), is; in particular, M and N satisfy the

hypotheses of Lemma 11, with m2 < n2. We conclude M ⊂ N , which contradicts

the maximality of M .

Finally, suppose S was not chosen. Then there is a last iteration, say the nth,

such that S ∈ Pn. Let T ∈ Pn be the interval in Pn closest to c2.

If T does not contain the righthand endpoint of a bridge interval, S, it will be

chosen in the next iteration, which cannot be. So, let N = (n1, n2) be a bridge

interval, indeed a component interval of Zc
F , having n2 ∈ T . Now, n1 cannot be to

the right of S as that would entail S ∈ Pn+1. Again, n1 cannot lie to the left of S

nor can we have n1 < m2, since either would contradict the maximality of M . The

only possibility left is n1 ∈ S, n1 > m2.

Should we have n1 > s1, M would arise from [s1, n1] in the next iteration. This

leaves the case s1 = m2 = n1. All intervals in Pn contained in [n1, c1] = [m2, c2] will

be discarded at the end of the nth step. But, according to Lemma 6, there exists

an interval in Pn+1 with m2 as its right hand endpoint, which interval will be the

one in Pn+1 closest to c1. As m2 belongs to that interval M would come out of the

(n+ 1)-st step of the algorithm contrary to our assumption. �

5. Implementation of the algorithm

In this section we discuss ways to make the algorithm more efficient. Suppose,

then, that F is a differentiable piecewise polynomial and that we are searching for

component intervals contained in [a, c1]. In a given iteration we have chosen the

interval R = [r1, r2] furthest to the right in the current version of P and we are
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about to seek in it and, in an appropriate interval L to the left, endpoints of a bridge

interval. It turns out we needn’t do this for all L.

We have developed a few simple criteria to determine those L which cannot contain

the left endpoint of a bridge interval with right endpoint in R.

One natural test is to require of L that F ′(L) ∩ F ′(R) 6= ∅.
Lemma 12 below implies that there must be an intervening interval in P between

L and R on which F is convex (or linear). We split the intervals in P into groups
such that intervals in the same group are not separated by any intervening convex

or linear interval. Then, bridge intervals cannot have endpoints in intervals from the

same group. Consequently L is a viable candidate only if it belongs to a group other

then R.

Moreover, for L to be a viable candidate it must lie to the left of the set of points

at which F equals its maximum value on [a, r1]. This is a consequence of Lemma 13

as it ensures that otherwise no bridge interval has endpoints in L and R.

Of course, there are more such criteria. We now state and proof the two Lemmas

referred to above.

Lemma 12. Let F be a differentiable piecewise polynomial function. Every

bridge interval has to contain an interval from P on which F is not strictly concave.

P r o o f. Suppose for contradiction that there is a bridge interval B = (b1, b2)

such that F is strictly concave on (b1, b2). Condition 5 then yields that F
′(b1) =

F ′(b2). At the same time, strict concavity of F yields that F
′ is decreasing on B,

which leads to contradiction. �

Lemma 13. Assume F is a cubic spline, suppose R = [r1, r2] ⊂ [a, c1] is an

interval on which F is strictly concave and increasing, with m2 ∈ R such that

F̂ (m2) = F (m2). Given s < r1 satisfying F (s) = max{F (x) : x ∈ [a, r1]} and an
m1 < r1 for whichM = (m1,m2) is a component interval of Z

c
F , one has m1 ∈ [a, s].

P r o o f. Assume, if possible, m1 ∈ (s, r1]. Then F̂ (s) > F (s) > F (m1) = F̂ (m1)

by hypothesis, and F̂ (m2) > F̂ (m1), since F̂ is increasing on [a, c1] according to

Lemma 3. Hence

F̂ (m1) 6
m2 −m1

m2 − s
F̂ (s) +

m1 − s

m2 − s
F̂ (m2)

= F̂ (s) + (m1 − s)
F̂ (m2)− F̂ (s)

m2 − s
,

which contradicts the concavity of F̂ . �
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6. Error estimates

Given an absolutely continuous functionG on a closed interval I of finite length, we

choose F to be the clamped cubic spline interpolating G at the points of a partition

̺ of I. This permits us to take advantage of the following special case of optimal

error bounds for cubic spline interpolation obtained by Hall and Meyer in [4].

Proposition 14. Suppose G ∈ C4(I) and let ̺ := [x0, . . . , xn+1] be a partition

of I. Denote by F the clamped cubic spline interpolating G at the nodes of ̺. Then

|G′(x)− F ′(x)| 6 1

24
‖G(4)‖∞ ‖̺‖3, x ∈ I,

where ‖·‖∞ denotes the usual supremum norm and

‖̺‖ := sup{|xk − xk−1| : k = 1, . . . , n}.

To estimate the error involved in approximating the least concave majorant, we

first consider the sensitivity of the level function to changes in the original function.

We recall that the level function, f◦, of f is given by f◦ = (F̂ )′, where F ′ = f .

Theorem 15. Suppose F and G are absolutely continuous functions defined on

a finite interval I. Then f = F ′, g = G′ and we denote by f◦ and g◦ the level

functions of f and g, respectively. Then F̂ and Ĝ are also absolutely continuous

on I, and

‖f◦ − g◦‖∞ = ‖(F̂ )′ − (Ĝ)′‖∞ 6 ‖f − g‖∞.

Here F̂ and Ĝ denote the least concave majorants of F and G, respectively, and

f = F ′, g = G′, while f◦ = (F̂ )′, and g◦ = (Ĝ)′.

P r o o f. Set

ZF = {x ∈ I : F (x) = F̂ (x)}, ZG = {x ∈ I : G(x) = Ĝ(x)}

and observe that f◦ = f almost everywhere on ZF and g◦ = g almost everywhere

on ZG. By Lemma 1, F̂ is continuous and is of constant slope on each component

of the complement of ZF . It follows that F̂ is absolutely continuous on I. Since Ĝ

is continuous and is of constant slope on each component of the complement of ZG,

Ĝ is absolutely continuous on I as well. We consider several cases to establish that

|f◦(x)− g◦(x)| 6 ‖f − g‖∞ for almost every x ∈ I.
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Case 1 : x ∈ ZF and x ∈ ZG. For almost every such x,

|f◦(x) − g◦(x)| = |f(x)− g(x)| 6 ‖f − g‖∞.

Case 2 : x ∈ ZG but x /∈ ZF . Then x is in the interior of some component interval

[a, b] of F . By Lemma 1, F̂ (a) = F (a) and F̂ (b) = F (b). Since F̂ has constant slope

on [a, b],
∫ x

a

f = F (x) − F (a) 6 F̂ (x)− F̂ (a) = (x − a)f◦(x)

and
∫ b

x

f = F (b)− F (x) > F̂ (b)− F̂ (x) = (b− x)f◦(x).

Also, since Ĝ(x) = G(x) and g◦ is non-increasing,

∫ x

a

g = G(x)−G(a) > Ĝ(x) − Ĝ(a) =

∫ x

a

g◦ > (x− a)g◦(x)

and
∫ b

x

g = G(b)−G(x) 6 Ĝ(b)− Ĝ(x) =

∫ b

x

g◦ 6 (b− x)g◦(x).

Combining these four inequalities, we obtain

−‖f − g‖∞ 6
1

x− a

∫ x

a

(f − g) 6 f◦(x) − g◦(x)

6
1

b− x

∫ b

x

(f − g) 6 ‖f − g‖∞.

Thus, |f◦(x) − g◦(x)| 6 ‖f − g‖∞.
Case 3 : x ∈ ZF but x /∈ ZG. Just reverse the roles of F and G in Case 2.

Case 4 : x /∈ ZF and x /∈ ZG. Suppose without loss of generality that g
◦(x) 6

f◦(x). Let a be the left-hand endpoint of the component interval of G containing x,

and let b be the right-hand endpoint of the component interval of F containing x.

By Lemma 1, Ĝ(a) = G(a) and F̂ (b) = F (b). Since g◦ is constant on (a, x) and

non-increasing on (x, b) we have

(b − a)g◦(x) >

∫ b

a

g◦ = Ĝ(b)− Ĝ(a) > G(b)−G(a) =

∫ b

a

g.

Since f◦ is non-increasing on (a, x) and constant on (x, b), we have

(b− a)f◦(x) 6

∫ b

a

f◦ = F̂ (b)− F̂ (a) 6 F (b)− F (a) =

∫ b

a

f.
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Combining these, we have

f◦(x) − g◦(x) 6
1

b− a

∫ b

a

(f − g) 6 ‖f − g‖∞.

This completes the proof. �

The last result can be combined with Proposition 14 to give the desired error

estimates.

Theorem 16. Let ̺ be a partition of the interval [a, b] and suppose G ∈ C4([a, b]).

Let F be the clamped cubic spline interpolating G on ̺. Then

‖f◦ − g◦‖∞ 6 ‖f − g‖∞ 6
1

24
‖G(4)‖∞ ‖̺‖3

and for each x ∈ [a, b],

|F̂ (x) − Ĝ(x)| 6 min{x− a, b− x}
24

‖G(4)‖∞ ‖̺‖3.

Here F̂ and Ĝ denote the least concave majorants of F and G, respectively, and

f = F ′, g = G′; f◦ = (F̂ )′, and g◦ = (Ĝ)′.

P r o o f. The first inequality is just Theorem 15 together with the result from [4].

For the second, observe that by Lemma 1, F̂ (a) = F (a) and Ĝ(a) = G(a), and since

a is in the partition ̺, G(a) = F (a). Thus, F̂ (a) = G(a). Since both F̂ and Ĝ are

concave and hence absolutely continuous,

|F̂ (x)− Ĝ(x)| =
∣

∣

∣

∣

∫ x

a

f◦(x)− g◦(x)

∣

∣

∣

∣

6

∫ x

a

‖f◦ − g◦‖∞ 6
x− a

24
‖G(4)‖∞ ‖̺‖3.

A similar argument, using integration on [x,B], shows that

|F̂ (x) − Ĝ(x)| 6 b− x

24
‖G(4)‖∞ ‖̺‖3

and completes the proof. �
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7. Examples

We present here two examples involving our algorithm.

Example 1. With our first example we illustrate the flow of the algorithm. Let

s be the continuously differentiable, piecewise cubic function defined on [0, 10] by

s(x) = sn(x) on [n− 1, n], n = 1, 2, . . . , 10,

where

s1(x) = −1.1x3 + 1.1x2 + x+ 1, s2(x) = 1.3x3 − 5.3x2 + 6.6x− 0.6,

s3(x) = −0.9x3 + 6x2 − 12.2x+ 9.4, s4(x) = −1.5x3 + 16x2 − 56x+ 67,

s5(x) = 3, s6(x) = 0.5x3 − 8.75x2 + 50x− 90.75,

s7(x) = 2 + (x− 6.5)2, s8(x) = − .5x3 + 10.75x2 − 76x+ 179,

s9(x) = x3 − 25.5x2 + 216x− 605, s10(x) = 0.6x3 − 16.6x2 + 153x− 467.3.

The graph of s is given in Figure 3.

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10

s

Figure 3. Graph of s with marked points where prescribed polynomials change.

To begin, s attains its maximum value of 3 on D = [4, 5] ∪ {8}. So, ŝ(x) = 3 on

C = [4, 8].

Since s < 3 on (5, 8) it will be a component interval. We next seek the component

intervals in [0, 4]. By adding to the partition those points in [0, 4] for which s′ or s′′

changes sign we get a refined partition where, on each subinterval, s is monotone and
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either strictly convex or strictly concave. The first derivative of s changes sign at

0.97687, 1.75204, 2.8701 and 3.1̄. The second derivative changes sign at 0.3̄, 1.35897,

2.2̄ and 3.5̄. We are interested in subintervals of [0, 4] where s is strictly concave and

increasing. These are I1 = [0.3̄, 0.97687], I2 = [2.2̄, 2.87011] and I3 = [3.5̄, 4]. Thus,

P0 = {I1, I2, I3}. Clearly, I3 is the interval in P0 furthest to the right.

There are no bridge intervals with left endpoint 0 and right endpoint in I3.

Indeed, there are two candidate intervals of the form [a, r], r ∈ I3, such that

(12) s′(r) =
s(r) − s(0)

r
=

s(r) − 1

r
,

but, for neither candidate does one have (3), that is,

s(x) < x
[s(r) − 1

r

]

, x ∈ (0, r).

This can be seen in Figure 4.

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10

s

Figure 4. The two intervals with left-hand endpoint being 0 which satisfy the first con-
dition (12) are [0, 3.24826] and [0, 3.84606]. But neither of them can meet the
second condition from the definition of a bridge interval.

Again, there are two intervals with right endpoint in I3 and left endpoint in I1 for

which (1) and (2) holds. These are

I1,1 = (0.89359, 3.90772) and I1,2 = (0.92390, 3.16878).

However, only on I1,1 is (3) satisfied. The situation is depicted in Figure 5.
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1.0

1.5

2.0

2.5

3.0

2 4 6 8 10

s

Figure 5. This figure pictures the bridge interval joining intervals I1 and I3 and the other
candidate.

Since no interval with left endpoint in I2 can have the left endpoint smaller than

the left endpoint of I1,1, the interval I1,1 is the desired component interval. This

completes the first iteration of our algorithm.

To form P1 for the second iteration we, of course, discard I3. We also discard I2,

since it is contained int I1,1. This leaves in P1 only interval I
′

1, as (0.3̄, 0.89359) =

I1 \ I1,1.
There is one bridge interval with right endpoint in I ′1 and left endpoint 0. It is

(0, 0.5), therefore (0, 0.5) is a component interval. We have thus found all component

intervals in [0, 4].

We now seek component intervals contained in [8, 10]. To begin we must ad to

the partition points 8,9,10 the critical point 8.5 and the inflection points 9.2̄ and 9.4̄.

It is then found that the intervals on which s is strictly concave and increasing are

J1 = [8, 8.5] and J2 = [9, 9.2̄].

The interval [8.05353, 10] is a bridge interval with left endpoint in J1 and right

endpoint 10.

The unique component interval is [8, 10]. See Figure 6.

The graph of ŝ appears in Figure 7.

Example 2. Consider the trimodal density function discussed in [6], namely,

f(x) = 0.5ϕ(x− 3) + 3ϕ(10(x− 3.8)) + 2ϕ(10(x− 4.2)),

in which

ϕ(x) =
1√
2π

e−x2/2.
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Figure 6. This figure shows the component interval (8.05353, 10).

1.0

1.5

2.0

2.5

3.0

2 4 6 8 10

s

ŝ

Figure 7. The least concave majorant of s is linear interpolation of s from the end-points
of a component interval and agrees with s elsewhere.

We wish to approximate the least concave majorant of F (x) =
∫ x

0
f(y) dy on [0, 6].

Now, ‖F (4)‖∞ 6 700, so to ensure that the clamped cubic spline SF approximating F

on [0, 6] satisfies |f◦(x)−(S′

F )
◦(x)| 6 0.001 on [0, 6], we solve the equation 700

24 ‖̺‖3 =

0.001 to obtain ‖̺‖ = 0.03249. Dividing [0, 6] into 85 > 6
0.03249 equal subintervals, we

apply the algorithm to identify the component intervals of ZC
Sf
. The approximation

∫ x

0 (Ŝ
′

f )
◦ to F̂ (x) is accurate to within 0.003.

Figure 8 shows the graph of F (y) and the approximation to its least concave

majorant, ŜF .
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1 2 3 4 5 6

0.1

0.2

0.3

0.4
F

F̂

Figure 8. The trimodal density function F with its least concave majorant F̂ . The bridge
intervals are (0, 2.42575) and (2.48781, 3.23693).
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