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Linear extenders and the Axiom of Choice

Marianne Morillon

Abstract. In set theory without the Axiom of Choice ZF, we prove that for every
commutative field K, the following statement DK: “On every non null K-vector
space, there exists a non null linear form” implies the existence of a “K-linear
extender” on every vector subspace of a K-vector space. This solves a question
raised in Morillon M., Linear forms and axioms of choice, Comment. Math.
Univ. Carolin. 50 (2009), no. 3, 421-431. In the second part of the paper, we
generalize our results in the case of spherically complete ultrametric valued fields,
and show that Ingleton’s statement is equivalent to the existence of “isometric
linear extenders”.

Keywords: Axiom of Choice; extension of linear forms; non-Archimedean fields;
Ingleton’s theorem

Classification: Primary 03E25; Secondary 46S10

1. Introduction

We work in ZF, set theory without the Axiom of Choice (AC). Given a com-
mutative field K and two K-vector spaces E, F , we denote by LK(E, F ) (or
L(E, F )) the set of K-linear mappings T : E → F . Thus, L(E, F ) is a vector
subspace of the product vector space FE . A linear form on the K-vector space
E is a K-linear mapping f : E → K; we denote by E∗ the algebraic dual of E,
i.e. the vector space L(E, K). Given two K-vector spaces E1 and E2, and a linear
mapping T : E1 → E2, we denote by T t : E∗

2 → E∗
1 the mapping associating to

every g ∈ E∗
2 the linear mapping g ◦T : E1 → K. The mapping T t is K-linear and

is called the transposed mapping of T . Given a vector subspace F of the K-vector
space E, a linear extender for F in E is a linear mapping T : F ∗ → E∗ associat-
ing to each linear form f ∈ F ∗ a linear form f̃ : E → K extending f . If G is a
complementary subspace of F in E (i.e. F + G = E and F ∩G = {0}), which we
denote by F ⊕ G = E, if p : E → F is the linear mapping fixing every element of
F and which is null on G, then the transposed mapping pt : F ∗ → E∗ associating
to every f ∈ F ∗ the linear form f ◦ p : E → K is a linear extender for F in E.
However, given a commutative field K, the existence of a complementary subspace
of every subspace of a K-vector space implies AC in ZF. More precisely, denoting
by ZFA (see [7, p. 44]) the set theory ZF with the axiom of extensionality weak-
ened to allow the existence of atoms, the existence of a complementary subspace
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for every subspace of a K-vector space implies, in ZFA (see [2, Lemma 2]), the
following Multiple Choice axiom MC (see [7, p. 133] and form 37 of [4, p. 35]):
“For every infinite family (Xi)i∈I of nonempty sets, there exists a family (Fi)i∈I

of nonempty finite sets such that for each i ∈ I, Fi ⊆ Xi.” It is known that MC

is equivalent to AC in ZF, but MC does not imply AC in ZFA.
Given a commutative field K, we consider the following consequences of the

Axiom of Choice.

• BEK: “Every linearly independent subset of a vector space E over K is

included in a basis of E.”

• BK: “Every vector space over K has a basis.”

• LEK: (Linear Extender) “For every subspace F of a K-vector space E,

there exists a linear mapping T : F ∗ → E∗ associating to every f ∈ F ∗ a

linear mapping T (f) : E → K extending f .

• DK: “For every non null K-vector space E there exists a non null linear

form f : E → K.

In ZF, BEK ⇒ BK ⇒ LEK ⇒ DK (see [9, Proposition 4]). In this paper, we show
(see Theorem 2.5 in Section 2) that for each commutative field K, DK implies LEK,
and this solves Question 2 of [9]. In Section 3 we provide several other statements
which are equivalent to DK and we introduce the following consequence wDK

of DK: “For every K-vector space E and every a ∈ E\{0}, there exists an additive

mapping f : E → K such that f(a) = 1.”

Question 1.1. Given a commutative field K, does the statement wDK imply DK?

Blass ([1]) has shown that the statement ∀KBK (form 66 of [4]: “For every
commutative field, every K-vector space has a basis”) implies MC in ZFA (and
thus implies AC in ZF), but it is an open question to know whether there ex-
ists a commutative field K such that BK implies AC. In ZFA, the statement
MC implies DK for every commutative field K with null characteristic (see [9,
Proposition 1]). Thus in ZFA, the statement “For every commutative field K

with null characteristic, DK” does not imply AC. Denoting by BPI the Boolean

prime ideal : “Every non null boolean algebra has an ultrafilter” (see form 14 in
[4]), Howard and Tachtsis (see [5, Theorem 3.14]) have shown that for every finite
field K, BPI implies DK. Since BPI 6⇒ AC, the statement “For every finite
field K, DK” does not imply AC. They also have shown (see [5, Corollary 4.9])
that in ZFA, ∀KDK (“For every commutative field, for every non null K-vector
space E, there exists a K-linear form f : E → K”) does not imply ∀KBK, however,
the following questions seem to be open in ZF:

Question 1.2. Does the statement ∀KDK imply AC in ZF? Is there a (neces-
sarily infinite) commutative field K such that DK implies AC in ZF?

In Section 4, we extend Proposition 1 of Section 2 to the case of spherically
complete ultrametric valued fields (see Lemma 4.9) and prove that Ingleton’s
statement, which is a “Hahn-Banach type” result for ultrametric semi-normed
spaces over spherically complete ultrametric valued fields K, follows from MC
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when K has a null characteristic. In Section 5, we prove that Ingleton’s statement
is equivalent to the existence of “isometric linear extenders”.

2. LEK and DK are equivalent

2.1 Reduced powers of a commutative field K. Given a set E and a filter F
on a set I, we denote by EF the quotient of the set EI by the equivalence relation
=F on EI satisfying for every x = (xi)i∈I and y = (yi)i∈I ∈ EI , x =F y if and
only if {i ∈ I : xi = yi} ∈ F . If L is a first order language and if E carries an
L-structure, then the quotient set EF also carries a quotient L-structure: this L-
structure is a reduced power of the L-structure E (see [3, Section 9.4]). Denoting
by δ : E → EI the diagonal mapping associating to each x ∈ E the constant
family i 7→ x, and denoting by canF : EI → EF the canonical quotient mapping,
then we denote by jF : E → EF the one-to-one mapping canF ◦δ. Notice that jF
is a morphism of L-structures.

Example 2.1 (The reduced power KF of a field K). Given a commutative field
K and a filter F on a set I, we consider the unitary K-algebra KI , then the
quotient K-algebra KF is the quotient of the K-algebra KI by the following ideal
nulF of F-almost everywhere null elements of KI : {x = (xi)i∈I ∈ KI : {i ∈ I :
xi = 0} ∈ F}. The mapping jF : K → KF is a one-to-one unitary morphism of
K-algebras, thus K can be viewed as the one-dimensional unitary K-subalgebra
of the K-algebra KF . Notice that the K-algebra KF is a field if and only if F is
an ultrafilter.

Notation 2.2. For every set E, we denote by fin(E) the set of finite subsets
of E, and we denote by fin∗(E) the set of nonempty finite subsets of E.

Given two sets E and I, a binary relation R ⊆ E × I is said to be concurrent

(see [8]) if for every G ∈ fin∗(E), the set R[G] :=
⋂

x∈G R(x) is nonempty; in
this case, {R(x) : x ∈ I} satisfies the finite intersection property, and we denote
by FR the filter on I generated by the sets R(x), x ∈ E.

2.2 DK implies linear extenders.

Remark 2.3. It is known (see [9, Theorem 2]) that DK is equivalent to the follow-
ing statement: “For every vector subspace of a K-vector space E and every linear
mapping f : F → K, there exists a K-linear mapping f : E → K extending f .”

Proposition 2.4. Given a commutative field K, the following statements are

equivalent.

(i) DK.

(ii) For every filter F on a set I, the linear embedding jF : K → KF has a

K-linear retraction r : KF → K.

Proof: ⇒ Let f : jF [K] → K be the mapping x 7→ j−1
F (x). Then f is K-linear

and jF [K] is a vector subspace of the K-vector space KF . Using Remark 2.3, let
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f̃ : KF → K be a K-linear mapping extending f ; then f̃ is a K-linear retraction
of jF : K → KF .

⇐ Let E be a non null K-vector space. Let a be a non-null element of E. Using
Lemma 1 in [9], there exists a filter F on the set I = KE , and a K-linear mapping
g : E → KF such that g(a) = jF(1). Using (ii), let r : KF → K be a K-linear
retraction of the linear embedding jF : K → KF . It follows that f = r◦g : E → K

is a K-linear mapping such that f(a) = 1. �

Theorem 2.5. DK ⇔ LEK.

Proof: The implication LEK ⇒ DK is trivial. Given some vector subspace F
of a vector space E, let I be the set of mappings Φ : F ∗ → E∗ and let R be
the binary relation on fin(F ∗) × I such that for every Z ∈ fin(F ∗) and every
Φ ∈ I, R(Z, Φ) if and only if for every f ∈ Z, the linear form Φ(f) extends
f and Φ is K-linear on spanF∗(Z). Then the binary relation R is concurrent:
given m finite subsets Z1, . . . , Zm ∈ fin(F ∗), let B = {f1, . . . , fp} be a (finite)
basis of the K-vector subspace of F ∗ generated by the finite set

⋃
1≤i≤m Zi; then

using DK (see Remark 2.3), let f̃1, . . . , f̃p be linear forms on E extending f1,
. . . , fp; let L : span({f1, . . . , fp}) → E∗ be the linear mapping such that for each

i ∈ {1, . . . , p}, L(fi) = f̃i, and let Φ : F ∗ → E∗ be some mapping extending
L (for example, define Φ(f) = 0 for every f ∈ F ∗\ span({f1, . . . , fp})). Then
for every i ∈ {1, . . . , m}, R(Zi, Φ). Consider the filter F on I generated by
{R[Z]; Z ∈ fin(F ∗)}. Then the mapping Φ : F ∗ → L(E, KF) associating to each
f ∈ F ∗ the K-linear mapping Φ(f) : E → KF associating to each x ∈ E the class
of (f(x))f∈I in KF is linear, and for every f ∈ F ∗, Φ(f) : E → KF extends f .
Using DK, there exists (see Proposition 2.4) a K-linear retraction r : KF → K of
jF : K → KF . Let T : F ∗ → E∗ be the mapping f 7→ r◦Φ(f). Then the mapping
T : F ∗ → E∗ is a linear extender for F in E. �

Remark 2.6. Notice that the axiom LEK is “multiple”: given a family (Ei)i∈I

of K-vector spaces and a family (Fi)i∈I such that for each i ∈ I, Fi is a vector
subspace of Ei, then there exists a family (Ti)i∈I such that for each i ∈ I, Ti :
F ∗

i → E∗
i is a linear extender for Fi in Ei: apply LEK to the vector subspace⊕

i∈I Fi of
⊕

i∈I Ei.

Corollary 2.7. Given a commutative field K, then DK implies (and is equivalent

to) the following statement: for every K-vector space E, for every vector subspace

F of E, denoting by can : F → E the canonical mapping, then the double

transposed mapping cantt : F ∗∗ → E∗∗ is one-to-one and has a K-linear retraction

r : E∗∗ → F ∗∗.

Proof: The mapping cantt : F ∗∗ → E∗∗ associates to every Φ ∈ F ∗∗ the map-
ping Φ : E∗ → K such that for every g ∈ E∗, Φ(g) = Φ(g↾F ). Given some
Φ ∈ ker(cantt), then, for every g ∈ E∗, (cantt(Φ))(g) = 0 i.e. Φ(g↾F ) = 0;
using DK, for every f ∈ F ∗ there exists some g ∈ E∗ such that f = g↾F , thus for
every f ∈ F ∗, Φ(f) = 0, so Φ = 0. It follows that cantt : F ∗∗ → E∗∗ is one-to-one.
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Using the equivalent form LEK of DK, let T : F ∗ → E∗ be a K-linear extender
i.e. a K-linear mapping such that for each f ∈ F ∗, T (f) : E → K extends f .
Then the transposed mapping T t : E∗∗ → F ∗∗ is K-linear and for every Φ ∈ F ∗∗,
T t(cantt(Φ)) = cantt(Φ) ◦ T = Φ. �

It follows that DK implies (and is equivalent to) the following statement: “For
every vector space E, for every vector subspace F of E, the canonical linear
mapping F ∗∗ → E∗∗ is one-to-one and there exists a K-vector space G such that
G is a complement of F ∗∗ in E∗∗.

Remark 2.8. Corollary 2.7 is equivalent to its “multiple form”: given a family
(Ei)i∈I of K-vector spaces and a family (Fi)i∈I such that for each i ∈ I, Fi is a
vector subspace of Ei, then for each i ∈ I, the canonical mapping cani : F ∗∗

i →
E∗∗

i is one-to-one and there exists a family (ri)i∈I such that for each i ∈ I,
ri : E∗∗

i → F ∗∗
i is a K-linear retraction of cani : F ∗∗

i → E∗∗
i .

3. Other statements equivalent to DK

3.1 K-linearity and additive retractions.

Proposition 3.1. Let K be a commutative field and let a be a non-null element

of a K-vector space E. Let ja : K →֒ E be the mapping λ 7→ λ.a. Given any

additive mapping r : E → K such that r(a) = 1, then r is K-linear if and only if

r is a retraction of the mapping ja : K →֒ E.

Proof: The direct implication is easy to prove. We show the converse statement.
Assuming that r : E → K is an additive retraction of ja, let us check that r is
K-linear. Since r is a retraction of ja, ker(r)∩K.a = {0}. Thus ker(r)⊕K.a = E is
the direct sum of groups with the unique decomposition x = (x− r(x).a)+ r(x).a
for every x ∈ E. Therefore, ker(r) is a maximal subgroup H of E such that
H ∩ K.a = {0}. Also notice that, from ker(r) ∩ K.a = {0}, it follows that
K. ker(r) ∩ K.a = {0}, thus K. ker(r) = ker(r). We now check that the additive
mapping r is K-linear: given z ∈ E, then z = x⊕ t.a where x ∈ ker(r) and t ∈ K;
thus for every λ ∈ K, r(λ.z) = r(λ.x ⊕ λt.a) = r(λ.x) + r(λt.a) = r(λt.a) = λt =
λ.r(z). �

3.2 Additivity statements equivalent to DK. Given a commutative field
(K, +,×, 0, 1), we consider the following statements:

AK: “For every K-vector space E and every subgroup F of (E, +), for every

additive mapping f : F → (K, +), there exists an additive mapping f̃ : E → K

extending f .

A′
K: “For every K-vector space E and every vector subspace F of E, for every

K-linear mapping f : F → K, there exists an additive mapping f̃ : E → K

extending f .

A′′
K: “For every K-vector space E and every a ∈ E\{0}, there exists an additive

mapping f : E → K such that for every λ ∈ K, f(λ.a) = λ.”

Proposition 3.2. For every commutative field K, AK ⇔ A′
K ⇔ A′′

K ⇔ DK.
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Proof: The implications AK ⇒ A′
K and A′

K ⇒ A′′
K are trivial. We prove A′′

K ⇒
DK. In view of Proposition 2.4, we prove that for every filter F on a set I,
the canonical mapping jF : K →֒ KF := KI/F has a K-linear retraction. Let

f : K → K be the identity mapping. Using A′′
K, let f̃ : KF → K be an additive

mapping extending f . Using Proposition 3.1, f̃ is K-linear. It follows that f̃ is a
K-linear retraction of jF : K →֒ KF .

DK ⇒ AK. Let E be a K-vector space, let F be a subgroup of the additive
group (E, +), and let f : F → (K, +) be an additive mapping. Using a concurrent
relation (the proof is similar to the proof of Lemma 1 in [9]), let F be a filter
on the set I = KE and let ι : E → KF be an additive mapping extending f .
Using DK, let r : KF → K be an additive retraction of jF : K → KF . Then
f̃ := r ◦ ι : E → K is additive and extends f . �

3.3 A consequence of DK.

Proposition 3.3. Given a commutative field K, the following statements are

equivalent.

(i) wDK: “For every K-vector space E and every a ∈ E\{0}, there exists an
additive mapping f : E → K such that f(a) = 1.”

(ii) “For every non null K-vector space E, there exists a non null additive map-
ping f : E → K.”

(iii) “For every filter F on a set I, there exists a non null additive mapping
f : KF → K.”

Proof: (i) ⇒ (ii) and (ii) ⇒ (iii) are easy. We prove (iii) ⇒ (i). Given a non
null element a of a K-vector space E, let F be a filter on a set I and g : E → KF

be a K-linear mapping such that g(a) = 1. Using (iii), let r : KF → K be a non
null additive mapping. Let α ∈ KF such that r(α) 6= 0. Let mα : KF → KF be
the additive mapping x 7→ αx. Then g1 := r ◦ mα ◦ g : E → K is additive; let
f := 1

r(α) .g1 : E → K; then f is additive and f(a) = 1. �

Remark 3.4. Given a commutative field K with prime field k, then Dk im-
plies wDK.

Proof: Given a K-vector space E, a mapping f : E → K is additive if and only
if f is k-linear. �

Question 3.5. Given a commutative field K with null characteristic, does DQ

imply DK?

Question 3.6. Given a prime number p and a commutative field K with cha-
racteristic p, and denoting by Fp the finite field with p elements, does DFp

im-
ply DK? Does BPI (which implies DFp

) imply DK?
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4. Ingleton’s statement for ultrametric valued fields

4.1 Semi-norms on vector spaces over a valued field.

4.1.1 Pseudo metric spaces. Given a set X , a pseudo-metric on X is a map-
ping d : X × X → R+ such that for every x, y, z ∈ X , d(x, y) = d(y, x) and
d(x, z) ≤ d(x, y) + d(y, z). If d satisfies the extra property (d(x, y) = 0 ⇒ x = y),
then d is a metric on X . A pseudo-metric d on X is said to be ultrametric if for
every x, y, z ∈ X , d(x, z) ≤ max(d(x, y), d(y, z)).

Given a pseudo-metric space (X, d), for every a ∈ X and every r ∈ R+, we
denote by Bs(a, r) the “strict” ball {x ∈ X : d(x, a) < r} and we denote by B(a, r)
the “large” ball {x ∈ X : d(x, a) ≤ r}. Notice that large balls of a pseudo-metric
space are nonempty. A pseudo-metric space (X, d) is spherically complete if every
chain (i.e. set which is linearly ordered for the inclusion) of large balls of X has
a nonempty intersection.

Example 4.1. Given a nonempty set X , the discrete metric ddisc on X , associating
to each (x, y) ∈ X × X the real number 1 if x 6= y and 0 else is ultrametric and
the associated metric space (X, ddisc) is spherically complete since large balls for
this metric are singletons and the whole space X .

4.1.2 Group semi-norms. Given a commutative group (G, +, 0), a group semi-

norm on G is a mapping N : G → R+ which is sub-additive (for every x, y ∈ G,
N(x + y) ≤ N(x) + N(y)) and symmetric (for every x ∈ G, N(−x) = N(x))
and such that N(0) = 0. If for every x ∈ G, (N(x) = 0 ⇒ x = 0), then N is a
norm. Given a group semi-norm N on an abelian group (G, +, 0), the mapping
d : G × G → R+ associating to each (x, y) ∈ G × G the real number N(x − y)
is a pseudo-metric on G. Moreover, if N is a norm, then d is a metric on G.
The semi-norm N is said to be ultrametric if the pseudo-metric dN is ultrametric,
which is equivalent to say that for every x, y ∈ G, N(x + y) ≤ max(N(x), N(y)).
The topology on G associated to the pseudo-metric dN is a group topology on G,
which is Hausdorff if and only if N is a norm.

4.1.3 Absolute values on a commutative field. Given a commutative uni-
tary ring (R, +,×, 0, 1), a ring semi-norm (see [14, p. 137]) on R is a group semi-
norm on (R, +, 0) which is sub-multiplicative: for every x, y ∈ R, N(x × y) ≤
N(x)N(y); if a ring semi-norm N : R → R+ is non null, then N(1) ≥ 1. If R
is a commutative field and if N is a ring semi-norm on R which is multiplicative
(for every x, y ∈ R, N(x × y) = N(x)N(y)) and non null, then N(1) = 1, N is a
norm and N is called an absolute value on the commutative field R, and (R, N)
is a valued field .

Example 4.2. Given a commutative field K, the mapping |.|disc : K → R+ associ-
ating to each x ∈ K the real number 1 if x 6= 0 and 0 else is an absolute value on
K, which is called the trivial absolute value on K. The metric associated to this
absolute value is the discrete metric ddisc on K, thus, the discrete field (K, |.|disc)
is spherically complete.
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4.1.4 Vector semi-norms on vector spaces over a valued field. Given
a valued field (K, |.|) and a K-vector space E, a vector semi-norm on E (see [14,
p. 210]) is a group semi-norm p : E → R+ on the abelian group (E, +) such that
for every λ ∈ K and every x ∈ E, p(λ.x) = |λ|p(x); if (K, |.|) is ultrametric,
then the semi-norm p : E → R+ is said to be ultrametric if and only if for every
x, y ∈ E, p(x + y) ≤ max(p(x), p(y)). Given a K-algebra (A, +,×, 0, 1, λ.), an
algebra semi-norm on A is a ring semi-norm on the ring A which is also a vector
semi-norm on the K-vector space A.

4.2 Ingleton’s statement for spherically complete ultrametric valued

fields. Given a valued field (K, |.|), a set E and a mapping f : E → K, we denote
by |f | : E → R+ the mapping x 7→ |f(x)|. We endow RE with the product order,
thus given mappings p : E → R and q : E → R, p ≤ q means that for every x ∈ E,
p(x) ≤ q(x). In particular, |f | ≤ p means that for every x ∈ E, |f(x)| ≤ p(x).

Lemma (Ingleton, [6]). Let (K, |.|) be a ultrametric spherically complete valued

field, let E be a K-vector space and let p : E → R be an ultrametric vector semi-

norm. Let F be a vector subspace of E and let f : F → K be a linear mapping

such that |f | ≤ p. Then, for every a ∈ E\F , there exists a linear mapping

f̃ : F ⊕ Ka → K extending f such that f̃ ≤ p↾F⊕Ka.

Proof: Ingleton’s proof of this lemma holds in ZF. For sake of completeness,
we give a proof of this lemma. We search for some α ∈ K such that:

(1) ∀z ∈ F ∀λ ∈ K |f(z) + λ.α| ≤ p(z + λ.a).

Given some α ∈ K, and denoting by K∗ the set K\{0}, condition (1) is equivalent
to:

∀z ∈ F ∀λ ∈ K∗ |λ.(f(
z

λ
) + α)| ≤ p(λ(

z

λ
+ a))

∀z ∈ F ∀λ ∈ K∗ |λ|.|f(
z

λ
) + α| ≤ |λ|.p(

z

λ
+ a)

∀z ∈ F ∀λ ∈ K∗ |f(
z

λ
) + α| ≤ p(

z

λ
+ a)

∀z′ ∈ F |f(z′) + α| ≤ p(z′ + a)

∀z ∈ F |f(z) − α| ≤ p(z − a)

Let Ba be the set of large balls B(f(z), p(z − a)) for z ∈ F . The element α ∈
K satisfies (1) if and only if α ∈ ∩Ba. Given two elements z1, z2 ∈ F , then
|f(z1) − f(z2)| = |f(z1 − z2)| ≤ p(z1 − z2) ≤ max(p(z1 − a), p(z2 − a)) since p is
ultrametric. If p(z1 − a) ≤ p(z2 − a), it follows that f(z1) ∈ B(f(z2), p(z2 − a))
thus, since (K, |.|) is ultrametric, B(f(z1), p(z2 − a)) ⊆ B(f(z2), p(z2 − a)), thus
B(f(z1), p(z1 − a)) ⊆ B(f(z2), p(z2 − a)), so the set of large balls Ba is a chain.
Since (K, |.|) is spherically complete, it follows that

⋂
Ba is nonempty. �

Given a spherically complete ultrametric valued field (K, |.|), we now consider
Ingleton’s statement:
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I(K,|.|): “For every K-vector space E endowed with an ultrametric vector semi-

norm p : E → R+, for every vector subspace F of E and every linear mapping

f : F → K such that |f | ≤ p↾F , there exists a linear mapping f̃ : E → K extending

f such that |f̃ | ≤ p.”

Corollary (Ingleton, [6]). For every spherically complete ultrametric valued field

(K, |.|), AC ⇒ I(K,|.|).

Proof: Use Zorn’s lemma and the previous lemma. �

Remark 4.3. Notice that in ZF, given a spherically complete ultrametric valued
field (K, |.|) and a K-vector space E which has a well-orderable basis (for example
a finitely generated K-vector space), then every ultrametric vector semi-norm
p : E → R+ satisfies the Ingleton’s statement.

4.3 MC implies Ingleton’s statement for null characteristic fields.

Proposition 4.4. Given a spherically complete ultrametric valued field (K, |.|)
with null characteristic, MC implies I(K,|.|). It follows that in ZFA, the full

Ingleton statement restricted to null characteristic ultrametric valued fields does

not imply AC.

Proof: Assume that E is a K-vector space endowed with an ultrametric semi-
norm p : E → R+, and assume that F is a vector subspace of E and that
f : F → K is a linear mapping such that |f | ≤ p. Using MC, there exists an
ordinal α and some partition (Fi)i∈α in finite sets of E\F . This implies that there
is an ordinal β and a strictly increasing family (Vi)i∈β of vector subspaces of E
such that V0 = F , for every i ∈ β such that i+1 ∈ β, Vi+1/Vi is finite-dimensional,
and for every non null limit ordinal i ∈ β, Vi =

⋃
j<i Vj . Let Z be the set of 3-

tuples (V, W, l) such that V, W are subspaces of E satisfying V ⊆ W , W/V is
finite-dimensional and l : V → K is a linear mapping satisfying |l| ≤ p. For each
(V, W, l) ∈ Z, using the previous lemma (which holds in ZFA), the set A(V,W,l)

of linear mappings l̃ : W → K extending l and satisfying |l̃| ≤ p is non-empty;
using MC, there is a mapping associating to every i = (V, W, l) ∈ Z a nonempty
finite subset Bi of A(V,W,l). Then, for every i ∈ Z, define Φ(i) := 1

|Bi|

∑
u∈Bi

u

(here we use the fact that the characteristic of K is null). Using the choice
function Φ, we define by transfinite recursion a family (fi)i∈β such that for each
i ∈ β, fi : Vi → K is linear, fi extends f , |fi| ≤ p, and for every i < j ∈ β,

fj extends fi. Let f̃ :=
⋃

i∈β fi. Then f̃ : E → K is linear, f̃ extends f and

|f̃ | ≤ p. �

Question 4.5. Given a spherically complete ultrametric valued field (K, |.|), does
BK imply I(K,|.|)? Does BEK imply I(K,|.|)?

Question 4.6 (van Rooij, see [13]). Does the full Ingleton statement (i.e. I(K,|.|)

for every spherically complete ultrametric valued field (K, |.|)) imply AC?



428 Morillon M.

Remark 4.7. If a commutative field K is endowed with the trivial absolute value
|.|disc, then I(K,|.|disc) is the statement DK, thus the “full Ingleton statement”
implies DK for every commutative field K.

Proof: I(K,|.|disc) ⇒ DK. Given a K-vector space E and a non null vector a ∈ E,
consider the trivial ultrametric vector semi-norm p : E → R+ defined by p(0E) = 0
and for every x ∈ E\{0}, p(x) = 1. Let f : K.a → K be the linear mapping
such that f(a) = 1; then |f(0E)|disc = 0 = p(0E) and, for every λ ∈ K\{0},
|f(λ.a)|disc = |λ|disc = 1 = p(λ.a). Using I(K,|.|disc), there exists a linear mapping

f̃ : E → K extending f such that for every x ∈ E, |f̃(x)|disc ≤ p(x). Thus f̃ is a

linear form on E such that f̃(a) = 1.
DK ⇒ I(K,|.|disc). Let E be a K-vector space and let p : E → R+ be an

ultrametric vector semi-norm with respect to the valued field (K, |.|disc). Assume
that F is a vector subspace of E and that f : F → K is a linear form such that
for every x ∈ F , |f(x)|disc ≤ p(x). If f is null, then the null mapping f̃ : E → K

extends f and satisfies |f̃(x)|disc ≤ p(x) for every x ∈ E. If f is not null, let a ∈ F
such that f(a) = 1. Denoting by V the vector subspace {x ∈ E : p(x) < 1}, then
a /∈ V + ker(f) because if a = a1 + a2 with a1 ∈ V and a2 ∈ ker(f), then
a1 = a−a2 ∈ F thus 1 = f(a) = f(a1) ≤ p(a1) so a1 /∈ V , which is contradictory!
Let can : E → E/(V + ker(f)) be the quotient mapping. Since a /∈ V + ker(f),
it follows that can(a) 6= 0. Using DK, let g : E/(V + ker(f)) → K be a linear

mapping such that g(can(a)) = 1. Then f̃ := g ◦ can : E → K is a linear mapping

which is null on V + ker(f) and such that f̃(a) = 1. Since F = ker(f) ⊕ K.a, it

follows that f̃ extends f . We now show that |f̃ | ≤ p. Given some x ∈ E, if x ∈ V

then f̃(x) = 0 so |f̃(x)|disc ≤ p(x); else p(x) ≥ 1, thus |f̃(x)|disc ≤ 1 ≤ p(x). �

4.4 Ingleton’s statement for ultrametric fields with compact large balls.

Given a valued field (K, |.|) and a filter F on a set I, we denote by |.|F : KF → RF

the quotient mapping associating to each x ∈ KF which is the equivalence class
of some (xi)i∈I ∈ KI , the class of (|xi|)i∈I in RF . We denote by (KF)b the
following unitary subalgebra of “bounded elements” of the unitary K-algebra KF :
{x ∈ KF : ∃t ∈ R+ : |x|F ≤F t}. We also denote by N|.|,F : (KF)b → R+ the
mapping associating to each x ∈ (KF)b the real number inf{t ∈ R+ : |x|F ≤F t}.
The mapping N|.|,F is a unitary algebra semi-norm on (KF )b; moreover, if the
valued field (K, |.|) is ultrametric, the vector semi-norm N|.|,F is also ultrametric.

Lemma 4.8. Let (K, |.|) be a spherically complete ultrametric valued field, let

E be a K-vector space and let p : E → K be an ultrametric vector semi-norm.

Assume that F is a vector subspace of E and that f : F → K is a linear form such

that |f | ≤ p. Let I := KE . There exists a filter F on I and a K-linear mapping

ι : E → (KF )b definable from E, p and f such that ι extends f and such that

N|.|,F ◦ ι ≤ p.

Proof: Let R ⊆ (fin(E)×I) be the following binary relation: given Z ∈ fin(E)
and given some mapping u : E → K, then R(Z, u) iff u extends f , |u| ≤ p and u↾Z
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is linear i.e. for every x, y ∈ Z and λ ∈ K, (x + y ∈ Z ⇒ u(x + y) = u(x) + u(y))
and (λx ∈ Z ⇒ u(λx) = λu(x)). Using Ingleton’s Lemma in Section 4.2, the
binary relation R is concurrent, thus it generates a filter F on I. Let ι : E → KF

be the mapping associating to each x ∈ E, the equivalence class of (i(x))i∈I

in KF . Then, for every x ∈ F , ι(x) = f(x) and for every x ∈ E, |ι(x)|F ≤ p(x)
whence N|.|,F(ι(x)) ≤ p(x). Moreover, ι is K-linear: given x, y ∈ E and λ ∈ K,
let Z := {x, y, λy, x+λy}; by definition of ι, the set J := {i ∈ I : R(Z, i)} belongs
to F , and J ⊆ {i ∈ I : i(x + λy) = i(x) + λi(y)}; thus ι(x + λy) = ι(x) + λι(y) so
ι is K-linear. �

Lemma 4.9. Given a spherically complete ultrametric valued field (K, |.|), the

following statements are equivalent.

(i) I(K,|.|).

(ii) For every filter F on a set I, the K-linear mapping jF : K → (KF )b has an

additive retraction r : (KF )b → K such that for every x ∈ (KF)b, |r(x)| ≤
N|.|,F(x).

Proof: (i) ⇒ (ii) Given a filter F on a set I, consider the K-linear mapping
f : K.1F → K associating 1 to 1F . Then |f | ≤ pF . Since the vector semi-norm
pF : (KF)b → R+ is ultrametric, (ii) implies a K-linear mapping r : (KF)b → K

extending f such that r ≤ N|.|,F . Since r is K-linear and fixes 1F , r fixes every
element of K in KF thus r is a retraction of jF : K → (KF)b.

(ii) ⇒ (i) Given an ultrametric vector semi-norm p on a K-vector space E,
and a linear mapping f defined on a vector subspace F of E such that |f | ≤ p,
using Lemma 4.8, consider a linear mapping ι : E → (KF )b extending f such
that N|.|,F ◦ ι ≤ p. Using (ii), let r : KF → K be an additive retraction such
that |r| ≤ N|.|,F ; using Proposition 3.1, r is K-linear. Then the K-linear mapping

f̃ := r ◦ ι : E → K extends f and |f̃ | ≤ p. �

Remark 4.10 (Hahn-Banach). Consider the Hahn-Banach statement HB:
“Given a vector space E over R, given a subadditive mapping p : E → R such
that for every λ ∈ R+ and every x ∈ E, p(λ.x) = λp(x), and given a linear
form f defined on a vector subspace F of E satisfying |f | ≤ p, there exists a

linear mapping f̃ : E → R extending f such that |f̃ | ≤ p”. It is known (see [4])
that BPI ⇒ HB and that HB 6⇒ BPI. It is also known (see [8]) that HB is
equivalent to the following statement: “For every filter F on a set I, there exists
a R-linear mapping r : (RF )b → R such that r(1) = 1 and r is positive.

Question 4.11. Is there an ultrametric spherically complete valued field (K, |.|)
such that HB is equivalent to I(K,|.|)? Given two distinct prime numbers p and q,
are the statements IQp

and IQq
equivalent? Are they equivalent to HB? Here we

denote by Qp (see [14, p. 186]) the valued field which is the Cauchy-completion
of Q endowed with the p-adic absolute value.

Remark 4.12. Every ultrametric valued field in which every large ball is compact
is spherically complete.
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Corollary (van Rooij, [13]). For every ultrametric valued field (K, |.|) such that

every large ball of K is compact, then BPI implies I(K,|.|).

Proof: For sake of completeness, we give the proof sketched by van Rooij. Using
Lemma 4.9, it is sufficient to show that given a filter F on a set I, there is
a K-linear mapping r : (KF)b → K such that |r| ≤ N|.|,,F . Using BPI, let U
be an ultrafilter on I such that F ⊆ U . For every x ∈ (KF)b, the large ball
B(0, N|.|,F(x) + 1) of K is compact and Hausdorff, whence for every (ui)i∈I ∈ KI

and (vi)i∈I ∈ KI such that x is the class of (ui)i∈I and the class of (vi)i∈I in
KF , then (ui)i∈I and (vi)i∈I both converge through the ultrafilter U to the same
element of the ball B(0, N|.|,F(x)+1): we denote by r(x) this element of K. Since
the class of (ui)i∈I in KF is x, for every real number ε > 0, |r(x)| ≤ N|.|,,F(x)+ε,
thus |r(x)| ≤ N|.|,,F(x). We have defined a mapping r : (KF )b → K. Then
r : (KF )b → K is additive and fixes every element of K, thus, using Proposition 3.1,
r is K-linear. And |r| ≤ N|.|,,F by construction. �

Remark 4.13. In particular, given a finite field K endowed with the trivial
absolute value, then K is compact thus BPI implies DK: this is Howard and
Tachtsis’s result (see [5, Theorem 3.14]).

Question 4.14 (van Rooij, see [13]). Does BPI imply the full Ingleton state-
ment?

5. Isometric linear extenders

5.1 Bounded dual of a semi-normed vector space over a valued field.

Given a valued field (K, |.|) and two semi-normed K-vector spaces (E, p) and (F, q),
a linear mapping T : E → F is said to be bounded with respect to the semi-norms p
and q if and only if there exists a real number M ∈ R+ satisfying q(T (x)) ≤ Mp(x)
for every x ∈ E.

Proposition ([11, Proposition 3.1, p. 13]). Let (K, |.|) be a valued field and let

(E, p) and (F, q) be two semi-normed K-vector spaces. Let T : E → F be a

K-linear mapping.

(1) If T is bounded with respect to the semi-norms p and q, then T is continuous

with respect to the topologies associated to the semi-norms p and q.
(2) If T is continuous with respect to the topologies associated to the semi-norms

p and q and if the absolute value |.| on K is not trivial, then T is bounded

with respect to the semi-norms p and q.

Proof: (1) If T is bounded, then T is continuous at the point 0E of E. Since
translations of E are continuous with respect to p, it follows that T is continuous
at every point of E.

(2) We assume that the absolute value |.| on K is not trivial. Let G be the
subgroup {|x| : x ∈ K\{0}} of (R∗

+,×). Since |.| is not trivial, there exists a ∈ K∗

such that |a| 6= 1. Using 1
a

instead of a, we may assume that 0 < |a| < 1. It
follows that the sequence (|an|)n∈N of R∗

+ converges to 0. Since T is continuous
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at point 0E , let η ∈ R∗
+ such that for every x ∈ E, (p(x) < η ⇒ q(T (x)) < 1).

Let n0 ∈ N such that |an0 | < η and let M := 1
|an0+1|

. Then for every x ∈ E, let us

check that q(T (x)) ≤ Mp(x). If p(x) = 0, then for every λ ∈ K∗, p(λ.x) = 0 hence
q(T (λx)) < 1, thus for every λ ∈ K∗, q(T (x)) < 1

|λ| so q(T (x)) = 0. If p(x) > 0,

let n ∈ N such that |an+1| ≤ p(x) < |an|; then p( x
an ) < 1 thus p(an0x

an ) < |an0 | so

q(T (an0x
an )) < 1 i.e. q(T (x)) < |an−n0 | = |an+1|

|an0+1|
≤ p(x)

|an0+1|
= Mp(x). �

Remark 5.1 ([10, Example 3, pp. 77–78]). Given a commutative valued field K

endowed with the trivial absolute value |.|disc, and two semi-normed K-vector
spaces (E, p) and (F, q), a continuous linear mapping T : E → F is not necessarily
bounded with respect to the semi-norms p and q. For sake of completeness, we
sketch the argument. Let E be the ring K[X ] of polynomials with coefficients
in K, let p be the trivial norm on K[X ] and let q : K[X ] → R+ be the mapping
associating to each polynomial P the number deg(P ) + 1 if P is not null, and 0
else. Then q is an ultrametric semi-norm on the vector space K[X ] over the valued
field (K, |.|disc). Now the “identity transformation” Id : (K[X ], p) → (K[X ], q) is
continuous (because the topology of the semi-normed space (K[X ], p) is discrete),
but Id is not bounded with respect to the semi-norms p and q, since for every
n ∈ N, p(Xn) = 1 and q(Xn) = n + 1.

Given a valued field (K, |.|), and two semi-normed K-vector spaces (E, p) and
(F, q), we denote by BL(E, F ) the vector space of bounded linear mappings from E
to F . Given some bounded linear mapping T : E → F , the real number inf{M ∈
R+ : ∀x ∈ E q(T (x)) ≤ Mp(x)} is called the semi-norm of the operator T , and is
denoted by ‖T ‖BL(E,F ) (or ‖T ‖). The mapping ‖.‖ : BL(E, F ) → R+ associating
to each bounded operator T ∈ BL(E, F ) its semi-norm ‖T ‖ is a vector semi-norm,
which is ultrametric if the semi-norm q of F is ultrametric.

Remark 5.2. Given a spherically complete ultrametric valued field (K, |.|), the
Ingleton statement I(K,|.|) can be reformulated as follows: for every ultrametric
semi-normed space (E, p) over the valued field (K, |.|), for every vector subspace
F of E and for every bounded linear mapping f : (F, p) → (K, |.|), there exists a

bounded linear mapping f̃ : (E, p) → (K, |.|) extending f such that ‖f̃‖ = ‖f‖.

Given a valued field (K, |.|), a semi-normed K-vector space (E, p) and a vector
subspace F of E, a continuous linear extender from BL(F, K) to BL(E, K) is
a continuous linear mapping T : BL(F, K) → BL(E, K) such that for every f ∈
BL(F, K), T (f) extends f ; moreover, if for every f ∈ BL(F, K), T (f) has the same
semi-norm as f , then the continuous linear extender T is said to be isometric.

5.2 Orthogonal basis of a finite dimensional ultrametric semi-normed

space.

Lemma ([12, Example 3.R, p. 63]). Let (K, |.|) be a spherically complete ul-

trametric valued field. Let E be a K-vector space endowed with a semi-norm

p : E → R. Given two vector subspaces F and G of E such that F ⊕ G = E,
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and denoting by PF : E → F and PG : E → G the associated projections, the

following statements are equivalent.

(1) For every x ∈ E, p(PF (x)) ≤ p(x) (i.e. PF is bounded and ‖PF ‖ ≤ 1).
(2) For every x ∈ E, p(PG(x)) ≤ p(x) (i.e. PG is bounded and ‖PG‖ ≤ 1).
(3) For every x ∈ F and every x ∈ G, p(xF ⊕ xG) = max(p(xF ), p(xG)).

Definition 5.3. Given an ultrametric valued field (K, |.|), a K-vector space E
and an ultrametric semi-norm p : E → R, two vector subspaces F and G of E
satisfying the conditions of Lemma 5.2 are said to be orthocomplemented .

Lemma. Let (K, |.|) be a spherically complete ultrametric valued field. Let E be a

finite dimensional K-vector space endowed with an ultrametric semi-norm p : E →
R. Every one-dimensional vector subspace D of E has an orthocomplemented

subspace in E.

Proof: Let D be a one-dimensional vector subspace of E. If p↾D is null, then
every vector subspace H of E such that H ⊕ D = E is an orthocomplement of
D in E. Assume that p↾D is not null. Let a ∈ D\{0}. Let f : D → K be the
linear mapping such that f(a) = 1: then for every x ∈ D, |f(x)| ≤ 1

p(a)p(x).

Since the vector space E is finite dimensional, using Remark 4.3, there exists
in ZF a linear mapping f̃ : E → K extending f such that |f̃ | ≤ 1

p(a)p. Then

H := ker(f̃) is an orthocomplement of the subspace D in E: for every x ∈ E, x =

(x − f̃(x).a) ⊕ f̃(x).a where x − f̃(x).a ∈ H ; moreover, p(f̃(x).a) = |f̃(x)|p(a) ≤
p(x), so, denoting by PD the projection onto the subspace D with kernel H ,
‖PD‖ ≤ 1. �

Remark 5.4. Given a spherically complete ultrametric valued field (K, |.|), and
an ultrametric semi-normed K-vector space (E, p), then the Ingleton statement
I(K,|.|) implies that every one-dimensional subspace of E is orthocomplemented
in E.

Definition 5.5. Given an ultrametric valued field (K, |.|), a K-vector space
E and an ultrametric semi-norm p : E → R, a sequence (ei)0≤i≤p of E is
said to be p-orthogonal if for every sequence (si)0≤i≤p of K, p(

∑
0≤i≤p si.ei) =

sup0≤i≤p p(si.ei).

Lemma ([12, Lemma 5.3 p.169]). Let (K, |.|) be a spherically complete ultra-

metric valued field. For every finite dimensional K-vector space E and every

ultrametric semi-norm p : E → R, there exists a p-orthogonal basis in the vector

space E.

Proof: We prove the lemma by recursion over the dimension of E. If dim(E)
= 1, then every basis of E is p-orthogonal. Assume that the result holds for some
natural number n ≥ 1 and assume that E is a K-vector space with dimension n+1,
and that p : E → R is a ultrametric semi-norm. Let a ∈ E\{0}, and let D be the
line K.a. Using the previous lemma, let H be a p-orthocomplemented subspace
of D in E. Using the recursion hypothesis, let (ei)1≤i≤n be a p-orthogonal basis
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of the subspace H . Let en+1 := a. Since D and H are orthocomplemented,
(ei)0≤i≤n+1 is a p-orthogonal basis of E. �

5.3 Ultrametric isometric linear extenders. In this section, we shall show
that given a spherically complete valued field (K, |.|), the statement I(K,|.|) is
equivalent to the following “isometric linear extender” statement:
LE(K,|.|): “For every vector subspace F of an ultrametric semi-normed K-vector

space (E, p), there exists an isometric linear extender T : BL(F, K) → BL(E, K).

Theorem 5.6. Given a spherically complete ultrametric valued field (K, |.|), the

statements I(K,|.|) and LE(K,|.|) are equivalent.

Proof: I(K,|.|) ⇒ LE(K,|.|). Let (E, p) be an ultrametric semi-normed vector
space (E, p) over the valued field (K, |.|). We endow the K-vector space BL(E, K)
with its ultrametric semi-norm ‖.‖. Given some vector subspace F of E, let I
be the set of mappings Φ : BL(F, K) → BL(E, K) and let R be the binary re-
lation on fin(BL(F, K)) × I such that for every Z ∈ fin(BL(F, K)) and every
Φ ∈ I, R(Z, Φ) if and only if for every f ∈ Z, the bounded linear form Φ(f)
extends f , ‖Φ(f)‖ = ‖f‖, and Φ is K-linear on spanBL(F,K)(Z). Then the binary

relation R is concurrent: given m finite subsets Z1, . . . , Zm ∈ fin(BL(F, K)), let
B = {f1, . . . , fn} be a (finite) ‖.‖-orthogonal basis of the K-vector subspace of

BL(F, K) generated by the finite set
⋃

1≤i≤m Zi; then using I(K,|.|), let f̃1, . . . ,

f̃n be bounded linear forms on E extending f1, . . . , fn such that for each i,
‖f̃i‖ = ‖fi‖, and let L : span({f1, . . . , fn}) → BL(E, K) be the linear mapping

such that for each i ∈ {1, . . . , n}, L(fi) = f̃i. For every f ∈ span({f1, . . . , fn}),
let us check that ‖L(f)‖ = ‖f‖. Given f ∈ span({f1, . . . , fn}), f is of the

form
∑

1≤i≤n sifi where s1, . . . , sn ∈ K, thus L(f) =
∑

1≤i≤n sif̃i. Since ‖.‖

is ultrametric, it follows that ‖L(f)‖ = ‖
∑

1≤i≤p sif̃i‖ ≤ max1≤i≤n ‖sif̃i‖ =

max1≤i≤n |si|‖f̃i‖ = max1≤i≤n |si|‖fi‖ = max1≤i≤n ‖sifi‖ = ‖
∑

1≤i≤n sifi‖ (be-

cause the sequence (fi)1≤i≤n is ‖.‖-orthogonal). Let Φ : BL(F, K) → BL(E, K)
be some mapping extending L (for example, define Φ(f) = 0 for every f ∈
BL(F, K)\ span({f1, . . . , fn})). Then for every i ∈ {1, . . . , m}, R(Zi, Φ). Con-
sider the filter F on I generated by the set {R(Z); Z ∈ fin(BL(F, K))}. Then
the mapping Φ : BL(F, K) → L(E, KF) associating to each f ∈ BL(F, K) the K-
linear mapping Φ(f) : E → KF associating to each x ∈ E the class of (f(x))f∈I

in KF is linear, and for every f ∈ BL(F, K), Φ(f) : E → KF extends f and
for every x ∈ E, N|.|,F(Φ(f)(x)) ≤ ‖f‖‖x‖. Using I(K,|.|) and Lemma 4.9, con-
sider a K-linear retraction r : (KF )b → K of jF : K → KF such that for every
x ∈ (KF)b, |r(x)| ≤ N|.|,F(x). Thus, for every f ∈ BL(F, K), for every x ∈ F ,
|r ◦ Φ(f)(x)| ≤ ‖f‖‖x‖, so ‖r ◦ Φ(f)‖ ≤ ‖f‖; since r ◦ Φ(f) : E → K extends
f : F → K, it follows that ‖r ◦ Φ(f)‖ = ‖f‖. Let T : BL(F, K) → BL(E, K) be
the mapping f 7→ r ◦ Φ(f). Then the mapping T : BL(F, K) → BL(E, K) is an
isometric linear extender.

The implication LE(K,|.|) ⇒ I(K,|.|) is trivial. �
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