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Abstract. We deal with a posteriori error control of discontinuous Galerkin approxima-
tions for linear boundary value problems. The computational error is estimated in the
framework of the Dual Weighted Residual method (DWR) for goal-oriented error estima-
tion which requires to solve an additional (adjoint) problem. We focus on the control of the
algebraic errors arising from iterative solutions of algebraic systems corresponding to both
the primal and adjoint problems. Moreover, we present two different reconstruction tech-
niques allowing an efficient evaluation of the error estimators. Finally, we propose a complex
algorithm which controls discretization and algebraic errors and drives the adaptation of
the mesh in the close to optimal manner with respect to the given quantity of interest.
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1. Introduction

The goal-oriented error estimates exhibit a perspective and efficient tool for numer-

ical simulations of many engineering problems since they are able to give information

about the error of a quantity of interest which is more relevant in practical appli-

cations than error estimates derived in energy norms. The quantity of interest is

usually represented by a (linear) functional J(u), where u is the exact solution of the
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given problem. We refer to [4], [6], [13], where the dual weighted residual (DWR)

estimates dealing with this subject were introduced. This approach requires, in ad-

dition to the solution of the original (primal) problem, also to solve the dual (or

adjoint) problem. The discretization of the primal and dual problems leads to two

linear algebraic systems, which are usually solved by a suitable iterative technique.

Therefore, the error of the resulting solution and its error estimate are influenced by

the error resulting from inexact solution of both algebraic systems.

In this paper we deal with discontinuous Galerkin discretization of a linear

convection-reaction-diffusion equation and the corresponding a posteriori error esti-

mates of J(u) − J(uh), where uh is the approximate solution. Following the ideas

from [2], we take into account also the algebraic error resulting from inaccurate so-

lution of the algebraic systems mentioned above. This aspect was considered in [21]

with the emphasis on the multigrid methods for conforming finite element methods.

The novelty of our approach is the consideration of the algebraic error of the dual

problem, which was not taken into account in [21]. Then we are able to balance the

discretization and algebraic errors for the primal as well as for the dual problem.

The goal oriented error estimates require a sufficiently accurate approximation of

the solution of the (continuous) dual problem. One possibility is to solve the dual

problem on globally refined mesh, which is time-consuming. In this paper, we present

two different reconstruction techniques allowing an efficient and accurate approxima-

tion of the solution of the dual problem. This way of post-processing is commonly

used for finite element computations, see e.g. [24], but in DG discretizations most of

the methods for goal-oriented error estimation described in literature, e.g. [18], [16],

are based on globally higher-order solution of the dual problem.

Further, we propose an adaptive algorithm including stopping criteria for the

iterative solutions of the primal and dual algebraic problems.

Finally, two kinds of numerical experiments are presented. We compare the per-

formance of the local reconstructions to the globally higher order dual solution, and

the decrease of the algebraic errors, when employing the algebraic estimators, is

demonstrated.

The outline of the paper is as follows: in Section 2, we start with the discontinuous

Galerkin (DG) discretization of the linear convection-diffusion-reaction problem and

we derive the goal-oriented error estimates based on the primal and dual residual,

respectively. Special attention is paid to the adjoint consistency of the discretization

of the dual problem. In Section 3, we present two possibilities of the approximation

of the unknown dual solution z on triangular meshes with varying polynomial ap-

proximation degree. Further, the error estimates of the quantity of interest including

the algebraic errors is derived in Section 4. Numerical experiments documenting the

performance of this approach are presented in Section 5.
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2. Problem description

In the following, we use the standard notation for the Lebesgue spaces—Lp(Ω),

Sobolev spaces—W k,p(Ω), Hk(Ω) =W k,2(Ω) and the space of polynomial functions

up to the degree k defined on a domain M ⊂ Rd is denoted P k(M).

Let Ω ⊂ Rd be a bounded polygonal domain with Lipschitz boundary. Moreover,

let the vector valued function b = {bi}di=1 be a linear convection coefficient whose

entries bi are Lipschitz continuous real-valued functions in Ω, c denotes the reaction

coefficient, and A = {ai,j}di,j=1 is a symmetric diffusion tensor with bounded piece-

wise continuous real-valued entries, satisfying the elliptic property ζTA(x)ζ > 0 for

all ζ ∈ Rd, a.e. x ∈ Ω.

By n(x) we denote the unit outward normal vector to ∂Ω at x ∈ ∂Ω. We define

a disjoint decomposition of the boundary ∂Ω by

Γ0 := {x ∈ ∂Ω: n(x)TA(x)n(x) > 0},

Γ− := {x ∈ ∂Ω \ Γ0 : b(x) · n(x) < 0},

Γ+ := {x ∈ ∂Ω \ Γ0 : b(x) · n(x) > 0}.

Obviously, these sets are disjoint and ∂Ω = Γ0∪Γ−∪Γ+. Further, we divide Γ0 into

two disjoint subsets ΓD and ΓN , see Figure 1. We assume that Γ− ∪ ΓD 6= ∅ and

that b · n > 0 on ΓN whenever ΓN 6= ∅.

Γ+

Γ
−

ΓD

n
T
An > 0

b

ΓN

n
T
An = 0

Figure 1. Example of the division of the boundary ∂Ω into Γ−, Γ+, and Γ0 = ΓD ∪ ΓN .

We consider the linear convection-diffusion-reaction model problem

Lu := −∇ · A∇u+∇ · (bu) + cu = f in Ω,(2.1a)

u = uD on ΓD ∪ Γ−,(2.1b)

A∇u · n = gN on ΓN ,(2.1c)
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where u : Ω → R is an unknown scalar function. Since the diffusion may degenerate

in some parts of Ω, problem (2.1) has to be considered as a first-order PDE in those

parts and hence no boundary condition can be set on Γ+. This kind of problems is

termed “partial differential equations with nonnegative characteristic form” in [19].

We assume that the data satisfy f ∈ L2(Ω), uD is the trace of some u
∗ ∈ H1(Ω)

on ΓD ∪ Γ−, gN ∈ L2(ΓN ), c ∈ L∞(Ω). Further, we assume that there exists c0 > 0

such that c(x) + 1
2∇ · b(x) > c0 a.e. x ∈ Ω. Let us note that this assumption is not

restrictive, see e.g. [9], Section 4.6.1.

We proceed to the weak formulation of (2.1).

Definition 2.1. A function u ∈ H1(Ω) is called the weak solution of (2.1) if

u− u∗ ∈ H1
D(Ω) := {v ∈ H1(Ω); v

∣∣
ΓD∪Γ−

= 0} and

(2.2) a(u, ϕ) = l(ϕ) ∀ϕ ∈ H1
D(Ω),

where

a(u, ϕ) :=

∫

Ω

A∇u · ∇ϕdx−

∫

Ω

(ub · ∇ϕ− cuϕ) dx+

∫

Γ+∪ΓN

b · nuϕdS,

l(ϕ) :=

∫

Ω

fϕdx+

∫

ΓN

gNϕdS, u, ϕ ∈ H1(Ω).

The well-posedness of the boundary value problem (2.2), in the case of homoge-

neous boundary conditions, is shown in [20].

2.1. DG discretization of the problem. For the DG discretization we intro-

duce a partition Th coveringΩ consisting of finite number of closed d-dimensional sim-

plices K with mutually disjoint interiors. The boundary of the element K ∈ Th will

be denoted by ∂K, its diameter by hK = diam(K) and |K| will be its d-dimensional

Lebesgue measure.

By Fh we denote the union of all faces contained in the partition Th and by F I
h ,

FD
h the union of the interior and Dirichlet boundary faces, respectively. Further,

let F ID
h := F I

h ∪FD
h . For each face Γ ⊂ F I

h there exist two neighbouring elements

KL, KR ∈ Th such that Γ = KL ∩KR. It is possible to define a unit normal vector

n = (n1, . . . , nd) at almost every point of Fh. The orientation of n can be chosen

arbitrarily for the interior faces, so we can assume that n = nKL
= −nKR

. Further,

for K ∈ Th we set ∂K− := {x ∈ ∂K ; b · n(x) < 0} and similarly ∂K+ := {x ∈

∂K ; b · n(x) > 0}.

We assume that there exists h0 > 0 such that {Th}h∈(0,h0) is a system of trian-

gulations which is shape-regular and locally quasi-uniform, see e.g. [9]. We do not

require the conforming properties known from finite element methods. Therefore,
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the triangulations Th could contain the so called hanging nodes. Over the trian-

gulation Th we define the so-called broken Sobolev space over the triangulation Th
as Hs(Ω, Th) = {v ∈ L2(Ω), v

∣∣
K

∈ Hs(K) for all K ∈ Th} with the norm and the

semi-norm ‖v‖Hs(Ω,Th) =
( ∑
K∈Th

‖v‖2Hs(K)

)1/2
and |v|Hs(Ω,Th) =

( ∑
K∈Th

|v|2Hs(K)

)1/2
,

respectively.

Discontinuous Galerkin method is very convenient for hp-adaptation. Therefore,

to each K ∈ Th we assign its local polynomial degree pK . Then we define the set

p := {pK ; K ∈ Th} and the finite dimensional space

(2.3) S
p

h = {v ∈ L2(Ω); v
∣∣
K

∈ P pK (K) ∀K ∈ Th}.

The dimension of Sp

h corresponding to the number of degrees of freedom N p

h can be

calculated as N
p

h := dimS
p

h =
∑

K∈Th

(
pk+d

d

)
.

Let Γ ⊂ F I
h , v ∈ H1(Ω, Th). We introduce the notation vL = trace of v

∣∣
KL
on Γ,

and vR = trace of v
∣∣
KR
on Γ, Further, we denote the jump of v on Γ by [[v]] = vL−vR

and its mean value by 〈v〉 = 1
2 (vL + vR). On Γ ⊂ FD

h we set [[v]] = 〈v〉 = vL, where

KL is such an element that Γ = KL ∩ ∂Ω. Given an element K ∈ Th we denote

by v− the exterior trace of v defined on ∂K \ ∂Ω, the interior trace on ∂K will be

denoted simply by v.

We discretize the equation (2.2) using the interior penalty Galerkin method (IPG),

see e.g. [9], Section 4.6 or [19]. For u, ϕ ∈ H2(Ω, Th) we define the forms

Ah(u, ϕ) :=
∑

K∈Th

∫

K

A∇u · ∇ϕdx(2.4a)

−
∑

Γ∈FID
h

∫

Γ

〈A∇u〉 · n[[ϕ]] + θ〈A∇ϕ〉 · n[[u]] dS,

Jσ
h (u, ϕ) :=

∑

Γ∈FID
h

∫

Γ

σ[[u]][[ϕ]] dS,(2.4b)

Bh(u, ϕ) :=
∑

K∈Th

(
−

∫

K

ub · ∇ϕ− cuϕdx(2.4c)

+

∫

∂K+

b · nKuϕdS +

∫

∂K−\∂Ω

b · nKu
−ϕdS

)
,

lh(ϕ) :=

∫

Ω

fϕxdx+

∫

ΓN

gNϕdS −
∑

K∈Th

∫

∂K−∩∂Ω

(b · n)uDϕdS(2.4d)

+
∑

Γ∈FD
h

∫

Γ

(σϕ− θA∇ϕ · n)uD dS.
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The choice of θ ∈ {−1, 0, 1} leads to the nonsymmetric (NIPG), incomplete (IIPG),

and symmetric (SIPG) variant of the discontinuous Galerkin method. The penalty

parameter σ is chosen by σ
∣∣
Γ

= σΓ = εCWh−1
Γ , Γ ∈ F ID

h , where ε denotes the

amount of diffusivity (≈ |A|), hΓ = diamΓ and CW > 0 has to be chosen large

enough to guarantee convergence of the method, see [9]. Further, we introduce the

DG-norm

(2.5) |||v|||DG :=
∑

K∈Th

(
‖A1/2∇v‖2K + 1

2‖v‖
2
∂K−∩(ΓD∪Γ−) +

1
2‖[[v]]‖

2
∂K−\∂Ω

+ 1
2‖v‖

2
∂K+∩∂Ω + ‖c0v‖

2
K

)
+

∫

Γ∈FID
h

(σ[[v]]2 + σ−1〈A∇v · n〉2) dS,

where ‖·‖M denotes the standard L2-norm over the domain M . We use the conven-

tion that the edges Γ, where nTAn = 0 are omitted from the integration in the form

Jσ
h (·, ·) and in the DG-norm.

Finally, we put

(2.6) ah(u, ϕ) := Ah(u, ϕ) + Jσ
h (u, ϕ) +Bh(u, ϕ), u, ϕ ∈ H2(Ω, Th).

We are ready to define the discrete problem.

Definition 2.2. We say that uh ∈ S
p

h is the approximate solution of (2.2) if

(2.7) ah(uh, ϕh) = lh(ϕh) ∀ϕh ∈ Sp

h.

Lemma 2.1. The discrete problem (2.7) is consistent with the weak formula-

tion (2.2), i.e., the exact solution u ∈ H2(Ω) satisfies

(2.8) ah(u, ϕ) = lh(ϕ) ∀ϕ ∈ H2(Ω, Th).

P r o o f. See e.g. [9], Chapters 2 and 3, [16]. �

This gives us the Galerkin orthogonality of the exact and the discrete solutions

(2.9) ah(u− uh, ϕh) = 0 ∀ϕh ∈ Sp

h,

which is a crucial property (not only) in goal-oriented estimates.

2.2. Quantity of interest. The goal of the whole computation process is to

determine the value of the quantity of interest J(u), where J is a linear functional

defined for the weak as well as the approximate solutions. It was shown in [17]
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that the primal problem (2.1), the corresponding dual problem and the target func-

tional J(u) have to satisfy the so-called compatibility condition which together with

the consistency of the numerical method and the adjoint consistency guarantee the

regularity of the dual solution and then the optimal order of convergence. The low

regularity of the solution of the dual problem causes a suboptimal convergence rate

of the DWR error estimate, see [17], [15].

We consider the functional J in the form

(2.10) J(u) =

∫

Ω

jΩ(x)u(x) dx+

∫

ΓD

jΓD
A∇u · n dS +

∫

Γ+∪ΓN

jΓN
u dS,

where jΓD
, jΓN

∈ L2(∂Ω) and jΩ ∈ L2(Ω) are given functions, typically characteristic

functions of some subdomains in ∂Ω or Ω, respectively.

The adjoint operator to L is defined by L∗v = −∇·A∇v−b ·∇v+cv and the dual

problem corresponding to the target functional (2.10) reads in its strong formulation:

Find a function z : Ω → R such that

−∇ · A∇z − b · ∇z + cz = jΩ in Ω,(2.11a)

z = − jΓD
on ΓD,(2.11b)

A∇z · n+ b · nz = jΓN
on ΓN ,(2.11c)

b · nz = jΓN
on Γ+.(2.11d)

The dual problem (2.11) contains a Newton boundary condition on ΓN , but since

b · n > 0 on ΓN this boundary condition will contribute to the coercivity of the

problem and the problem is well-posed.

The corresponding discrete dual problem then requires to find zh ∈ S
p

h such that

(2.12) ah(ψh, zh) = J(ψh) ∀ψh ∈ Sp

h.

Definition 2.3. We say that the discrete dual problem (2.12) is adjoint consis-

tent with the dual problem (2.11) if the exact solution z ∈ H2(Ω) of (2.11) satis-

fies (2.12),

(2.13) ah(ψ, z) = J(ψ) ∀ψ ∈ H2(Ω,Th).

In the following, we deal with the adjoint consistency of the discrete dual prob-

lem (2.12). We show that in order to guarantee the adjoint consistency, the right-

hand side of (2.12) has to be slightly modified.

585



2.3. Adjoint consistency. Following the approach from [17], we rewrite (2.12)

element-wise and by integration by parts and the definition of the forms (2.4) we get

that the solution of (2.12) satisfies

(2.14)
∑

K∈Th

∫

K

R∗(zh)ψh dx+

∫

∂K\∂Ω

r∗(zh)ψh + ̺∗(zh)∇Aψh · n dS

+

∫

∂K∩∂Ω

r∗∂Ω(zh)ψh + ̺∗∂Ω(zh)A∇ψh · n dS = 0 ∀ψh ∈ Sp

h,

where the dual residuals consist of the volume part R∗(zh) = jΩ+∆zh+b·∇zh−czh,

parts over the interior edges

(2.15) r∗(zh) = − 1
2 [[A∇zh]] + (1− θ)〈A∇zh〉 · n− (σ + b · nK)[[zh]],

̺∗(zh) =
1
2 [[zh]],

and finally of the boundary terms

(2.16) r∗∂Ω(zh) = −(1− θ)A∇zh · n− σzh on ∂K− ∩ ΓD,

r∗∂Ω(zh) = −(1− θ)A∇zh · n− σzh − b · nzh on ∂K+ ∩ ΓD,

r∗∂Ω(zh) = jΓN
− A∇zh · n− b · nzh on ∂K ∩ ΓN ,

r∗∂Ω(zh) = jΓN
− b · nzh on ∂K ∩ Γ+,

r∗∂Ω(zh) = 0 on ∂K ∩ Γ−,

̺∗∂Ω(zh) = (jΓD
+ zh) on ΓD,

̺∗∂Ω(zh) = 0 elsewhere on ∂Ω.

Concerning the symmetric variant of DG we see that if z ∈ H2(Ω) is the solution

of the problem (2.11), it nullifies the volume residual R∗ and also all residuals on

interior edges and boundary edges except ΓD. On ΓD we have z = −jΓD
from ̺∗∂Ω,

but also σz+b ·nz = 0 on ∂K+∩ΓD and σz = 0 on ∂K−∩ΓD, which are in conflict

unless jΓD
= 0.

This problem can be overcome by a small modification of the target functional

according to the method from [17]. We define

(2.17) rJ (v) :=

{
−σ(v − uD)jΓD

on ∂K− ∩ ΓD

−(σ + b · n)(v − uD)jΓD
on ∂K+ ∩ ΓD

and then

(2.18) J̃(v) := J(v) +

∫

ΓD

rJ (v) dS.
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The modification is designed so that J̃(u) = J(u) for u being the exact solution of

the problem (2.1). Further, since J̃(v) is affine, we have J̃(u)− J̃(uh) = J̃ ′
u(u− uh),

where

(2.19) J̃ ′
u(v) = J(v) −

∑

K∈Th

(∫

ΓD∩∂K−

vσjΓD
dS −

∫

ΓD∩∂K+

v(σ + b · n)jΓD
dS

)

is the Gateaux derivative of J̃ in direction v. In order to guarantee the adjoint

consistency of the dual problem, we can replace the dual problem (2.12) by

(2.20) ah(ψh, zh) = J̃ ′
u(ψh) ∀ψh ∈ S

p

h.

All the derivations presented in Subsection 2.3 can be summarized into the fol-

lowing result.

Lemma 2.2. The SIPG method is the adjoint consistent discretization (2.20) of

the problem (2.1) with target functionals defined according to (2.18). Moreover, it

provides the Galerkin orthogonality also for the dual solutions z and zh:

(2.21) ah(ψh, z − zh) = 0 ∀ψh ∈ S
p

h.

On the other hand, for nonsymmetric variants (θ ∈ {−1, 0}) the dual discretization

is surely not adjoint consistent with (2.11) due to 〈A∇z〉 6= 0 in (2.15). Therefore,

we limit our further steps only to the SIPG variant. In the following, we will use the

notation J instead of J̃ , for simplicity.

2.4. Goal-oriented error estimates. Using the adjoint consistency (2.13), the

consistency (2.8), the Galerkin orthogonality of the error (2.9), we get the primal

error identity for the error of the quantity of interest

(2.22) J(u− uh) = ah(u − uh, z) = lh(z)− ah(uh, z) =: rh(uh)(z)

= rh(uh)(z − ϕh) ∀ϕh ∈ Sp

h,

where rh(uh)(·) denotes the residual of the problem (2.7). Let us note that the

Galerkin orthogonality was used only in the last step, i.e., the identity J(u − uh) =

rh(uh)(z) is valid also for uh violating the Galerkin orthogonality, which is the case

of the approximate solution suffering from algebraic errors.

Similarly, exploiting (2.21), we get the dual error identity

(2.23) J(u− uh) = ah(u − uh, z − zh) = ah(u − ψh, z − zh)

= J(u− ψh)− ah(u− ψh, zh) =: r∗h(zh)(u− ψh) ∀ψh ∈ S
p

h,

where r∗h(zh)(·) denotes the residual of the dual problem (2.12).
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Hence, the residuals rh(uh)(·) and r∗h(zh)(·) are equal in the following way:

(2.24) rh(uh)(z − ϕh) = r∗h(zh)(u − ψh) ∀ϕh, ψh ∈ Sp

h.

3. Reconstruction of the discrete solution

Except for a very few examples, neither u nor z are a priori known. Therefore, they

must be replaced by some computable quantities in (2.22) and (2.23). In particular,

we define

(3.1) ηS := rh(uh)(z
+
h − ϕh), η∗S := r∗h(zh)(u

+
h − ϕh).

Obviously the functions z+h and u
+
h must be from a richer space than S

p

h otherwise

the residuals would degenerate, since rh(uh)(ϕh) = r∗h(zh)(ϕh) = 0 for all ϕh ∈ Vh.

We get the following equality for the error (primal formulation):

(3.2) J(u − uh) = rh(uh)(z − ϕh) = rh(uh)(z
+
h − ϕh) + rh(uh)(z − z+h )

:= ηS + εS ∀ϕh ∈ Sp

h.

The first term on the right-hand side is computable. The second term is usually

neglected, e.g. [4], with the idea that it should be negligible in comparison with ηS.

Naturally, the size of εS depends on the quality of the approximation z
+
h . Exploit-

ing the boundedness of the bilinear form ah(u, v) 6 |||u|||DG|||v|||DG in the DG-norm

|||·|||DG, see e.g. [9], Section 4.6 or [26], we can write

(3.3) εS = ah(u − uh, z − z+h ) 6 |||u − uh|||DG|||z − z+h |||DG.

Having an a priori estimate |||z − z+h |||DG 6 Chp+k, k > 0, while |||z − zh|||DG 6 Chp

only, leads to the assumption that εS should be significantly smaller than ηS on fine

meshes. Conversely, in [22] it was shown that estimates using ηS only, significantly

underestimate the error on coarse meshes, which may lead to stopping the adaptive

procedure even when the true error is still large.

3.1. Error indicators. Employing these estimates for mesh adaptation requires

to localize (3.1) into positive error indicators describing local error contributions.

In conforming FEM this is usually done by plugging some partition of unity

into (3.1) (see e.g. [24]). In DG discretization we simply define element-wise contri-

butions of (3.1)

(3.4) ηS,K = |rh(uh)((z
+
h − ϕh)χK)|, η∗S,K = |r∗h(zh)((u

+
h − ϕh)χK)|, K ∈ Th,
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which corresponds to a partition of unity formed of the characteristic functions of

mesh elements, i.e. 1 =
∑

K∈Th

χK , plugged into (3.1).

Either of those can be used as a local error indicator for mesh refinement. Although

the primal and dual residuals are theoretically equivalent, cf. (2.24), localizations

(3.4) can differ notably and may lead to differently refined meshes.

The functional J generally does not have the additive property such as norms and

can attain both positive and negative values on different elements. Therefore, we

cannot expect that the sum of the local error indicators would sharply approximate

the total error J(u)− J(uh).

The standard approach for approximating (2.22) is to compute the dual problem on

a finer mesh or with higher polynomial degree, see [18]. E.g. in [25] the authors com-

pute the so-called reference solutions u+h , z
+
h ∈ Sp+1

h/2 on a globally refined mesh with

increased polynomial degree. Although this method achieves very precise results, it

is too time consuming, since it requires a solution of a globally enlarged system.

More efficiently (but also more heuristically) u+h and z
+
h may be computed by

a local reconstruction of the discrete solutions uh and zh, respectively. For con-

forming finite element methods mostly reconstructions based on some patch-wise

higher-order interpolation are used, e.g. in [21], [24], [23]. None of those methods are

applicable to DG due to the discontinuity of functions in Sp

h. We are not aware of

any paper, where a local reconstruction of the DG solution would be used to goal-

oriented estimates, even though, for instance, the reconstruction based on orthogonal

polynomials from [20] may be applicable on quadrilateral meshes.

We present two methods applicable to DG of an arbitrary degree (even hp-variant).

None of these methods requires any patch-wise structure of the mesh. This is very fa-

vorable, since we aim for the combination of the DWR estimates with the anisotropic

mesh generator [7]. We present the ideas for reconstruction of the discrete solu-

tion uh, computation of z
+
h being done alike using the function zh.

3.2. Weighted least-square method. First, we employ the method developed

in [12]. For the purpose of the presented reconstruction we define the space Sp+1
h :=

{v ∈ L2(Ω); v
∣∣
K

∈ P pk+1(K) ∀K ∈ Th.} Obviously S
p

h ⊂ S
p+1
h ⊂ H2(Ω, Th).

Let uh ∈ S
p

h be the approximate solution of (2.7). For the reconstruction u
+
h ∈

Sp+1
h on an element K ∈ Th we use a weighted least-square approximation from the

elements sharing at least a vertex with K, see Figure 2, left. We denote this patch

of elements DK = {K ′ ∈ Th ; K ′ ∩K 6= ∅}.

We compute the function u+K ∈ P pK+1(DK) by

(3.5) u+K = argmin
Uh∈PpK+1(DK)

∑

K′∈DK

ωK′‖Uh − uh‖
2
H1(K′).

589



Figure 2. Examples of patches DK corresponding to interior and boundary elements, large
(left) and small (right) patches.

Then we assemble the higher-order reconstruction u+h as an element-wise composition

of u+K
∣∣
K
, i.e. u+h =

∑
K∈Th

u+K
∣∣
K
. In the following we will refer to this method as the

LS reconstruction.

When choosing the values of the weights ωK′ , we distinguish between elements

sharing a face and elements having only a common vertex. We set ωK′ = 1 if

K ′ = K or if K, K ′ share a face and ωK′ = ε if K, K ′ share only a vertex. The

parameter ε helps to stabilize the reconstruction when local polynomial degrees are

too varying on DK . Hence, we choose

(3.6) ε := εmax(0,∆pK − 1), where ∆pk = max
K′∈DK

pK′ − min
K′∈DK

pK′ ,

where ε := 0.02 was empirically chosen. Consequently, the small patches, see Figure 2

right, are used when ∆pk 6 1.

This method is actually independent of the solved problem. This can be viewed as

a disadvantage, since an approximation tailored specifically for the solved problem

may work more accurately, but on the other hand such specialized technique may

not be available for complex problems.

As shown in [10], this reconstruction can be advantageously used also to determine

the anisotropic hp-adaptation of the mesh. Although we cannot prove theoretically

that ‖u− uh‖ ≈ ‖u+h − uh‖, it was numerically verified on several examples in [12].

3.3. Solving local problems. Another common method for computing a recon-

struction u+h in FEM computations is based on the solution of local problems defined

on patches of elements, see e.g. [3], [5].

For conforming FEM applied to the Poisson problem (L := −∆) the authors of [3]

suggest to solve the auxiliary problems

(3.7) Lu+i = f in Ωi := suppψi, u+i = uh on ∂Ωi,

590



where {ψi}Mi=1 is a partition of unity satisfying
M∑
i=1

ψ(x) = 1 for all x ∈ Ω and each

ψi > 0.

For solving (3.7) we propose to employ again the DG method, which includes

the Dirichlet boundary condition only by the penalty terms. Since no inter-element

continuity is required in DG, we can define these problems even element-wise setting

simply ψi := χK , K ∈ Th, where χK is the characteristic function of the element K.

Namely, for each K ∈ Th we define the function u
+
K : Ω → R such that

(3.8) (i) u+K |K′ := uh|K′ ∀K ′ 6= K,

(ii) u+K |K ∈ P pK+1(K),

(iii) ah(u
+
K , ϕh) = lh(ϕh) ∀ϕh ∈ P pK+1(K),

where ah is the form given by (2.6). Since evidently u
+
K ∈ Sp+1

h , we finally define

u+h ∈ S
p+1
h by u+h |K := u+K for all K ∈ Th. In the rest of the paper we will refer to

this kind of reconstruction as the LOC reconstruction.

In the following we show that it is not necessary to assemble and to solve prob-

lem (3.8) for eachK explicitly, when we use the residual based approach from [8]. We

denote by NK = 1
2 (pK+1)(pK+2) the number of degrees of freedom attached to the

element K ∈ Th, and by ϕK = {ϕi
h,K}NK

i=1 the basis of the space P
pK (K). The basis

of Sp

h, denoted by ϕ = {ϕi
h}

Np

h

i=1, N
p

h = dimSp

h, can be assembled by the functions

from ϕK for all K ∈ Th extended by zero outside K. Due to the discontinuity of

the functions in S
p

h across the element edges, we can write uh in the element-wise

components uK ∈ RNK corresponding to K ∈ Th, i.e.,

uh =

N
p

h∑

i=1

U iϕi
h =

∑

K∈Th

uK ·ϕK .

Denoting fK := {lh(ϕi
h,K)}NK

i=1, the problem (2.7) can be rewritten in the block-

matrix form (one block-row for each K ∈ Th)

(3.9) AK,KuK +
∑

K′∈N(K)
AK,K′u′

K = fK ∀K ∈ Th,

where AK,K are diagonal blocks (corresponding to ah) of size NK ×NK , AK,K′ are

the off-diagonal blocks of size NK ×NK′ and N(K) is the set of elements sharing an

edge with K ∈ Th.

For each K ∈ Th, we can write u
+
K = uh + ũK , where uh is the approximate

solution given by (2.7) and ũK ∈ P pK+1(K) can be viewed as a local higher order

correction. Obviously, due to condition (i) in (3.8), we have ũK = 0 on all K ′ 6= K,

K ′ ∈ Th.
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Let ϕh,K ∈ P pK+1(K). Using the linearity of ah, condition (iii) in (3.8) and (2.22),

we have

(3.10) ah(ũK , ϕh,K) = ah(u
+
K , ϕh,K)− ah(uh, ϕh,K) = lh(ϕh,K)− ah(uh, ϕh,K)

= rh(uh)(ϕh,K).

Hence, we have to solve

(3.11) a(ũK , ϕh,K) = rh(uh)(ϕh,K) ∀ϕh,K ∈ P pK+1(K)

for each K ∈ Th. We denote N
+
K = dimP pK+1(K) = (pK +2)(pK +3)/2 and choose

a basis ϕ1
h,K , . . . , ϕ

NK

h,K , . . . , ϕ
N+

K

h,K of P
pK+1 as hierarchical extension of the basis ϕK .

Then (3.11) can be written in similar form to (3.9), where the off-diagonal terms are

vanishing, since ũK = 0 on all K ′ 6= K, namely

(3.12) A
+
K,KũK = r,

where A+
K,K ∈ RN+

K
×N+

K is the matrix AK,K enlarged by N
+
K−NK rows and columns,

r ∈ RN+

K is the vector with components ri = rh(uh)(ϕ
i
h,K), i = 1, . . . , N+

K and ũK

is the vector of basis coefficients defining the function ũK on K. Let us note that

first NK components of r are vanishing up to the algebraic errors.

Therefore, in order to find the reconstruction (3.8) for each K ∈ Th, we have to

assemble the block-diagonal block A
+
K,K , evaluate the residual (2.22) for all basis

functions of P pK+1 \ P pK and solve the linear algebraic system (3.12). Finally, we

put u+h = uh +
∑

K∈Th

ũK .

R em a r k 3.1. This method can be used even for nonlinear problems, but in

that case the computation of the update ũK has to be iterated several times.

R em a r k 3.2. For the reconstruction based on the solution of local problems we

have (in exact arithmetics) due to (2.7), (2.12), and (3.10) that

(3.13) ηS,K = rh(uh)(z
+
h

∣∣
K
) = rh(uh)(z̃K) = ah(ũK , z̃K)

= r∗h(zh)(ũK) = r∗h(zh)(u
+
h

∣∣
K
) = η∗S,K.

Hence, we not only get the global equivalence corresponding to (2.24), but even the

local error indicators ηS,K and η
∗
S,K are equivalent for this reconstruction.

On the contrary, the LS reconstruction is not connected with the solved problem

and the error estimates ηS and η
∗
S may differ both locally and globally.

592



R em a r k 3.3. We may also solve the ah(u, v) = rh(uh)(v) reconstruction on

patches of elements having one common vertex. This would be connected with the

partition of unity using the piece-wise linear “hat” functions.

4. Algebraic errors

Due to algebraic errors neither the “exact” discrete solution uh of (2.7) nor the

solution zh of (2.12) are available in practical computations. Instead, we compute

their approximations u
(n)
h and z

(n)
h resulting from a finite number of iterations of an

algebraic iterative solver. Considering the algebraically inexact discrete solution u
(n)
h

the Galerkin orthogonalities (2.9) and (2.21) do not hold anymore. Hence, we must

add an additional term measuring the deviation from the Galerkin orthogonality due

to algebraic errors. For the primal error identity (2.22) using the triangle inequality,

we have

(4.1) J(u− u
(n)
h ) = rh(u

(n)
h )(z) = rh(u

(n)
h )(z − ϕh) + rh(u

(n)
h )(ϕh) ∀ϕh ∈ Sp

h.

Regarding the revision of dual estimate (2.23), we proceed similarly. Using the

definitions of residuals rh and r
∗
h in (2.22) and (2.23), respectively, and the triangle

inequality, we get

(4.2) rh(u
(n)
h )(z − z

(n)
h ) = ah(u− u

(n)
h , z − z

(n)
h )

= ah(u− ψh, z − z
(n)
h ) + ah(ψh − u

(n)
h , z − z

(n)
h )

= r∗h(z
(n)
h )(u− ψh) + r∗h(z

(n)
h )(ψh − u

(n)
h ) ∀ψh ∈ Sp

h.

Then putting ϕh := z
(n)
h in (4.1) and using (4.2), we obtain

(4.3) J(u−u
(n)
h ) = r∗h(z

(n)
h )(u−ψh)+r

∗
h(z

(n)
h )(ψh−u

(n)
h )+rh(u

(n)
h )(z

(n)
h ) ∀ψh ∈ S

p

h.

The impact of algebraic errors in goal-oriented estimates was studied in [21], where

the equivalence (2.24) is mentioned but only the estimates based on the primal

residual are considered. Since this equivalence is not relevant for algebraically inexact

solutions, we use both of these estimates and compare their accuracy in concrete

computations (see Section 5).

The primal and dual part of the error identity in (2.22) can be separated, see

e.g. [4]. Exploiting the boundedness of the bilinear form ah(·, ·) in the DG-norm (2.5),

we get

(4.4) J(u− uh) = ah(u− uh, z − ϕh) =
∑

K∈Th

ah(u− uh, z − ϕh)
∣∣
K

6
∑

K∈Th

|||u− uh|||DG,K |||z − ϕh|||DG,K ∀ϕh ∈ Sp

h,
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where |||·|||DG,K is the element-wise analogue of the norm |||·|||DG given by (2.5). Due

to this separation, tightness of the estimates is strongly dependent on the choice

of ϕh. On the contrary, in (2.22) the choice of ϕh is irrelevant but when those errors

are taken into account as in (4.1), then the choice of ϕh may again influence the

computation process. Therefore, we present three variants of (3.1):

η
(n)
S := rh(u

(n)
h )(z+h ), η

∗,(n)
S := r∗h(z

(n)
h )(u+h ),(4.5a)

η̃
(n)
S := rh(u

(n)
h )(z+h − z

(n)
h ), η̃

∗,(n)
S := r∗h(z

(n)
h )(u+h − u

(n)
h ),(4.5b)

η̂
(n)
S := rh(u

(n)
h )(z+h − P p

hz
+
h ), η̂

∗,(n)
S := r∗h(z

(n)
h )(u+h − P p

hu
+
h ).(4.5c)

Here P p
h denotes the L

2-orthogonal projection to Sp

h, i.e. for any v ∈ L2(Ω) it satisfies∫
Ω P

p
hvϕh dx =

∫
Ω vϕh dx for all ϕh ∈ S

p

h. Furthermore, we introduce the primal and

dual algebraic error estimates

η
(n)
A = η̃

(n)
A := rh(u

(n)
h )(z

(n)
h ), η

∗,(n)
A = η̃

∗,(n)
A := r∗h(z

(n)
h )(u

(n)
h ),(4.6a)

η̂
(n)
A := rh(u

(n)
h )(P p

h z
+
h ), η̂

∗,(n)
A := r∗h(z

(n)
h )(P p

hu
+
h ).(4.6b)

Since the exact specification is usually not necessary, we will talk generally about

η
(n)
A ∈ {η

(n)
A , η̃

(n)
A , η̂

(n)
A } and η

∗,(n)
A ∈ {η

∗,(n)
A , η̃

∗,(n)
A , η̂

∗,(n)
A }. Let us note that if u

(n)
h

and z
(n)
h satisfy the Galerkin orthogonality (2.9) and (2.21), respectively, then

η
(n)
S = η̃

(n)
S = η̂

(n)
S , η

∗,(n)
S = η̃

∗,(n)
S = η̂

∗,(n)
S , η

(n)
A = η

∗,(n)
A = 0.

R em a r k 4.1. We may express the reconstruction of the dual solution with re-

spect to an orthogonal basis of the space Sp+1
h , i.e. z+h =

N
p+1

h∑
k=1

zkϕk, where N
p+1
h =

∑
K∈Th

(
pK+d

d

)
. Then for ϕh = P p

hz we get

(4.7) J(u − u
(n)
h ) = rh(u

(n)
h )((I − P p

h )z
+
h ) + rh(u

(n)
h )(P p

h z
+
h )

=

Np+1

h∑

k=Np

h
+1

zkrh(u
(n)
h )(ϕk)

︸ ︷︷ ︸
discretization error

+

Np

h∑

k=1

zkrh(u
(n)
h )(ϕk)

︸ ︷︷ ︸
algebraic error

.

Then the second term η
(n)
A measures the deviation of u

(n)
h from uh with respect to

the target quantity while the first measures the discretization error weighted by the

oscillations of the dual solution of degree p + 1. The algebraic errors represent the

oscillation of the lower degrees which have more global behavior and hence may

strengthen the oscillations (changing signs) of the global discretization estimate.
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The reconstruction of the dual solution z+h used in η
(n)
S is affected by algebraic

errors as well. In order to take these into account in practical computations, we

monitor the value of η
∗,(n)
A in error estimates based on the primal error identity (4.1)

too.

4.1. Adaptive algorithm. We denote eh = u−uh and using the error estimates

(4.5) and error indicators (3.4) we propose the following adaptive algorithm.

Algorithm 1: Adaptive algorithm balancing discretization and algebraic errors

1: initialization: set η = 2TOL;

2: while η > TOL do

3: while η
(n)
A > C

(1)
A η

(n)
S and η

∗,(n)
A > C

(1)
A η

∗,(n)
S do

4: perform GMRES iterations for primal problem (2.7);

5: perform GMRES iterations for dual problem (2.12);

6: end

7: if η
(n)
A < C

(1)
A η

(n)
S then

8: perform GMRES iterations for dual problem until η
∗,(n)
A < C

(2)
A η

(n)
S ;

9: use η := η
(n)
S , ηK := η

(n)
S,K;

10: else

11: perform GMRES iterations for primal problem until η
(n)
A < C

(2)
A η

∗,(n)
S ;

12: use η := η
∗,(n)
S , ηK := η

∗,(n)
S,K ;

13: end

14: according to error indicators ηK refine Th;

15: end

The refinement of the mesh Th is done either by refining 20% of the elements

with the largest error (HG), which leads to meshes with hanging nodes, or using the

anisotropic strategy (AMA) from [7]. In the latter case the error indicators ηS,K are

used in order to determine the size of the mesh elements and the approximations of

the p+ 1 derivatives of both uh and zh are used to compute the optimal anisotropy

(ratio and direction) of the triangles.

The purpose of the safety constants C
(1)
A , C

(2)
A 6 1 is to suppress the impact of the

algebraic errors on the discretization estimates, since otherwise the error indicators

ηK would not produce a reasonable mesh refinement. From the numerical exper-

iments, it seems that the primal error estimate η
(n)
S is more sensitive to algebraic

errors in primal problem (and vice versa for η
∗,(n)
S ), hence we set C

(1)
A = 0.01 and

C
(2)
A = 0.1, but in many numerical experiments even the value C

(2)
A = 1 leads to

stable results.
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R em a r k 4.2. It seems temping to select the more promising of the estimates

ηS and η
∗
S (as early as possible) and stop computing the other one. Unfortunately,

having in mind the curves mapping the size of the residual for GMRES, cf. [14],

which can be almost constant and then decrease to zero in one iteration, gives us the

clue that it may not be possible.

5. Numerical experiments

5.1. Example 1. In the first experiment we examine the performance of the

reconstructions for linear Poisson equation

(5.1) −∆u = f in Ω,

u = 0 on ∂Ω,

in the cross shaped domain Ω = (−2, 2) × (−1, 1) ∪ (−1, 1) × (−2, 2). We chose

J(u) = |ΩJ |−1
∫
Ω
jΩ(x)u(x) dx, where jΩ is the characteristic function of the square

ΩJ = [1.2, 1.4] × [0.2, 0.4]. The exact value of J(u) is unknown hence we use the

reference value 0.407617863684 which was computed in [1], Example 2.

First we compare the quality of the presented reconstructions—primal and dual

estimate based on the LS reconstruction (3.5) denoted by ηLS
S and η∗,LS

S , the estimate

based on the LOC reconstruction (3.8) (only primal, see (3.13)) denoted by ηlocS

and lastly the computation when the dual problem is solved with globally increased

polynomial degree p+ 1 denoted by η+S .

In Table 1 the actual error measured with respect to the target quantity is com-

pared to the discretization error estimates with effectivity indices measuring the

ratio of ηS/J(eh). We see that although the effectivity indices are below one, they

maintain at the same level.

Moreover, Figure 3 shows the decrease of the error J(eh) and estimates ηS when

adaptive refinement is used, and the final mesh for ηlocS is shown in Figure 4. It

seems that although the estimates based on the local reconstructions underestimate

the true error, the resulting error indicators are not worse than those obtained by

global higher order solution of the dual problem. On the contrary, especially for the

finer meshes they perform even better, since the algebraic error can be more easily

suppressed using the estimates (4.6a).

Further, we focus on the impact of the algebraic errors on the computation. The

solution is computed with piecewise linear approximation on uniformly refined mesh

with 4640 triangles.

Figure 5 shows the algebraically precise discrete solution zh (left) and its approx-

imation z
(n)
h spoiled by algebraic errors obtained by 30 GMRES iterations. The

596



p = 1

Nh J(eh) η+S ηlocS ηLS
S η∗,LS

S

290 1.24× 10−2 1.21× 10−2 6.39× 10−3 1.01× 10−2 9.62× 10−3

ieff (0.98) (0.51) (0.81) (0.78)

1160 4.47× 10−3 4.36× 10−3 2.29× 10−3 3.54× 10−3 3.45× 10−3

ieff (0.97) (0.51) (0.79) (0.77)

4640 1.64× 10−3 1.60× 10−3 8.31× 10−4 1.29× 10−3 1.28× 10−3

ieff (0.97) (0.51) (0.79) (0.78)

18560 6.18× 10−4 5.97× 10−4 3.07× 10−4 4.82× 10−4 4.80× 10−4

ieff (0.97) (0.50) (0.78) (0.77)

74240 2.35× 10−4 2.19× 10−4 1.17× 10−4 1.83× 10−4 1.83× 10−4

ieff (0.93) (0.50) (0.78) (0.78)
p = 2

Nh J(eh) η+S ηlocS ηLS
S η∗,LS

S

290 1.78× 10−3 1.27× 10−3 8.36× 10−4 4.54× 10−4 4.99× 10−4

ieff (0.71) (0.46) (0.25) (0.28)

1160 7.02× 10−4 4.98× 10−4 3.27× 10−4 1.75× 10−4 1.79× 10−4

ieff (0.71) (0.47) (0.25) (0.25)

4640 2.80× 10−4 1.99× 10−4 1.29× 10−4 7.03× 10−5 7.09× 10−5

ieff (0.71) (0.46) (0.25) (0.25)

18560 1.15× 10−4 7.49× 10−5 5.09× 10−5 2.80× 10−5 2.82× 10−5

ieff (0.65) (0.46) (0.25) (0.25)

Table 1. Example 1—error estimates of the target quantity for p = 1, 2 on uniformly refined
meshes.
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Figure 3. Example 1—decrease of J(eh) and its estimates ηS for p = 2 on adaptively refined
meshes.

widest contour line represents the value 10−4 so we see that the dual solution z
(n)
h

steadily equals zero in the major part of the domain Ω, unlike zh.

This is caused by the local character of the quantity of interest. The right-hand

side of the problem is nonzero only for basis functions having support in ΩJ and if
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Figure 4. Example 1—Mesh with 14,417 triangles obtained by adaptive refinement based
on the LOC reconstruction with ΩJ highlighted in yellow.

0.11 0.21 0.32
w

0.1 0.21 0.32
w

Figure 5. Example 1—algebraically precise dual solution zh (left) and its approximation
after 30 GMRES iterations (right).

we take z
(0)
h = 0 then it takes many GMRES iterations to spread the information

through the whole computation domain. Since the local reconstruction of a steady

zero would be again the zero function, the resulting error indicators would lead to

refinement only around ΩJ and not in surroundings of the reentrant corners, where

the refinement is deserving due to the irregularity of the primal solution.
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In Figure 6 the differences in the mesh refinement are exhibited if 20% of the

elements with largest indicators were to be refined—blue triangles would be refined

due to algebraic errors while the yellow one should be refined instead. Especially, on

very fine meshes this phenomenon may occur if the algebraic error was not controlled

by (4.6a). A suitable preconditioning may help to overcome this phenomenon.

Figure 6. Example 1—differences in refinement indicators based on η
(n)
S after 30 (left) and

180 (right) GMRES iterations using the LS reconstruction (yellow triangles should
be refined instead of the blue ones).

The dependence of the error estimates on the choice of η
(n)
S ∈ {η

(n)
S , η̃

(n)
S , η̂

(n)
S },

cf. (4.5), is documented in Table 2 and in Figure 7. Table 2 shows the number of

differently (incorrectly) refined elements (column #) due to the algebraic errors in

η
(n)
S , η

∗,(n)
S , while Figure 7 shows the decrease of the error estimates for the least-

square reconstruction. Each iteration iter corresponds to 50 iterations of GMRES

for the primal problem and 30 iterations for the dual problem.
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Figure 7. Example 1—error decrease during GMRES iterations for the estimates based the

least-squares reconstruction, η
(n)
S (left), η̂

(n)
S (right).

The estimates η̃
(n)
S , η̂

(n)
S seem to be better for the least squares reconstruction

than η
(n)
S which is very sensitive to algebraic errors. Moreover, it can be seen that
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the primal estimate η
(n)
S is more sensitive to algebraic errors in the primal problem,

while η
∗,(n)
S is more sensitive to errors in the dual problem, which is in agreement

with experiments performed in [11]. Estimates η̃
(n)
S work similarly to η̂

(n)
S for LS

reconstruction and similarly to η
(n)
S for LOC reconstruction. The bold zeros in

Table 2 mark the step where Algorithm 15 would stop. Altogether, estimates η̂
(n)
S

and η̂
∗,(n)
S seem to be the most robust with respect to algebraic errors and can be

used equivalently, cf. Table 2.

iter #ηS ηA/ηS η∗A/ηS #η∗S ηA/η
∗
S η∗A/η

∗
S

2 464 3.67 1.76× 101 815 2.47× 10−1 1.18

4 349 1.32 3.08× 101 836 4.56× 10−2 1.06

6 45 8.80× 10−2 1.25× 101 809 7.43× 10−3 1.056

8 5 4.22× 10−3 3.53 665 1.04× 10−1 8.73× 10−1

10 2 2.00× 10−4 9.47× 10−1 414 1.09× 10−4 5.13× 10−1

12 1 9.37× 10−6 2.60× 10−1 130 7.51× 10−6 2.08× 10−1

14 0 3.48× 10−7 7.21× 10−2 18 3.23× 10−7 6.69× 10−2

16 0 2.31× 10−8 2.16× 10−2 4 2.24× 10−8 2.10× 10−2

18 0 1.91× 10−8 5.13× 10−3 0 1.88× 10−8 5.04× 10−3

iter #η̂S η̂A/η̂S η̂∗A/η̂S #η̂∗S η̂A/η̂
∗
S η̂∗A/η̂

∗
S

2 132 5.67× 101 2.72× 102 129 5.53× 101 2.65× 102

4 38 2.06 4.80× 101 35 2.03 4.73× 101

6 10 9.03× 10−2 1.29× 101 11 8.91× 10−2 1.27× 101

8 4 4.22× 10−3 3.53 3 4.17× 10−3 3.48

10 2 2.00× 10−4 9.47× 10−1 1 1.98× 10−4 9.34× 10−1

12 1 9.37× 10−6 2.60× 10−1 0 9.24× 10−6 2.57× 10−1

14 0 3.48× 10−7 7.21× 10−2 0 3.43× 10−7 7.12× 10−2

16 0 2.31× 10−8 2.16× 10−2 0 2.28× 10−8 2.13× 10−2

18 0 1.91× 10−8 5.13× 10−3 0 1.88× 10−8 5.06× 10−3

Table 2. Example 1—number of incorrectly marked elements due to algebraic errors (LS re-
construction).

5.2. Example 2. In the second example we investigate the performance of the

described method for the discretization of elliptic problem (2.1) from [16], Example 2.

We set Ω = (0, 1)2 and A = εI, where

ε =
δ

2

(
1− tanh

(r − 1
4 )(r +

1
4 )

γ

)
,

r =
√
(x− 1

2 )
2 + (y − 1

2 )
2 and δ > 0, γ > 0 are constants. Further, we suppose

that b = (2y2 − 4x + 1, y + 1), c = −∇ · b = 3, and f = 0. We choose δ = 0.01
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and γ = 0.05. In this case, the diffusion coefficient ε will be approximately equal to

δ in the circle with center [ 12 ,
1
2 ] and diameter

1
4 . As r increases over

1
4 , ε quickly

decreases reaching values very close to zero (≈ 10−16) at the boundary. Therefore,

from the computational view the problem behaves like a mixed hyperbolic-elliptic

problem, since convection is dominating in the region where r > 1
4 .

The characteristics associated with the convective part of the operator enter the

domain Ω through the horizontal edge along y = 0 and through the vertical edges

along x = 0 and x = 1. We prescribe the Dirichlet boundary condition on this

“inflow” part of the boundary ΓD = {(x, y) ∈ ∂Ω: x = 0 or x = 1 or y = 0},

(5.2) uD =





1 if x = 0 and 0 < y 6 1,

sin2(πx) if 0 6 x 6 1 and y = 0,

e−50y4

if x = 1 and 0 < y 6 1,

which leads to discontinuities in the solution. On the rest of the boundary ∂Ω \ ΓD

we prescribe homogeneous the Neumann boundary condition.

We choose the target functional as an integral over part of the Neumann boundary

(5.3) J(u) =

∫ 0.625

0.25

u(x, 1) dx ≈ 0.324,026,769,433,093.

Since the exact solution is unknown we used the reference value J(u) computed

with p = 4 on adaptively refined mesh with more than ten thousands elements. We

note that due to steep changes of the coefficients A(x), b(x), the evaluation of the

total error (and hence also of the error estimates ηS , η
∗
S) is polluted by the errors in

numerical integration. The estimates of the quadrature errors are not considered in

the presented approach, hence we used an overkill degree of numerical quadrature to

suppress these errors.

The isocurves of the solution are pictured in the left panel of Figure 8. In Table 3

the decrease of the error of the target functional J(eh) is listed together with the

effectivity indices (in brackets) for piece-wise linear DG on adaptively refined meshes.

In the left panel of Figure 9 estimates ηLS
S and η+S are compared to J(eh) when the

anisotropic mesh adaptation method is employed. The decrease of the error is slightly

faster in this case since some number of degrees of freedom can be reduced by the

shape optimization of the triangles. In the right panel of Figure 9 estimates η∗,LS
S

and ηlocS are compared to J(eh) for p = 2 with HG refinement. We can see that

although the decrease of J(eh) is not monotone the error estimates ηS are able to

capture its behavior. Note that the η∗,LS
S estimate almost equals the true error on

fine meshes.
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η+S ηlocS ηLS
S η∗,LS

S

Nh J(eh) Nh J(eh) Nh J(eh) Nh J(eh)

128 2.02× 10−3 128 2.02× 10−3 128 2.02× 10−3 128 2.02× 10−3

(0.96) (0.26) (0.55) (0.90)

203 9.12× 10−4 203 1.12× 10−3 203 1.37× 10−3 203 1.48× 10−3

(1.04) (0.24) (0.31) (0.80)

323 2.99× 10−4 350 6.67× 10−4 323 4.40× 10−4 338 5.75× 10−4

(1.11) (0.56) (0.53) (0.91)

536 1.89× 10−4 566 2.45× 10−4 518 2.20× 10−4 560 2.99× 10−4

(1.00) (0.16) (0.64) (0.77)

899 9.77× 10−5 938 2.14× 10−4 839 1.53× 10−4 935 1.13× 10−4

(1.04) (0.66) (0.50) (0.93)

1460 5.31× 10−5 1541 9.49× 10−5 1367 7.96× 10−5 1541 5.23× 10−5

(1.08) (0.20) (0.53) (0.87)

2381 2.17× 10−5 2543 5.67× 10−5 2198 2.58× 10−5 2555 2.42× 10−5

(0.99) (0.30) (0.94) (1.12)

3899 1.42× 10−5 4157 3.42× 10−5 3569 1.65× 10−5 4160 8.56× 10−6

(1.00) (0.47) (0.94) (1.27)

6305 1.00× 10−5 6755 1.87× 10−5 5765 1.18× 10−5 6758 1.02× 10−5

(1.00) (0.26) (0.89) (0.88)

10223 4.59× 10−6 10961 1.03× 10−5 9272 5.29× 10−6 10958 4.52× 10−6

(1.00) (0.58) (0.80) (0.93)

16475 3.07× 10−6 17723 5.12× 10−6 14927 3.61× 10−6 17708 3.22× 10−6

(1.04) (0.39) (0.90) (0.97)

Table 3. Example 2—decrease of J(eh) and the corresponding effectivity indices for HG
refinement and p = 1.
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Figure 8. Example 2—primal solution (left) on final mesh (right) after hp anisotropic re-
finement.
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Figure 9. Example 2—error decrease for p = 1 anisotropic refinements (left) and p = 2 HG
refinement (right).

Finally, in Figure 10 we present the decrease of J(eh) on adaptively refined meshes

using the error indicators ηLS
S . We compare the results for p = 1, 3 using HG

refinement, anisotropic refinement and the results of hp-anisotropic refinement. The

final mesh of this method is shown in Figure 8 on the right. We see that this method

is very efficient reaching J(eh) < 10−10 with only 22,861 degrees of freedom.
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Figure 10. Example 2—decrease of the error of the target quantity on adaptively refined
meshes using ηLS

S .

6. Conclusion

In this paper, we have presented a complex strategy for estimating the computa-

tional errors with respect to some given quantity of interest. We described an adjoint

consistent discontinuous Galerkin discretization of the linear convection-diffusion-

reaction problem and introduced goal-oriented estimates for both the discretization

and algebraic errors.

603



Two kinds of local reconstructions of the DG solution were proposed. Our method

suffers from the common deficiency of DWR approach—due to the approximation

of the dual solution z we cannot provide guaranteed upper bound for the error of

the quantity of interest. On the other hand, it provides results comparable to the

approaches based on globally higher order solutions, but due to the local character-

istics of the reconstructions it can be computed much faster and straightforwardly in

parallel. The main advantage of the presented strategy is its application to the error

indicators driving adaptive mesh refinement, where it provides very reliable results.

Further, we described the influence of the algebraic errors on the estimates based

on the primal and dual residual, respectively, and we introduced a stopping criterion

keeping the algebraic errors controlled by the discretization estimate. In this way

the algebraic system may be solved efficiently with satisfactory accuracy with respect

to the quantity of interest. On coarse meshes even quite inaccurate solution of the

algebraic problem is sufficient while on fine meshes the algebraic error estimate gives

us a valuable information about the level of precision which has to be reached.
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