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ALMOST C-SPINORIAL GEOMETRY

Roland Púček

Abstract. Almost c-spinorial geometry arises as an interesting example of the
metrisability problem for parabolic geometries. It is a complex analogue of real
spinorial geometry. In this paper, we first define the type of parabolic geometry
in question, then we discuss its underlying geometry and its homogeneous
model. We compute irreducible components of the harmonic curvature and
discuss the conditions for regularity. In the second part of the paper, we
describe the linearisation of the metrisability problem for Hermitian and
skew-Hermitian metrics, state the corresponding first BGG equations and
present explicit formulae for their solutions on the homogeneous model.

1. Introduction

Let G be a real simple Lie group and P a parabolic subgroup with Lie algebras
g and p, respectively. Let g =

⊕k
j=−k gj be a |k|-gradation of g such that p =

g0 ⊕ · · · ⊕ gk and let (G →M,ω) be a parabolic geometry of type (G,P ) (see [6]).
Now, consider the natural bundle H := G ×P g−1. A parabolic geometry is called
metrisable if there exists a (pseudo-) Riemannian metric g on the distribution H
with the property that there exists a Weyl structure on M such that g is covariantly
constant in the directions of H with respect to the corresponding Weyl covariant
derivative. According to a recent classification of metrisable parabolic geometries
with irreducible g−1-part (see [4], [12]), there are three interesting geometries in the
following sense. By definition, a g0-representation V is called absolutely irreducible,
if V ⊗ C is g0-irreducible. If g is a complex Lie algebra which is considered as the
real Lie algebra, and a g0-module B ⊂ �2g−1 is absolutely irreducible, then there
are only three types of parabolic geometries which are metrisable by a procedure
describe below. A version of one of these geometries was recently studied in [3],
which is called c-projective geometry. It is a natural analogue of real projective
geometry.

In this paper we discuss the equivalence problem between regular normal par-
abolic geometries of type (G,P ) and infinitesimal flag structures, where the pair
(G,P ) defines a c-spinorial geometry. To solve this problem we study the first and
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second cohomology groups Hi(g−, g) with coefficients in g, where i = 1, 2. We
restrict our attention to the case rank(g) ≥ 3.

Since we want to study the above-mentioned metrisability problem, we briefly
explain how the metrisability procedure works (for further details see [4], [12]). In
order to find a metric on a distribution G ×P g−1 = H ⊂ TM , we need to consider
nondegenerate sections of �2H∗. For this it turns out to be useful to employ a dual
picture by looking for nondegenerate inverse metrics in Γ(�2H). For the almost
c-spinorial geometry the space �2H decomposes into two g0-irreducible bundles
G ×P V̂ ⊕ G ×P Ŵ . To ensure that elements of Γ(�2H) are covariantly constant
in the directions of H (with respect to a suitable Weyl covariant derivative), we
use a suitable invariant differential operator of first order (see [14]). Such an
operator arises as a composition of a covariant derivative and a projection onto an
irreducible subspace. A typical example of this operator is the first BGG operator
D : Γ(�2H) → Γ(�2H } (G ×P g1)), where } is the Cartan product (for BGG
operators see [?],[1]). It may happen that this BGG operator is not of the first
order, but if we tensor the bundles by a suitable line bundle L, then the resulting
operator D′ : Γ(�2H ⊗ L)→ Γ(�2H ⊗ L} (G ×P g1)) is of first order. Therefore
π ◦∇|Hσ = 0 holds for every Weyl covariant derivative ∇|H acting in the directions
of H, where π : Γ(�2H ⊗L⊗ (G ×P g1))→ Γ(�2H ⊗L} (G ×P g1)) is the natural
projection and σ is an element of the kernel of D′. If the algebraic linearisation
condition (see [4], [12]) is satisfied, one can choose a Weyl covariant derivative ∇̂ in
such a way that ∇̂|Hσ = 0. The only complication is that we are no longer dealing
with inverse metrics (sections of �2H), but with sections of �2H ⊗ L.

Let us briefly recall a version of the algebraic linearisation condition. Suppose
that g1 is an irreducible g0-module and let B be a g0-irreducible subspace of �2g1
such that it contains nondegenerate elements. We say that B satisfies the algebraic
linearisation condition if B ⊗ g1 ' B } g1 ⊕ g−1, where } is the Cartan product.
For detailed description, see [4], [12].

It turns out that in the case of almost c-spinorial geometry there exist Hermitian
metrics as well as skew-Hermitian metrics on H. We describe explicitly solutions of
metrisability equations in the homogeneous case.

The structure of the paper is as follows. In Section 2 we describe almost c-spinorial
geometry and its equivalence problem. We turn to metrisability in Section 3, where
we consider Hermitian metrics in subsection 3.1 and skew-Hermitian metrics in
subsection 3.2. In each subsection we first solve the metrisability problem, then we
describe the solutions for the flat model.
Acknowledgement. The author would like to thank Vladimír Souček for helpful
discussions. This research was supported by the institutional grant of the Charles
University SVV 260456 and by the grant GACR 17-01171S.

2. Almost c-spinorial geometry

2.1. Definition. Let g := so(2n+ 1,C). We equip the algebra g with a gradation
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 which corresponds to the last node crossed in the
Dynkin diagram, or equivalently to block matrices of the form (see [15])
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b 0 −a′
C −b′ −A′

: A,B,C ∈ gl(n,C), a ∈ Cn, b ∈ (Cn)∗, B = −B′, C = −C ′,

where g0 is the block diagonal subalgebra, g1 is generated by a, g−1 by b, g2 by
B, g−2 by C, and the prime operation means transposition with respect to the
anti-diagonal. Let us denote by p := g0 ⊕ g1 ⊕ g2 its parabolic subalgebra and let
g− be the sum g−2 ⊕ g−1. Moreover, we define the filtration gi = ⊕j≥igj ,.

Let G be the special orthogonal group SO(2n + 1,C), and let P ⊂ G be the
subgroup with the Lie algebra p, and let G0 be the subgroup of P with the Lie
algebra g0.

From now on we shall view G0 ⊂ P ⊂ G as real Lie groups embedded in the
standard way to GL(4n+ 2,R).

Definition 1. Let G and P be as above. A parabolic geometry (G → M,ω) of
type (G,P ) is called almost c-spinorial geometry.

We fix the following notation. A complex Lie algebra will be denoted by gC and
its underlying real Lie algebra will be denoted by g. Let us mention the relation
g⊗ C ' gC ⊕ gC.

2.2. The equivalence problem. In this section we discuss the equivalence pro-
blem between infinitesimal flag structure and normal Cartan connection for the
case of almost c-spinorial geometry. We shall consider only rank(g) ≥ 3. The case
rank(g) = 2 is quite special and will be discussed elsewhere.

Theorem 1. Let rank(g) ≥ 3. Then normal regular parabolic geometries (G →
M,ω) of type (G,P ) are in bijective correspondence up to isomorphism with triples
(M,H, J), where M is a manifold of (real) dimension n(n + 1) with a filtration
on TM given by a generic distribution H of (real) dimension 2n, and J is an
almost complex structure on H. The homogeneous model (G→ G/P ) corresponds
to isotropic complex Grassmannian IGr(n, 2n+ 1) equipped with the tautological
bundle.

Proof. According to Observation 3.1.7 in [6], regular infinitesimal flag structure is
equivalent to:

(i) a filtration {T iM} such that M is a filtered manifold with locally trivial
bundle of symbol algebras with the fiber g−

(ii) the reduction Ad: G0 → Autgr(g−) of structure group of the natural frame
bundle of gr(TM)

As H is a generic distribution, (i) holds. By an easy computation one gets that the
homomorphism Ad is injective. Since g−2 is bracket-generated by g−1, Aut(g−2)
is fully determined by Aut(g−1). As Aut(g−1) are real automorphisms of the real
2n-dimensional vector space, the reduction is equivalent to a choice of an almost
complex structure on H. Therefore, the claim of the theorem follows by the general
theorem (Theorem 3.1.14 in [6]) on the equivalence of categories between normal
regular parabolic geometries of type (G,P ) and underlying regular infinitesimal
flag structure on M .
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Let Q be the quadratic form given by z2
n+1 +

∑n
i=1 ziz2n+2−i. It is easy to see

that the set of vectors {ei}ni=1 form isotropic subspace, where {ei}2n+1
i=1 is standard

basis of C2n+1. Under the action of G, the orbit of the subspace is the Grassmannian
and isotropy subgroup is P . �

In order to compute the regularity condition of a parabolic geometry we shall
consider the second cohomology group H2(g−, g). Corollary 3.1.8 from [6] gives
us an equivalent characterization of a regular parabolic geometry in terms of the
filtration of g. Therefore, if κ is the curvature function then the regularity is
equivalent to

(1) κ(gi, gj) ⊂ gi+j+1 for all i, j < 0 ,

where gi = ⊕l≥igl. The only nontrivial condition (1) for |2|-graded algebra is
κ(g−1, g−1) ⊂ g−1 = g−1 ⊕ g0 ⊕ g1 ⊕ g2. In other words the ∧2(g−1)∗ ⊗ g−2
component of the curvature function is zero. To proceed further we compute
the second cohomology group H2(g−, g), where the harmonic curvature κH takes
values.

To describe the result, we need a suitable notation. A real irreducible represen-
tation V of g can be described as a real part of an irreducible module for g⊗ C.
Because g⊗ C ∼= gC ⊕ gC, they can have the following two forms:

(i) either the module V ⊗C is the (outer) product Vλ�Vλ, which will be denoted
by V = [Vλ � Vλ]R, where λ is an integral dominant weight for gC,

(ii) or the module V ⊗ C is Vλ � Vλ′ ⊕ Vλ′ � Vλ, which will be denoted by
V = [Vλ � Vλ′ ⊕ Vλ′ � Vλ]R, where (λ, λ′) is a pair of dominant integral weights for
gC.

The highest (fundamental) weights of fundamental representations of gC will be
denoted by ωi, i = 1, . . . , rank(gC). Recall that a gC-dominant algebraically integral
weight is a linear combination of the fundamental weights with nonnegative integral
coefficients.

Since g0 is a reductive subalgebra of g, we can decompose it into its semisimple
part and its centre, g0 = gss0 ⊕ z(g0). In our case, gss0 is sl(n,C) considered as
the underlying real Lie algebra and hence the semisimple part is simple. Recall
that the compatible Cartan subalgebra h of g is a subspace of g0 which splits
into h′ ⊕ z(g0), where h′ is a Cartan subalgebra of gss0 . Hence, complex irreducible
representations of g0 are in bijective correspondence with a subset of h∗, but the
dominance and integrality conditions refer only to the restrictions to h′. In the case
of gC = so(2n + 1,C), complex irreducible representations of gC

0 are in bijective
correspondence with {

∑n
i=1 λiωi : λi ∈ N ∪ {0} for 1 ≤ i ≤ n − 1, λn ∈ R}. For

detailed description see sections 3.2.12 and 3.2.13 in [6]. It will always be clear
from the context whether we are considering an irreducible module for the Lie
algebra g or g0.

Let us clarify the notation on a few distinguished examples. Suppose that
(G → M,ω) is c-spinorial geometry. The generic distribution H is generated by
the g0-representation g−1 = [Vωn−1−2ωn � V0 ⊕ V0 � Vωn−1−2ωn ]R, where V0 is the
trivial representation C. The tangent bundle TM is isomorphic with the natural
bundle generated by the representations g−2 ⊕ g−1, where g−2 = [Vωn−2−2ωn �
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V0 ⊕ V0 � Vωn−2−2ωn ]R. Taking dual representations one gets that T ∗M is given by
the representation g1 ⊕ g2 = [Vω1 � V0 ⊕ V0 � Vω1 ]R ⊕ [Vω2 � V0 ⊕ V0 � Vω2 ]R.

Lemma 2. The second cohomology group H2(g−, g) has three irreducible compo-
nents with respect to the action of g0.
(i) Their highest weight description for rank g ≥ 5 is:

(1) V1 = [Vωn−2−2ωn � Vω1+ω2 ⊕ Vω1+ω2 � Vωn−2−2ωn ]R
(2) V2 = [Vω1+ωn−2−2ωn � Vω1 ⊕ Vω1 � Vω1+ωn−2−2ωn ]R
(3) V3 = [Vω1+ω2+ωn−2−2ωn � V0 ⊕ V0 � Vω1+ω2+ωn−2−2ωn ]R

Moreover, V1 has homogeneity 1, V2 has homogeneity 0, V3 has homogeneity 1.

(ii) Their highest weight description for rank of g equal to 4 is:
(1) V1 = [Vω2−2ω4 � Vω1+ω2 ⊕ Vω1+ω2 � Vω2−2ω4 ]R
(2) V2 = [Vω1+ω2−2ω4 � Vω1 ⊕ Vω1 � Vω1+ω2−2ω4 ]R
(3) V3 = [Vω1+2ω2−2ω4 � V0 ⊕ V0 � Vω1+2ω2−2ω4 ]R

Moreover, V1 has homogeneity 1, V2 has homogeneity 0, V3 has homogeneity 3.

(iii) Their highest weight description for rank of g equal to 3 is:
(1) V1 = [Vω1−2ω3 � Vω1+ω2 ⊕ Vω1+ω2 � Vω1−2ω3 ]R
(2) V2 = [V2ω1−2ω3 � Vω1 ⊕ Vω1 � V2ω1−2ω3 ]R
(3) V3 = [V2ω1+2ω2−2ω3 � V0 ⊕ V0 � V2ω1+2ω2−2ω3 ]R

Moreover, V1 has homogeneity 1, V2 has homogeneity 0, V3 has homogeneity 3.

Proof. We give the proof for the general case n ≥ 5, the other two cases are
similar. For the low rank cases, it is also possible to use the online service provided
by J. Šilhan [13]. Recall the decompositions g⊗C ∼= gC⊕gC, g−⊗C ∼= gC

−⊕gC
− and

similarly for g0. The adjoint representation of g⊗C on itself acts as gC�C⊕C�gC.
Due to this we have
(2) H2(g−, g)⊗C ∼=

⊕
i+j=2

(
Hi(gC

−, g
C)�Hj(gC

−,C)⊕Hi(gC
−,C)�Hj(gC

−, g
C)
)
.

Hence it is sufficient to compute the (complex) cohomology groups with values
in the trivial, resp. adjoint representations up to the order two using the Kostant
theorem. We get
H0(gC

−,C) ∼= V0 ∼= C, H1(gC
−,C) ∼= Vω1

∼= gC
1 , H2(gC

−,C) ∼= Vω1+ω2
∼= gC

1 } gC
2 ,

and (symbol } denotes the Cartan product)

H0(gC
−, g

C) ∼= Vωn−2−2ωn
∼= gC
−2, H1(gC

−, g
C) ∼= Vω1+ωn−2−2ωn

∼= gC
1 } gC

−2 ,

H2(gC
−, g

C) ∼= Vω1+ω2+ωn−2−2ωn
∼= gC

1 } gC
2 } gC

−2 .

We get the corresponding homogenities from relations
V1 ∼= [(gC

1 } gC
2 )� gC

−2 ⊕ gC
−2 � (gC

1 } gC
2 )]R ,

V2 ∼= [gC
1 � (gC

1 } gC
−2)⊕ (gC

1 } gC
−2)� gC

1 ]R ,

V3 ∼= [C� (gC
1 } gC

2 } gC
−2)⊕ (gC

1 } gC
2 } gC

−2)� C]R .
�
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As a corollary, we get from Cor. 3.1.8 [6].

Corollary. The c-spinorial geometry (p : G → M,ω) of type (G,P ) is regular if
and only if the second piece V2 in H2(g−, g) is trivial.

3. Metrisability

In this section we shall discuss the metrisability problem for an almost c-spinorial
geometry (M,H, J) given by the distribution H ⊂ TM and the complex structure
J on H. We shall construct certain invariant subspaces B ⊂ �2H and we shall
apply the linearisation method translating metrisability problem to the problem of
finding all nondegenerate solutions of certain invariant overdetermined first order
system of linear PDE’s.

Let V be the g-irreducible representation given by [Vω1 � Vω1 ]R. The representa-
tion V give rise to the first BGG operator DV : Γ(H0(g+, V ))→ Γ(H1(g+, V )) of
first order, where g+ = g1⊕g2 and Hi(g+, V ) is the natural bundle given by the ho-
mology Hi(g+, V ). Similarly, for the representation W = [W2ω1�W0⊕W0�W2ω1 ]R,
there is the first BGG operator DW of first order.

3.1. Hermitian metrics. We shall use abstract indices as in [3]. Sections of the
bundle H or elements of g−1 will be denoted by hα, sections of the dual H∗ or
elements of g1 by hα. The almost complex structure J on H is denoted by J β

α and
the same notation is used in the case of the almost complex structure on g−1. An
analogue of the Einstein summation convention is used as, e.g., in the action of
J on a section h of H∗ in −J β

α hβ . A Hermitian metric on (H,J) is a J-invariant
(pseudo-)Riemannian metric metric gαβ ∈ Γ(�2H∗), i.e. it satisfies the relation

JγαJ
δ
βgγδ = gαβ .

The complexification H ⊗ C decomposes as HC ⊕HC. We use Greek indices to
denote real sections of H resp. H ⊗ C, and we use Latin indices (with or without
the bar) for sections of HC or HC.

In local coordinates, indices for sections hα of H are in {1, . . . , 2n} and indices
for sections ha, resp. h̄ā, are in {1, . . . , n}.

Let us note that the representation V corresponds to a Hermitian metrics.

Theorem 3. Let (G → M,ω) be an almost c-spinorial geometry. There exists
a bijection between nondegenerate Hermitian metrics on H ⊂ TM, which are
covariantly constant in the directions of H with respect to a suitable Weyl connection
of the geometry, and nondegenerate sections in the kernel of DV .

Proof. The general scheme of proof described in the introduction can be used (for
details see [12]) in this particular case. A simplification is that the first BGG operator
corresponding to the choice of V is a first order operator, so that it is not necessary
to twist the corresponding associated bundle by a line bundle. Let us show how the
BGG operator arises. Consider the g-representation V = [Vω1 �Vω1 ]R which defines
the BGG sequence. The first BGG operator DV acts on a sections of the natural
bundle given by the zeroth homology group H0(g+, V ) and it has values in a sections
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of the natural bundle given by the first homology group H1(g+, V ). By an easy
computation one gets H0(g+, V ) = [Vωn−1−2ωn � Vωn−1−2ωn ]R and H1(g+, V ) =
[Vω1+ωn−1−2ωn � Vωn−1−2ωn ⊕ Vωn−1−2ωn � Vω1+ωn−1−2ωn ]R as g0-representations.
This shows that the first BGG operator acts on the correct bundle (inverse Hermitian
metrics). Since H1(g+, V ) is the Cartan product of H0(g+, V ) and g1, the operator
is of first order. �

Let (p : G→ G/P, ω) be the homogeneous model of a parabolic geometry and let
π : G×PV→ G/P be an associated bundle. The map ϕ given by X 7→ exp(X)P is a
diffeomorphism from g− onto dense open subset U ⊂ G/P . Recall that, in particular,
smooth sections Γ(U,G×P V) are in bijective correspondence with P -equivariant
smooth functions C∞(p−1(U),V). For any σ ∈ Γ(U,G×P V) one can construct the
local trivialisation induced by σ. Indeed, there is a map U × V→ π−1(U) which
maps (x, v) to the P -orbit P · (σ(x), v). On the other hand, the inverse map is given
by Ju, vK 7→ (x, b · v), where u = σ(x) · b and Ju, vK stands for the equivalence class
of the element (u, v). In such a trivialisation every s ∈ Γ(U,G×P V) has the form
x 7→ (x, f(σ(x))), where f is the P -equivariant function which corresponds to s.
Therefore, after a choice of a section σ, any section s ∈ Γ(U,G×P V) can be viewed
as the unique function f : U → V, and vice versa. Moreover, by precomposition with
the diffeomorphism ϕ one gets functions defined on g−. In particular, a solution to
a BGG equation can be characterized by such a function. In the sequel the section
σ is assumed to be a normal section. For closer discussion see [5] and Example
5.1.12 in [6], which concern the very flat Weyl structure.

Now we describe Ker(DV ). This operator is called metrisability operator. The
tractor bundle which defines the metrisability operator is called the metric tractor
bundle. The standard tractor bundle is the natural bundle which arises from the
defining representation of g and it is denoted by T . Clearly, g-defining representation
induces filtration T = T 0 ⊃ T 1 ⊃ T 2 such that T 0/T 1 ' H∗ = G ×P g1,
T 1/T 2 ' R the trivial representation, and T 2 ' H = G ×P g−1.

The metric tractor bundle of DV is the tractor bundle G×P V ⊂ �2T , where V is

the module V = [Vω1�Vω1 ]R. Its elements can be decomposed as




τβγ
ξβ

ρ | ψ γ
β | ψ̂γβ
σβ

νβγ

,

where τβγ ∈ �2g1, νβγ ∈ �2g−1 and the following equations hold: Jαβ Jδγταδ = τβγ ,
JβαJ

γ
δ ν

αδ = νβγ , Jαβ J
γ
δ ψ

δ
α = ψ γ

β , Jαβ J
γ
δ ψ̂

δ
α = ψ̂γβ .

Theorem 4. In the situation as above, the metrisability operator can be equivalently
characterized as:

∇αηβγ − δ(β
α µ

γ) = 0 ⇔ ∇aηbc̄ − δbaµc̄ = 0,∇āηbc̄ − δc̄āµb = 0
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for some µ, and η ∈ Γ(�2H) such that JβαJ
γ
δ η

αδ = ηβγ, where ∇ is a Weyl
covariant derivative. Moreover, in the homogeneous case, solutions have the form

ηαβ(x, y) = ναβ + yαγψ β
γ + ψ̂αγy

γβ − 2x(ασβ) − 1
2(xαxγψ β

γ + ψ̂αγx
γxβ)

+ yαγyβδτγδ + ρxαxβ − yαγξγxβ − xαyβγξγ

+ 1
2(xαyβγxδτδγ + yαγxδτγδx

β)

− 1
2x

αxβxγξγ + 1
4x

αxβxγxδτδγ ,

where x ∈ g−1, y ∈ g−2 and ν, ψ, ψ̂, σ, τ , ρ, ξ ∈ V as stated above the theorem.

Remark. In particular we can take ∇ to be the flat Weyl connection induced by
the normal coordinates and then ∇ is ordinary partial differentiation.

Proof. The metrisability operator is characterized by the action of the tractor
covariant derivative and the projection on the homology part. Solutions can be
computed algorithmically using [5]. For X ∈ g− and for v ∈ V a normal solution has
the form Π(exp(−X) · v) which is a finite sum by the nilpotence of the operator X,
where Π: Γ(G×P V )→ Γ(G×PH0). Let us recall that in the case of a homogeneous
model all solutions to a first BGG equation are normal. �

Remark. The second part of the Theorem 4 can be generalized. Following a
choice of normal coordinates and a normal section as in [5] for a general parabolic
geometry (G →M,ω) then the following holds. If a normal solution to a first BGG
equation exists then it has the form as in Theorem 4.

3.2. Skew-Hermitian metrics. There are also covariantly constant metrics (in
the above sense) which are not Hermitian metrics. As in the previous subsection
we first consider the kernel and then the homogeneous case.

The representationW = [W2ω1�W0⊕W0�W2ω1 ]R corresponds to skew-Hermitian
metrics which can be characterized by the equation:

JγαJ
δ
βgγδ = −gαβ .

Theorem 5. Let (G → M,ω) be an almost c-spinorial geometry. There exists
a bijection between nondegenerate skew-Hermitian metrics on H ⊂ TM, which
are covariantly constant in the directions of H with respect to a suitable Weyl
connection of the geometry, and nondegenerate sections in kernel of DW .

The proof of this theorem is analogous as in Theorem 3.
Now we proceed similarly as in the case of Hermitian metrics. If we consider

the representation W , its tractor bundle can be realized in �2T . An element of W

can be decomposed as




τβγ
ξβ

ρ | ψ γ
β | ψ̂γβ
σβ

νβγ

, where τβγ ∈ �2g1, νβγ ∈ �2g−1 and the
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following equations hold: Jαβ Jδγταδ = −τβγ , JβαJ
γ
δ ν

αδ = −νβγ , Jαβ J
γ
δ ψ

δ
α = −ψ γ

β ,
Jαβ J

γ
δ ψ̂

δ
α = −ψ̂γβ .

Theorem 6. In the situation as above, the metrisability operator can equivalently
be characterized as:

∇αηβγ − µ(βδγ)
α = 0⇔

∇aηbc − µ(bδc)a = 0, ∇āηb̄c̄ − µ(b̄δ
c̄)
ā = 0

for some µ, and η ∈ Γ(�2H) such that JβαJ
γ
δ η

αδ = −ηβγ. Moreover, in the
homogeneous case, solutions have the form

ηαβ(x, y) = ναβ − yαγψ β
γ − ψ̂αγyβγ + x(ασβ) − 1

2(x′αxγψ β
γ + ψ̂αγx

γx′β)

+ ρx′αx′β + yαγyβδτγδ −
1
2(yαγξγx′β + x′αξγy

βγ)

+ 1
2(x′αxγτγδyβδ + yβγτγδx

δx′β)

− 1
12x

′αx′βxγξγ + 1
4x
′αx′βxγxδτγδ ,

where x ∈ g−1, y ∈ g−2 and ν, ψ, ψ̂, σ, τ , ρ, ξ ∈W similarly as in Theorem 4.

The proof is a straightforward computation.

Remark. Similarly to the remark below Theorem 4 we can choose ∇ in Theorem
6 to be the flat Weyl connection and then ∇ is ordinary partial differentiation.
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