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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 6 , P A G E S 1 0 1 2 – 1 0 2 5

WARM-START CUTS
FOR GENERALIZED BENDERS DECOMPOSITION

Jakub Kůdela and Pavel Popela

In this paper, we describe a decomposition algorithm suitable for two-stage convex stochastic
programs known as Generalized Benders Decomposition. For this algorithm we propose a new
reformulation that incorporates a lower bound cut that serves as a warm-start, decreasing the
overall computation time. Additionally, we test the performance of the proposed reformulation
on two modifications of the algorithm (bunching and multicut) using numerical examples. The
numerical part is programmed in MATLAB and uses state-of-the-art conic solvers.

Keywords: stochastic programming, Generalized Benders Decomposition, L-shaped
method, warm–start

Classification: 90C15, 90C25, 49M27

1. INTRODUCTION

In stochastic programming, we usually have to deal with problems that are large-scale
but have a special structure [3]. Proper utilization of this special structure is the key
part in the construction of any practically usable algorithm. One of the most widely
used algorithms for two-stage stochastic linear programs is the L-shaped method devel-
oped by Van Slyke and Wets [12]. This method is based on (or, as the authors of the
method wrote in the original paper: “is essentially the same as”) the algorithm devel-
oped by Benders in [2] known as the Benders Decomposition. Over the years, numerous
extensions for the L-shaped method have been proposed. A summary of the ones that
are currently used can be found in [13] and [14].

A further generalization of the Benders decomposition for nonlinear convex problems
([1, 4]) was proposed by Geoffrion in [7] and was named the Generalized Benders Decom-
position (GBD). The method found its main use as a solution technique for mixed-integer
nonlinear problems, described in [5] and [6].

In this paper, we describe a formulation of the GBD that suits the particular structure
of two-stage stochastic programming problems. After that, we introduce a reformulation
that enables us to add a lower bound cut, which acts as a “warm-start” for the algorithm.
As the lower bound cut, we decided to use the one that we can compute with the least
effort. As there have been several lower bounds proposed for stochastic programs (for
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example in [3] and [11]) the question of the appropriate one for our problem will be left
open for future research.

2. GBD – MAIN IDEAS

In this section, we give a brief insight into the GBD, as it is not our intention to devote
several pages to its thorough description. An interested reader can find an in-depth
analysis of the method in the original paper [7] and in the works of Floudas in [5] and
[6].

The problems GBD aims to solve are of the form:

minimize
x,y

f(x, y)

subject to G(x, y) ≤ 0, x ∈ X, y ∈ Y,
(1)

where x ∈ X ⊆ <n1 , y ∈ Y ⊆ <n2 , f : <n1 × <n2 −→ < is a real-valued objective
function and G : <n1 ×<n2 −→ <m is an m-vector of constraint functions. The variable
x is called a complicating variable in the sense that (1) is a much easier optimization
problem in y when x is temporarily held fixed. The following conditions are required:

C1: Y is a nonempty, convex set and the functions f and G are convex for each fixed
x ∈ X.

C2: The set
Zx = {z ∈ <m : G(x, y) ≤ z for some y ∈ Y } (2)

is closed for each fixed x ∈ X.

C3: For each fixed x ∈ X ∩ V , where

V = {x : G(x, y) ≤ 0, for some y ∈ Y }, (3)

one of the following conditions holds:

(i) the problem (1) has a finite solution and has an optimal multiplier vector for
the inequalities.

(ii) the problem (1) is unbounded, that is, its objective function value goes to
−∞.

This covers quite a wide range of problems [5]. The particular situation we are
interested in is when f and G are linearly separable in x and y, i. e.

f(x, y) = f1(x) + f2(y),
G(x, y) = G1(x) +G2(y). (4)

The basic idea in GBD is the generation, at each iteration, of an upper bound and
a lower bound on the optimal solution of (1). The upper bound results from a subprob-
lem, while the lower bound results from a master problem. The subproblem corresponds
to the problem (1) with fixed x-variable (i. e., it is in the y-space only), and its solution
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provides information about the upper bound and the Lagrange multipliers ([1, 4]) as-
sociated with the inequality constraints. The master problem is derived via nonlinear
duality theory, makes use of the Lagrange multipliers obtained in the subproblem, and
its solution provides information about the lower bound, as well as the next set of fixed
x-variable to be used subsequently in the subproblem [5].

3. GBD FOR TWO-STAGE STOCHASTIC PROGRAMMING PROBLEMS

In stochastic programming linear separability of the objective function and constraints
is a very common property. Especially the two-stage stochastic programming problems
can be often linearly separated into the functions concerning only the first-stage and
the second-stage decision variables – this is the raison d’etre of the following passages,
and it is why we believe that the GBD (in its slightly modified form) is a well-suited
algorithm for these kinds of problems.

3.1. Problem formulation

Let us consider the following problem:

minimize
x,y1,...,yK

f1(x) +
K∑
k=1

p(ξk)f2(yk, ξk)

subject to G11(x) ≤ 0,
G21(ξk)x+G22(yk, ξk) ≤ 0, ξk ∈ Ξ,

(5)

where f1 : <n1 −→ < is a convex function, all m1 constraint functions G11 : <n1 −→ <m1

are convex, and for all ξk ∈ Ξ with |Ξ| = K finite, G21(ξk) is a m2 × n1 matrix,
f2(·, ξk) : <n2 −→ < is convex, all m2 constraint functions G22(·, ξk) : <n2 −→ <m2 are
convex, P (ξ = ξk) ≡ p(ξk) > 0,

∑K
k=1 p(ξk) = 1.

The master problem corresponding to (5) has the following form:

minimize
x,θ

f1(x) + θ

subject to G11(x) ≤ 0,
Dix ≤ di, i = 1, . . . , p,
Ejx− θ ≤ ej , j = 1, . . . , r,

(6)

where θ ∈ < serves as the lower bound on the second stage objective value. The meaning
of matrices D,E and vectors d, e will be fully discussed in the actual solution procedure.
These matrices and vectors correspond to the feasibility and optimality cuts derived
from the solutions of the subproblem.

Because of the structure of the two-stage stochastic programming problems, the sub-
problem separates into K independent subproblems (one for each scenario) in the form:

minimize
yk

f2(yk, ξk)

subject to G21(ξk)x+G22(yk, ξk) ≤ 0.
(7)
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Remark 3.1. Regarding our notation – one could use k instead of ξk in the formulations
above (and in the ones that will follow). The use of ξ is standard in the stochastic
programming literature.

3.2. Solution procedure

The following algorithm is an implementation of the GBD inspired by [7] and [5]. The
single difference (apart from the notation) is that the separability of the subproblem into
K independent subproblems is taken into account. At the start of the procedure, the
matrices D,E and vectors d, e are empty (they store the successive cuts as the iterations
progress).

To our best knowledge, this is the first implementation of the GBD for two-stage
stochastic convex programming problems of the form (5).

Step 0. Set p = 0, r = 0, and ε > 0.

Step 1. Solve (6) and obtain (x̄, θ̄). The optimal objective value of (6) gives us a lower
bound on optimal objective value of (5).

Step 2. For fixed x = x̄ solve all K subproblems (7). One of two possibilities can
happen.

Step 2A. For some k the subproblem (7) is infeasible. Solve the following problem:

minimize
yk,v≥0

||v||1
subject to G21(ξk)x̄+G22(yk, ξk) ≤ v,

(8)

where v ∈ <m2 is a decision vector representing “slacks” in the constraints. Get
(ȳk, v̄) and from its dual obtain the optimal Lagrange multipliers λ. Set p = p+ 1.
Add a new row to the matrix D and vector d in (6):

Dp = λTG21(ξk), dp = λT (−G22(ȳk, ξk)). (9)

Return to Step 1.

Step 2B. All the subproblems have finite optimal values, we obtained (ȳk, uk), where
uk are optimal Lagrange multipliers. The evaluation of the objective of (5) at
(x̄, ȳ1, . . . , ȳK) gives us an upper bound on its optimal value. Check for optimality:
if

θ̄ + ε ≥
K∑
k=1

p(ξk)f2(ȳk, ξk), (10)

terminate, (x̄, ȳ1, . . . , ȳK) are ε-optimal [7]. Otherwise, set r = r+1 and add a new
row to the matrix E and vector e in (6):

Er =
K∑
k=1

p(ξk)(uTkG21(ξk)),

er = −
K∑
k=1

p(ξk)(f2(ȳk, ξk) + uTk (G22(ȳk, ξk)).

(11)

Return to Step 1.
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Remark 3.2. In Step 1, before any optimality cut is added, θ̄ as well as the optimal
objective value of (6) will be −∞. For computational reasons it is advisable to include
a lower bound on θ in the actual implementation of the algorithm.

Remark 3.3. If X ⊆ V (i. e., in the case of complete or relatively complete recourse
[3]), the Step 2A is never needed and for a given ε > 0 the GBD terminates in a
finite number of iterations. If however, X * V , then we may need to solve Step 2A
infinitely many successive times. In such a case, to preserve finite ε-convergence, we
can modify the procedure so as to finitely truncate any excessively long sequence of
successive executions of Step 2A and go to Step 2B with x̂ equal to the extrapolated
limit point which is assumed to belong to X ∩ V , see [5] or [6].

4. REFORMULATION WITH A BOUNDING CUT

In this section, we introduce a novel reformulation of the master problem (6) that in-
cludes bounds obtained from problems, that can be thought of as predecessors of the
two-stage stochastic programming problem (5). The definitions of these problems, as
well as their subsequent relations, are based on [9].

4.1. Bounds

Let us define
minimize
xk,yk

f1(xk) + f2(yk, ξk)

subject to G11(xk) ≤ 0,
G21xk +G22(yk, ξk) ≤ 0,

(12)

as the optimization problem for one particular realization ξk ∈ Ξ and denote its opti-
mal objective function value as z(ξk) The wait-and-see solution is the solution without
nonanticipativity constraints (i. e. all scenarios are treated and optimized separately).
We will denote the average of the optimal objective values of (12) (when treated sepa-
rately) as:

WS =
K∑
k=1

p(ξk)z(ξk). (13)

Now we may compare this wait-and-see solution to the solution of (5). We will denote
the optimal objective value of (5) as RP (the recourse problem [3]). The following
inequality holds for any stochastic program:

WS ≤ RP. (14)

From this, we can see that WS creates a valid lower bound on the harder problem we
are aiming to solve. The idea behind the reformulation is to include such a valid lower
bound to the algorithmic procedure to “jumpstart” it and by doing so save on iterations,
and, as a result, save on the overall computational effort and time.

For practical purposes, many people would believe that finding the wait-and-see so-
lution is still too much work. A natural temptation is to solve a much simpler problem:



Warm-start cuts for Generalized Benders Decomposition 1017

the one obtained by replacing all random variables by their expected values. This is
called the expected value problem, which is simply

EV = z(ξ̄), (15)

where ξ̄ =
∑K
k=1 p(ξk)ξk.

4.2. Reformulation

Although WS is a valid bound, the computational effort for its enumeration is much
higher compared to the effort to compute EV (if |Ξ| = K, then computing EV is K times
faster). However, EV does not necessarily have to play the role of a lower bound on RP;
there are instances, where RP ≤ EV. For the purpose of deriving the reformulation, we
will, for now, suppose that EV is, in fact, a valid lower bound on RP. The discussion on
what is going to occur when it is not will follow shortly after. Suppose

EV ≤ RP, (16)

holds, then

f1(x) +
K∑
k=1

p(ξk)f2(yk, ξk) ≥ EV, (17)

holds for the optimum of (5). This inequality cannot be added directly to (5) since it
would cease to be a convex program. The reformulation we propose does not directly
alter (5) but is instead aimed at the master problem (6). A new variable z is introduced
to bound the first-stage objective from above (by minimizing this variable we effectively
minimize the first-stage objective itself)

f1(x) ≤ z, (18)

which is a convexity preserving inequality. Furthermore, this new variable z added to
the variable representing the second stage θ form a lower bound on the overall objective
function. Finally, the bound

z + θ ≥ EV, (19)

since it is affine, can be added to (6), and the reformulation of the problem is

minimize
z,x,θ

z + θ

subject to f1(x) ≤ z,
G11(x) ≤ 0,
z + θ ≥ EV,
Dix ≤ di, i = 1, . . . , p
Ejx− θ ≤ ej , j = 1, . . . , r.

(20)

After this reformulation, the algorithm continues as usual, arriving at an ε-optimal
solution in, preferably, a shorter time than its original counterpart (we will see the
results of some numerical examples in later sections).
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Now, let us address what happens if (16) does not hold. One of two possibilities can
occur, namely, that optimal objective function value (as determined by the algorithm)
will be equal to EV, or that the problem will be infeasible. The price we pay for
mistakenly using the cuts (16) is, in both cases, one iteration of the algorithm – i. e.
after one iteration we can assess, if our algorithm will arrive at the desired solution,
and, either restart it without (16) (possibly including WS instead), or continue.

However, certain situations can happen when we restart the algorithm without (16)
and get the same result again. This occurs if the original problem is infeasible (in which
case we have some serious model or data issues) or if EV = RP, in that case we would
have to run the entire algorithm only to arrive at the same objective function value
(which is a bit unfortunate, but unavoidable).

Another important question is if the cut (16) is worth having an additional variable.
The numerical examples we provide in the later sections should supply us with some,
although not definitive, insight into this issue.

Lastly, the question whether or not it is better to use the guaranteed lower bound
in WS is also present. As we mentioned earlier, WS is computationally much more
expensive than EV. In the examples that will follow we did not carry any examination
of the WS bound, nor of any other possible bound. This is one of the areas that require
further future investigation.

The solution procedure can be summarized in the following steps:

Step 0. Solve the expected value problem to get EV (15). Set p = 0, r = 0, and ε > 0.
Solve (20) and obtain (z̄, x̄, θ̄). If z̄ + θ̄ = EV, terminate (and use the original
method without the EV cut, or use WS instead). Otherwise, go to Step 2.

Step 1. Solve (20) and obtain (z̄, x̄, θ̄).

Step 2., Step 2A., Step 2B. The same as in section 3.2.

5. BUNCHING AND MULTICUTS

Just as in the linear case with the L-shaped method, different implementations of the
algorithm can be researched for improving its performance ([3, 13]). Two possible ad-
justments suitable for GBD – bunching and the multicut formulation will be discussed
and brought into the numerical examination.

Bunching, as the name suggests, is a technique that instead of the full scenario de-
composition uses “bunches” of scenarios and decomposes the original problem alongside
these bunches. Having L bunches of scenarios and sets of indices Bl 6= ∅, l = 1, . . . , L,
such that Bi ∩ Bj = ∅ for i 6= j and

⋃L
l=1Bl = {1, . . . ,K}. The subproblems (7) for

each bunch l have the form

minimize
yk,k∈Bl

∑
k∈Bl

p(ξk)f2(yk, ξk)

subject to G21(ξk)x+G22(yk, ξk) ≤ 0, k ∈ Bl.
(21)
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The feasibility and optimality cuts in Step 2A. and Step 2B. of the algorithm are changed
accordingly. The feasibility cut in Step 2A. becomes

Dp =
∑
k∈Bl

λTkG21(ξk), dp = −
∑
k∈Bl

λTkG22(ȳk, ξk), (22)

and the optimality cut in Step 2B. becomes

Er =
L∑
l=1

∑
k∈Bl

uTkG21(ξk),

er = −
L∑
l=1

∑
k∈Bl

p(ξk)(f2(ȳk, ξk) + uTkG22(ȳk, ξk),

(23)

where λk and uk are the Lagrange multipliers corresponding to the inequalities from
scenario k ∈ Bl.

In the linear case, bunching comes from the idea that several second-stage problems
might have the same optimal basis [3]. In the convex case, the justification is a bit
different. Our argumentation is purely in the realm of the actual computation – it
is sometimes faster (due to a non-zero initialization time, etc.) to compute a larger
instance containing several separable problems than to solve these problems separately.
The examples will show, up to a certain point, exactly this kind of behavior.

The multicut formulation comprises of developing one cut for every second-stage
problem (i. e. for every scenario) instead of the aggregated cut introduced in (6). It
results in adding a separate θk for each scenario and as a consequence in a much greater
number of cuts which more accurately describe the recourse function [3]. The master
problem for multicut formulation has the following form (without the additional cut
developed in the previous section)

minimize
x,θ1,...,θK

f1(x) +
K∑
k=1

θk

subject to G11(x) ≤ 0,
Dix ≤ di, i = 1, . . . , p,
Ej(k)x− θk ≤ ej(k), j(k) = 1, . . . , r(k),
k = 1, . . . ,K,

(24)

where r(k) and j(k) indices are related to the kth subproblem, see the steps below.
In this case, the feasibility cuts remain the same, but the remaining steps require the
following changes:

Step 0. – Multicut Set p = 0, r(k) = 0, for k = 1, . . . ,K and ε > 0.

Step 1. – Multicut Solve (24) and obtain (x̄, θ̄1, . . . , , θ̄K).

Step 2. – Multicut For fixed x = x̄ solve all K subproblems (7). One of two possi-
bilities can happen.

Step 2A. – Multicut As before.
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Step 2B. – Multicut All the subproblems have finite optimal values, we obtained
(ȳk, uk), where uk are optimal Lagrange multipliers. For k = 1, . . . ,K if

θ̄k + ε ≤ p(ξk)f2(ȳk, ξk), (25)

set r(k) = r(k) + 1 and add a new row to the matrix E and vector e in (24):

Er(k) = p(ξk)(uTkG21(ξk)),
er(k) = −p(ξk)(f2(ȳk, ξk) + uTkG22(ȳk, ξk)). (26)

If (25) does not hold for any k, terminate. Otherwise, return to Step 1.

Even though this formulation provides a more accurate description of the recourse
function, its usefulness in the convex case is highly ambiguous. The number of variables
in the master problem is much larger than in the original algorithm and the number of
constraints (cuts) added in each iteration is also much higher.

6. NUMERICAL EXAMPLES

To test the above mentioned theoretical concepts, we designed two convex two-stage
problems. On these problems, we compare the performance of different variations of
the GBD as well as a formulation without any decomposition (denoted as full recourse
problems).

The implementation was done in MATLAB using its embedded fmincon solver and
the state-of-the-art conic solvers SeDuMi and SDPT3 [10] (which are a part of the CVX
modeling system [8]). Although the examples are not derived from any applied problems,
they provide a valid insight into the advantages and disadvantages of the presented
methods.

6.1. Example 1

The first example investigates the following problem

minimize
x,y1,...,yk

(x1 − 4)4 + (x2 − 3)4 +
K∑
k=1

pk(qk,1eyk,1 + qk,2y
4
k,2)

subject to x2 − ln(x1 + 1)− 1 ≤ 0,
x2 + x3

1 − 8 ≤ 0,
x1, x2 ≥ 0,
x1 + hk,1 − yk,1 ≤ 0, k = 1, . . . ,K,
x2 + hk,2 − yk,2 ≤ 0, k = 1, . . . ,K,

where the random parameters q and h are q ∼ |N(0, 3)|, h ∼ 0.7 · |N(0, 1)| + 0.5. The
scenarios are then constructed using the usual Monte Carlo sampling, the number of
scenarios will vary to demonstrate the performance of the different approaches. The
methods and solvers used for solving the problem were:

• vanilla (original) version of GBD (master and subproblems solved by fmincon);
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• reformulation with the EV cut (master and subproblems solved by fmincon);

• bunching of several scenarios (master and subproblems solved by fmincon);

• bunching of several scenarios with the EV cut (master and subproblems solved by
fmincon);

• full recourse problem (FRP) solved by fmincon;

• FRP solved by SDPT3 (as a part of the CVX modeling system);

• FRP solved by SeDuMi (as a part of the CVX modeling system).

The required precision for all the methods was set to ε = 10−5. The results are summa-
rized in the tables that follow. The Time[s] value represents the computational time it
took the procedure to terminate, given the same level of accuracy for all methods. The
number of scenarios in the first instance is K = 60. The first two tables show, how the
computational time of the GBD is affected by introducing the EV cut:

Method Vanilla EV cut
Time[s] 12.26 9.05

Tab. 1. Computational time [s] for Vanilla version and EV cut,

K = 60.

and by bunching with different sizes of the bunch:

Bunch size 2 3 5 10 12 15 20 30
Time[s] – Without EV cut 7.04 5.08 3.61 2.76 2.64 2.65 2.75 3.22
Time[s] – With EV cut 5.19 3.79 2.75 2.07 2.02 1.99 2.13 2.44

Tab. 2. Computational time [s] for bunching with different sizes of

the bunch, K = 60.

An identical structure is utilized in the case of K = 240 scenarios:

Method Vanilla EV cut
Time[s] 43.84 35.42

Bunch size 2 3 5 6 8 10 12 15
Time[s] – Without EV cut 24.8 17.7 12.4 11.4 9.9 9.2 8.8 8.7
Time[s] – With EV cut 19.9 14.3 10.2 9.2 8.0 7.4 7.2 7.0

Bunch size 16 20 24 30 40 60 80 120
Time[s] – Without EV cut 8.7 8.9 9.4 10.5 12.2 16.8 21.5 25.3
Time[s] – With EV cut 7.0 7.2 7.7 9.5 9.8 13.6 17.3 20.2

Tab. 3. Computational time [s] for Vanilla, EV cut and bunching,

K = 240.
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From these result, we see that the EV cut, as well as efficient bunching, can have a strong
effect on the overall computation time. The experiments suggest that there exists an
“optimal” bunch size that is independent of the number of scenarios. For this particular
problem, it seemed that a bunch size between 12 and 16 was the one. For the subsequent
computations, the bunch size 15 was chosen.

In the following table, we compare the computation times for growing number of
scenarios using the methods and solvers mentioned above:

Number of scenarios 60 240 1,500 2,400 4,800 6,000
Vanilla 12.3 43.8 258.6 410.1 – –
EV cut 9.1 35.4 208.9 332.7 – –
Bunch 15 2.7 8.7 52.5 78.0 154.75 194.9
Bunch 15 with EV 1.9 7.0 40.1 62.6 124.6 156.4
FRP – SDPT3 6.1 22.3 139.9 241.7 – –
FRP – SeDuMi 1.4 6.2 32.8 65.2 170.3 242.5
FRP – fmincon 0.5 12.2 3,000∗ 3,000∗ – –

Tab. 4. Computational time [s] for different methods, increasing

number of scenarios.

The asterisk(*) denotes that the algorithm did not arrive at the desired precision (i. e.
even after 3,000s the fmincon did not arrive sufficiently near the optimum). The dash(–)
means that we did not pursue the analysis in this direction since we anticipated results
incomparable with the more efficient methods.

These results show that for big enough problems, the efficient implementation GBD,
even with simpler solvers, can outperform the state-of-the-art solvers. For smaller in-
stances, however, these solvers are more efficient (as will be presented in the results of
the second example).

6.2. Example 2

The second example included in our investigation, compared to the first one, adds some
more first and second-stage variables and non-differentiable functions. These are the
reason why, in the implementation, the more efficient solvers had to be utilized for
the solution of the master problem (fmincon performed very poorly in this case). The
problem in question is the following

minimize
x,y1,...,yk

(x1 − 4)4 + (x2 − 3)4 + (x3 − 2.5)2 + 3|x1 + x4 + 4x5 − 15|

+
K∑
k=1

pk(qk,1eyk,1 + qk,2y
4
k,2 + qk,3(yk,3 − 2)2

+qk,4|yk,4 + qk,5yk,5|)
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subject to x2 − ln(x1 + 1)−√x3 + x4 + x2
5 − 10 ≤ 0,

x2 + x3
1 + x3

3 − 10 ≤ 0,
−x4 −

√
x5 + 5 <= 0,

xi ≥ 0, i = 1, . . . , 5
Tkx +Wkyk ≤ hk, k = 1, . . . ,K.

The random parameters q, h,W and T are (using some MATLAB syntax), q ∼ |N(0, 1)|,
h ∼ −0.7 · |N(0, 1)| − 1, W = −I5, M = 5x5 matrix with 1 to 3 zeros in each column,
the rest are 1, T = abs(0.2.∗ randn(5)).∗M. The scenarios are, again, constructed using
the Monte Carlo sampling. As before, we used several methods and solvers for solving
the problem:

• vanilla version of GBD (master solved by SeDuMi, subproblems by fmincon);

• EV cut version (master solved by SeDuMi, subproblems by fmincon);

• bunching + EV cut (master solved by SeDuMi, subproblems by by fmincon);

• bunching + EV cut + multicut (master solved by SeDuMi, subproblems by fmincon);

• FRP solved by SDPT3;

• FRP solved by SeDuMi.

The required precision for all the methods was set to ε = 10−5. By computations similar
to that of the first example, we found the appropriate bunching size to be 5. The
comparison of the different methods for varying number of scenarios is summarized in
the following table:

Number of scenarios 125 250 500 1,000 2,000 3,000 5,000 7,500
Vanilla 19 45 77 164 313 – – –
EV cut 15 34 61 123 320 – – –
Multicut 19 36 134 150 309 – – –
Bunch 5 12 32 44 84 170 255 452 650
Bunch 5 + EV 9 17 34 71 175 210 364 578
Bunch 5 + Multicut 11 20 32 74 250 452 – –
Bunch 5 + Multicut + EV 9 15 34 99 256 463 – –
FRP – SDPT3 13 30 64 130 334 – – –
FRP – SeDuMi 1 2 6 15 40 102 355 622

Tab. 5. Computational time [s] for different methods, increasing

number of scenarios.

The results demonstrate the pros and cons of using the GBD algorithm. For smaller
instances, it is much more efficient to use the appropriate state-of-the-art and free solver
(SeDuMi) to attack the full recourse formulation. However, for larger problems, the
bunching variation of the GBD was able to outperform all the rest. The multicut
variation suffered from a growing size of the master problem and, in this setting, cannot
be considered as an improvement (a similar behavior for linear problems was shown in
[13]).
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7. CONCLUSION

In this paper, we introduced a novel utilization and reformulation of the traditional
Generalized Benders Decomposition. To support the utility of our reformulation (as
well as the utility of the GBD itself), we presented our computational experience.

From the result of the numerical examples, it is apparent that the GBD and our
modifications definitely have a place as solid techniques for solving medium-sized convex
two-stage stochastic problems and that especially the bunching ideas and modifications
produce fruitful results.

It must be acknowledged that further investigation (i. e. a wider variety of numerical
test, preferably from applications) is needed to make the arguments more conclusive.
Also, further research in terms of usable lower bound as the “warm-start” cuts is antic-
ipated.
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