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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 6 , P A G E S 1 0 2 6 – 1 0 4 6

STABILITY, EMPIRICAL ESTIMATES AND SCENARIO
GENERATION IN STOCHASTIC OPTIMIZATION
– APPLICATIONS IN FINANCE

Vlasta Kaňková

Economic and financial processes are mostly simultaneously influenced by a random factor
and a decision parameter. While the random factor can be hardly influenced, the decision
parameter can be usually determined by a deterministic optimization problem depending on
a corresponding probability measure. However, in applications the “underlying” probability
measure is often a little different, replaced by empirical one determined on the base of data
or even (for numerical reason) replaced by simpler (mostly discrete) one. Consequently, real
one and approximate one correspond to applications. In the paper we try to investigate their
relationship. To this end we employ the results on stability based on the Wasserstein metric
and L1 norm, their applications to empirical estimates and scenario generation. Moreover, we
apply the achieved new results to simple financial applications. The corresponding model will
a problem of stochastic programming.

Keywords: stochastic programming problems, probability constraints, stochastic domi-
nance, stability, Wasserstein metric, L1 norm, Lipschitz property, empirical
estimates, scenario, error approximation, financial applications, loan, debtor,
installments, mortgage, bank

Classification: 90C15

1. INTRODUCTION

Let (Ω,S, P ) be a probability space; ξ (:= ξ(ω) = (ξ1(ω), . . . , ξs(ω)) an s–dimensional
random vector defined on (Ω,S, P ); F (:= Fξ(z), z ∈ Rs) the distribution function of
ξ; PF , ZF the probability measure and a support corresponding to F . Let, moreover,
g0(:= g0(x, z)) be a real-valued function defined on Rn×Rs; XF ⊂ X ⊂ Rn a nonempty
set generally depending on F, X ⊂ Rn a nonempty “deterministic” set. If EF denotes the
operator of mathematical expectation corresponding to F and if for x ∈ X there exists
a finite EF g0(x, ξ), then one-stage (static) “classical” stochastic optimization problem
can be introduced in the form:

Find
ϕ(F, XF ) = inf{EF g0(x, ξ)|x ∈ XF }. (1.1)
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To our purpose we recall only special cases of XF . We consider the case XF = X
(“deterministic” constraints); the case when there exist continuous functions ḡi(:= ḡi(x),
x ∈ Rn), i = 1, . . . , s and ḡi(x, z), i = 1, . . . , l defined on Rn × Rs such that the
following constraints sets can be defined:

•

XF (:= XF (α)) =
s⋂
i=1

{x ∈ X : PF [ω : ḡi(x) ≤ ξi] ≥ αi},

αi ∈ (0, 1), i = 1, . . . , s, α = (α1, . . . , αs)
(1.2)

known, from the stochastic programming literature, as the problem with individual
probability constraints,

•

XF (: XF (ᾱ)) = {x ∈ X : PF [ω : ḡi(x, ξ) ≤ 0, i = 1, . . . , l] ≥ ᾱ }, ᾱ ∈ (0, 1),
(1.3)

known as joint probability constraints.

To define the last constraints sets XF let g(:= g(x, z)) be a function defined on Rn×Rs,
Y (:= Y (z)) := Y (ξ) a random value with the distribution function FY , such that for
every x ∈ X there exist finite EF g(x, ξ), EFY (ξ). Furthermore, let

F 2
g(x, ξ)(u) =

u∫
−∞

Fg(x, ξ)(y) dy, F 2
Y (ξ)(u) =

u∫
−∞

FY (ξ)(y) dy, u ∈ R1.

•
XF = {x ∈ X : Fg(x, ξ)(u) ≤ FY (ξ)(u) for every u ∈ R1} (1.4)

is known as first order stochastic dominance constraints,

•
XF = {x ∈ X : F 2

g(x, ξ)(u) ≤ F 2
Y (ξ)(u) for every u ∈ R1} (1.5)

as second order stochastic dominance constraints. (For more information about
stochastic dominance see, e. g., [26].)

Evidently, just introduced problems are often rather complicated as from the theo-
retical so from the numerical point of view. Moreover, employing them to applications,
other difficulties can appear. We recall some essential of them:

1. the “underlying” distribution function F can be a little changed;

2. the probability measure is unknown and the problem has to be solved on the data
base. It means that the underlying probability measure PF has to be replaced by
its statistical estimates, mostly by empirical distribution function;

3. the distribution function F corresponds to real situation, however, the optimiza-
tion problem (1.1) is (from the numerical point of view) very complicated. Conse-
quently, the “underlying” distribution function has to be approximated by simpler
one (usually the continuous function is replaced by discrete one).
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Evidently, in all these cases, two optimization problems (real and approximate)
correspond to real applications. The relationship between these problems has been
investigated in the stochastic programming literature many times, however mostly,
in the case when the distribution F has been replaced by empirical one (see, e. g.,
[1, 2, 7, 8, 11, 19, 21, 22, 24, 25, 26, 30]). The aim of this paper is, first, to recall some
of these results and furthermore to employ them to scenario generation. Moreover we
try to employ these results to a simple financial problem.

The paper is organized as follows. First, we recall some definitions and auxiliary
assertions (section 2). Section 3 is devoted to suitable results on the stability based on
the Wasserstein metric corresponding to L1 norm and their applications to empirical
estimates. Applications to scenario generation can be found in Section 4. Section 5
is devoted to an analysis of a simple financial model. The paper is ended by a short
Conclusion (section 6).

2. SOME DEFINITION AND AUXILIARY ASSERTION

To recall suitable stability assertions we first recall some definitions. To this end, if
P(Rs) denotes the set of all (Borel) probability measures on Rs, then we can define the
system M1

1(Rs) by the relation:

M1
1(Rs) :=

{
ν ∈ P(Rs) :

∫
Rs
‖z‖1dν(z) <∞

}
, ‖ · ‖1 := ‖ · ‖s1 denotes L1 norm in Rs.

(2.6)
Evidently, if PF , PG ∈ M1

1(Rs) (and the corresponding problems (1.1) are well de-
fined), then employing the triangular inequality we can obtain

|ϕ(F,XF )− ϕ(G,XG)| ≤ |ϕ(F,XF )− ϕ(F,XG)|+ |ϕ(F,XG)− ϕ(G,XG)|. (2.7)

Defining quantil’s vector kF (α) and the set X̄(v), v ∈ Rs by the relations

kF (α) = (kF1(α1), . . . , kFs(αs)), α = (α1, . . . , αs),

kFi(αi) = sup
{
zi|PFi{ω| zi ≤ ξi(ω)} ≥ αi

}
, αi ∈ (0, 1), i = 1, . . . , s, (2.8)

X̄(v) =
s⋂
i=1

{x ∈ X| ḡi(x) ≤ vi}, v = (v1, . . . , vs), v ∈ Rs, (2.9)

we can recall the following auxiliary assertions.

Lemma 2.1. (Kaňková [10]) Let ḡi(x), i = 1, . . . , s be continuous functions defined
on Rn, PFi , i = 1, . . . , s be absolutely continuous w. r. t. the Lebesgue measure on R1.
Let, moreover, XF (α) be defined by (1.2), then

XF (α) = X̄(kF (α)), α = (α1, . . . , αs), αi ∈ (0, 1), i = 1, . . . , s.

(Fi, i = 1, . . . , s denote one–dimensional marginal distribution functions corresponding
to F .)
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Lemma 2.2. Let g(x, z), Y (z) be for every x ∈ X a Lipschitz functions of z ∈ Rs
with the Lipschitz constant Lg not depending on x ∈ X. Let, moreover, PF ∈M1

1(Rs).
If XF is defined by the relation (1.5), then

1.
XF = {x ∈ X : EF (u− g(x, ξ))+ ≤ EF (u− Y (ξ))+, u ∈ R1},

2.
(u− g(x, z))+, (u− Y (z))+, u ∈ R1, x ∈ Rn

are Lipschitz functions of z ∈ Rs with the Lipschitz constant Lg not depending on
u ∈ R1, x ∈ Rn.

P r o o f . The first assertion follows from the relation (4.7) in [26], second assertion can
be found in [14]. �

To recall assertions we introduce the system of assumptions.

A.0 g0(x, z) is for x ∈ X a Lipschitz function of z ∈ Rs with the Lipschitz constant L
(corresponding to the L1 norm) not depending on x,

A.1 g0(x, z) is either a uniformly continuous function on X ×Rs, or there exists ε > 0
such that g0(x, z) is a function convex on Xε and bounded on Xε×Rs, where Xε

denotes the ε− neighbourhood of the set X,

A.2 • {ξi}∞i=1 is a sequence of independent random vectors corresponding to F,

• FN is an empirical distribution function determined by {ξi}Ni=1, N = 1, 2, . . . ,

A.3 PFi , i = 1, . . . , s are absolutely continuous w.r.t. the Lebesgue measure on R1

(we denote by fi, i = 1, . . . , s the probability densities corresponding to Fi),

A.4 there exist constants ϑi > 0, δi > 0 and δi− neighbourhood U δii (kFi(αi)) of
kF i(αi) such that fi(zi) > ϑi for zi ∈ U δii (kFi(αi)), αi ∈ (0, 1), i = 1, . . . , s,

A.5 EF g0(x, ξ) is a Lipschitz function on X with the Lipschitz constant L̄.

2.1. Stability

First, we recall (for us) an important stability assertion.

Proposition 2.3. (Kaňková and Houda [11]) Let PF , PG ∈ M1
1(Rs). If Assumption

A.0 is fulfilled, then

|EF g0(x, ξ)− EGg0(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi for all x ∈ X. (2.10)
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If, moreover, X is a compact set, A.1 is fulfilled, then also

| inf
x∈X

EF g0(x, ξ)− inf
x∈X

EGg0(x, ξ)| ≤ L
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (2.11)

If the assumptions of Lemma 2.1 are fulfilled, X is a compact set, then XF , XG

defined by (1.2) are also compact sets. Assumptions under which it is possible to find
out C̄ > 0 such that

∆[XF (α), XG(α)] = ∆[X̄(kF (α)), X̄(kG(α))] ≤ C̄
s∑
i=1

|kFi(αi) − kGi(αi)|

are introduced in [10]. (∆[·, ·] = ∆n[·, ·] denotes the Hausdorff distance in the space of
nonempty closed subsets of Rn; for the definition of the Hausdorff distance see, e. g., [20]
or [23].)

Lemma 2.4. Let X be a nonempty compact set, α = (α1, . . . , αs), αi ∈ (0, 1), i =
1, . . . , s, Assumptions A.1, A.3 be fulfilled. If

1. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L̄ not depending
on z ∈ ZF

⋃
ZG,

2. PF , PG ∈M1
1(Rs) and moreover X̄(kF (α)), X̄(kG(α)) are nonempty sets,

3. there exists a constant C̄ such that

∆[X̄(v1), X̄(v2)] ≤ C̄‖v1 − v2‖2 for every v1, v2 ∈ ZF
⋃
ZG,

then

| inf
x∈X̄(kF (α))

EF g0(x, ξ)− inf
x∈X̄(kG(α))

EF g0(x, ξ)| ≤ L̄C̄‖kF (α)− kG(α)‖2. (2.12)

(‖ · ‖2 := ‖ · ‖s2 denotes the Euclidean norm in Rs.)

P r o o f . First, it follows from the Assumption 1 that EF g0(x, ξ) is a Lipschitz function
on X with the Lipschitz constant L̄ (Assumption A.5). Consequently, it is easy to see
that the assertion of Lemma 2.4 follows from Proposition 1 in [10]. �

Furthermore, evidently, if moreover Assumption A.4 is fulfilled and if

|Gi(zi)− Fi(zi)| ≤
1
2
ϑiδi for zi ∈ U δii (kFi(αi)), i = 1, . . . , s,

then

Gi(kFi(αi)− δi) ≤ Fi(kFi(αi))−
1
2
ϑiδi, Gi(kFi(αi) + δi) ≥ Fi(kFi(αi)) +

1
2
ϑiδi.

Consequently kGi(αi) ∈ 〈kFi(αi)− δi, kFi(αi) + δi〉 and

| inf
x∈X̄(kF (α))

EF g0(x, ξ)− inf
x∈X̄(kG(α))

EF g0(x, ξ)| ≤ L̄C̄
s∑
i=1

δi. (2.13)

Summarizing now the relation (2.7), Proposition 2.3 and Lemma 2.4 we can obtain.



Stability, empirical estimates and scenario in stochastic optimization 1031

Proposition 2.5. Let X be nonempty compact set, α = (α1, . . . , αs), αi ∈ (0, 1), i =
1, . . . , s, PF , PG ∈M1

1(Rs), Assumptions A.0, A.1, A.3 be fulfilled. If, moreover,

1. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L̄ not depending
on z,

2. X̄(kF (α)), X̄(kG(α)) are nonempty sets,

3. there exists a constant C̄ such that

∆[X̄(v1), X̄(v2)] ≤ C̄‖v1 − v2‖2 for every v1, v2 ∈ ZF
⋃
ZG,

then ∣∣∣∣ inf
x∈X̄(kF (α))

EF g0(x, ξ)− inf
x∈X̄(kG(α))

EGg0(x, ξ)
∣∣∣∣ ≤

L
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi + L̄C̄‖kF (α)− kG(α)‖2.

(2.14)

Analyzing further the case of constraints set XF introduced by (1.5) we first define
for ε ∈ R1 the sets

Xε
F = {x ∈ X : EF (u− g(x, ξ))+ − EF (u− Y (ξ))+ ≤ ε, u ∈ R1}, ε ∈ R1; (2.15)

evidently X0
F = XF .

If the assumptions of Lemma 2.2 are fulfilled, PF , PG ∈ M1
1(Rs), u ∈ R1, x ∈ X,

then

|EF (u− g(x, ξ))+ − EG(u− g(x, ξ))+| ≤ Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi,

|EF (u− Y (ξ))+ − EG(u− Y (ξ))+| ≤ Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi.

(2.16)

Consequently

|EF (u− g(x, ξ))+ + EG(u− g(x, ξ))+ − EF (u− Y (ξ))+ − EG(u− Y (ξ))+|

≤ 2Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi,

x ∈ XF ⇒ |EG(u− g(x, ξ))+ − EG(u− Y (ξ)+| ≤ 2Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi,

x ∈ XG ⇒ |EF (u− g(x, ξ))+ − EF (u− Y (ξ)+| ≤ 2Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi
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or equivalently

x ∈ XF =⇒ x ∈ Xε
G, x ∈ XG =⇒ x ∈ Xε

F with ε = 2Lg
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi.

More generally

Xδ−ε
G ⊂ Xδ

F ⊂ Xδ+ε
G for δ ∈ R1. (2.17)

Lemma 2.6. Let X be a nonempty compact set, PF , PG ∈ M1
1(Rs), Assumption

A.1 be fulfilled. Let, moreover, g(x, z) be for every x ∈ X a Lipschitz function of
z ∈ ZF

⋃
ZG with the Lipschitz constant Lg not depending on x ∈ X. If

1. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L̄ not depending
on z (Assumption 5),

2. XF , XG defined by (1.5) are nonempty compact sets,

3. there exists a constant D > 0 such that

∆[Xε′

F , X
ε′′

F ] ≤ Dε for every ε′, ε′′ ∈ 〈−3ε, 3ε〉,

with ε = 2Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi,

then

∣∣∣∣ inf
x∈XF

EF g0(x, ξ)− inf
x∈XG

EF g0(x, ξ)
∣∣∣∣ ≤ 2DL̄Lg

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (2.18)

P r o o f . Since the Hausdorff distance is a metric in the space of compact subsets of Rn,
(see, e. g., [23]) we can obtain that

∆[XF , XG] ≤ ∆[XF , X
−ε
F ] + ∆[X−εF , XG].

Further employing (2. 17) and assumption 3 of Lemma 2.6 we can obtain

∆[XF , XG] ≤ 2Dε.

The assertion of Lemma 2.6 now already follows from Proposition 1 in [10]. �

Employing the relation (2.7), Proposition 2.3 and Lemma 2.6 we can obtain.
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Proposition 2.7. Let X be a compact set, PF , PG ∈M1
1(Rs), Assumptions A.0, A.1

and A.3 be fulfilled. Let, moreover, g(x, z) be for every x ∈ X a Lipschitz function of
z ∈ ZF

⋃
ZG with the Lipschitz constant Lg not depending on x ∈ X. If

1. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L not depending
on z ∈ ZF

⋃
ZG,

2. XF , XG defined by (1.5) are nonempty compact sets,

3. there exists a constant D > 0 such that

∆[Xε′

F , X
ε′′

F ] ≤ Dε for every ε′, ε′′ ∈ 〈−3ε, 3ε〉,

with ε = 2Lg
s∑
i=1

+∞∫
−∞
|Fi(zi)−Gi(zi)|dzi,

then there exists a constant D′ > 0 such that

∣∣∣∣ inf
x∈XF

EF g0(x, ξ)− inf
x∈XG

EGg0(x, ξ)
∣∣∣∣ ≤ D′ s∑

i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi. (2.19)

Remark 2.8. The constant D′ in Proposition 2.7 can be estimated by the value L+
3DL̄Lg.

2.2. Empirical estimates

Since in applications very often PF has to be replaced by empirical PFN , the solution of
(1.1) has to be (mostly) sought w.r.t. an “empirical problem”:

Find
ϕ(FN , XFN ) = inf{EFN g0(x, ξ)|x ∈ XFN }, (2.20)

where FN denotes an empirical distribution function determined by random sample
{ξi}Ni=1 (not necessarily independent) corresponding to F. If we denote by symbols
X (F, XF ) and X (FN , XFN ) the optimal solution sets of (1.1) and (2.20), then under
rather general assumptions, ϕ(FN , XFN ), X (FN , XFN ) are “good” statistical estimates
of ϕ(F, XF ), X (F, XF ). The investigation of these estimates started in 1974 (see [30])
and it was followed by [7, 8] and many others. (Some of them were mentioned already
in the Introduction, see also the subsection STABILITY.)

Results on the statistical estimates (in the stochastic programming literature) are
often based on the large deviations (started by employing the inequality published in
[4]), on the stability assertions corresponding to different distances in the spaces of the
probability measures, see, e. g., [6, 8, 9, 19, 21, 22]. In this paper we focus mostly on
the case when the empirical estimates are based on the stability results and L1 norm
and the results corresponding to quantils (see subsection STABILITY). Replacing G by
FN (in the stability results) we can investigate the relationship between ϕ(FN , XFN ),
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X (FN , XFN ) and ϕ(F, XF ), X (F, XF ). We focus on the investigation of relationship
between ϕ(F, XF ) and ϕ(FN , XFN ). To this end it is evidently suitable to investigate

∞∫
−∞

|Fi(zi)− FNi (zi)|dzi, |kFi(αi)− kFNi (αi)|, αi ∈ (0, 1), i = 1, . . . , s.

Lemma 2.9. (Shorack and Welner [29]) Let s = 1, PF ∈ M1
1(R1). Let, moreover,

the assumption A.2 be fulfilled, then

P

ω :

∞∫
−∞

|F (z)− FN (z)|dz −→
N→∞

0

 = 1.

Evidently, the results of Lemma 2.9 hold (for one–dimensional random value) when
the finite first moment exists. The case of convergence rate is more complicated. To
investigate it we recall the following auxiliary assertion.

Lemma 2.10. (Houda and Kaňková [5]) Let s = 1, r > 0, t > 0, Assumptions
A.2, A.3 be fulfilled. Let, moreover, ξ be a random variable such that EF |ξ|r < ∞. If
constants β, γ > 0 fulfil the inequalities

0 < β + γ < 1/2, γ > 1/r, β + (1− r)γ < 0,

then

P

ω : Nβ

∞∫
−∞

|F (z)− FN (z)| > t

 −→
N→∞

0. (2.21)

Evidently, the convergence rate β := β(r) (introduced in Lemma 2.10) depends on
the existence of finite absolutely moments. Unfortunately, we cannot obtain (by this
approach) any results in the case when there exist only EF |ξ|r < ∞ for r < 2. Some
weaker assertions (for this case) can be found in [5].

Lemma 2.11. (Kaňková [13]) Let s = 1, α ∈ (0, 1). If Assumptions A.2, A.3 and A.4
are fulfilled, 0 < t′ < δ, then

P{ω : |kF (α)− kFN (α)| > t′} ≤ 2 exp{−2N(ϑt′)2}, N ∈ N .

(N denotes the set of natural numbers, δ = δ1, ϑ = ϑ1 defined by A.4.)

Employing Lemma 2.10, Lemma 2.11, Proposition 2.3, Proposition 2.5 and the prop-
erties of the exponentional function we obtain.

Proposition 2.12. Let X be a compact set, Assumptions A.0, A.1, A.2, A.3 and A.4
be fulfilled, α = (α1, . . . , αs), αi ∈ (0, 1) and t > 0. Let moreover XF be defined by the
relation (1.2). If
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1. for every v ∈ ZF , X̄(v) are nonempty sets and moreover there exists a constant C̄
such that

∆[X̄(v1), X̄(v2)] ≤ C̄‖v1 − v2‖2, v1, v2 ∈ ZF ,

2. g0(x, z) is for every z ∈ ZF a Lipschitz function of x ∈ X with the Lipschitz
constant L̄ not depending on z ∈ ZF (Assumption A.5),

3. for all components ξi, i = 1, . . . , s of the vector ξ and r > 0 there exist finite
EF |ξi|r. If constants β, γ > 0 fulfil the inequalities

0 < β + γ < 1/2, γ > 1/r, β + (1− r)γ < 0,

then

P

{
ω : Nβ | inf

X̄(kF (α))
EF g0(x, ξ)− inf

X̄(kFN (α))
EFN g0(x, ξ)| > t

}
−→
N→∞

0. (2.22)

Considering XF defined by (1.5) we can obtain.

Proposition 2.13. (Kaňková and Houda [14]) LetX be a compact set, PF ∈M1
1(Rs),

Assumptions A.0, A.1, A.2 and A.3 be fulfilled, XF be defined by the relation (1.5). Let,
moreover, g(x, z) be for every x ∈ X a Lipschitz function of z ∈ ZF with the Lipschitz
constant not depending on x ∈ X. If

1. g0(x, z) is a Lipschitz function on X with the Lipschitz constant L not depending
on z ∈ ZF ,

2. XF defined by (1.5) is a nonempty compact set,

3. there exists ε0 > 0 such that Xε
F are nonempty compact sets for every ε ∈ 〈−ε0, ε0〉

and, moreover, there exists a constant Ĉ > 0 such that

∆[xεF , X
ε′

F ] ≤ Ĉ|ε− ε′| for ε, ε′ ∈ 〈−ε0, ε0〉,

4. for all components ξi, i = 1, . . . , , s of the vector ξ and r > 0 there exist finite
EF |ξi|r. If constants β, γ > 0 fulfil the inequalities

0 < β + γ < 1/2, γ > 1/r, β + (1− r)γ < 0,

then

P

{
ω : Nβ | inf

XF
EF g0(x, ξ)− inf

XFN
EFN g0(x, ξ)| > t

}
−→
N→∞

0. (2.23)
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3. SCENARIO GENERATION

Evidently, it can be very complicated (from the numerical point of view) to solve the
stochastic programming problems; especially, when the “underlying” probability mea-
sure belongs to a continuous type. Consequently the “underlying” continuous proba-
bility measure is often replaced by discrete one with finite number of atoms (scenaria).
We employ the results on the stability (subsection 2.1) to suggest one of possibilities to
scenario generation. First, we consider the case of static (one–stage) stochastic program-
ming problems, further we try to generalize this approach to special case of multistage
stochastic programming problem.

3.1. One–stage case

First, we shall deal with the case of static stochastic programs. In particular, the aim
of this subsection is to deal with the above mentioned discrete approximation in the
case when the approximation error can be estimated by the sum of one–dimensional
Wasserstein distances. To this end we employ the stability results. Namely considering
Problem (1.1) with XF = X or with XF fulfilling the definition (1.5) and assuming that
X is a compact set, A.0, A.1 are fulfilled and PF , PG ∈M1

1(Rs) we can see that

|ϕ(F, XF )− ϕ(G, XG)|

can be bounded by the value

L′
s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi, L′ “suitable”constant.

Consequently, if we suppose that F is “underlying original” distribution function and G
approximate one, then evidently we can construct G with given approximation error. To
this end we employ the approach of [15]. If A.3 is fulfilled, PFi ∈M1

1(R1), i = 1, . . . , s,
then for given Mi > 0, i = 1, . . . , s there exist natural numbers mi, i = 1, . . . , s,
points zi, j , ∈ R̄1, j = 0, 1, . . . , mi and one–dimensional discrete distribution functions
Gi such that

−∞ = zi, 0 < zi, 1 < zi, 2 < . . . < zi,mi−1 < zi,mi =∞,

and, simultaneously,

(L/s)

∞∫
−∞

|Fi(zi)−Gi(zi)|dzi ≤ Mi, i = 1, . . . , s.

(R̄1 denotes the extended real line.)
Furthermore, it follows from the last relations that there exists s–dimensional distri-

bution function G with marginals Gi, i = 1, . . . , s such that

L

s∑
i=1

+∞∫
−∞

|Fi(zi)−Gi(zi)|dzi ≤
s∑
i−1

Mi. (3.24)
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Employing the relation (3.24), Proposition 2.3 and Proposition 2.7, we can see that the
following Proposition is valid.

Proposition 3.1. Let Assumption A.0, A.1, A.3 be fulfilled, PFi ∈ M1
1(R1). Let,

moreover, M, M̄ > 0, X be a compact set. If

1. XF = X, then there exists a discrete distribution functionG with discrete marginals
Gi, i = 1, . . . , s and finite number of atoms such that

|ϕ(F, X)− ϕ(G, X)| ≤M, (3.25)

2. • XF fulfils the relation (1.5) and the assumption 2 of Lemma 2.12 holds,

• g(x, z) is for every x ∈ X a Lipschitz function of z ∈ ZF with the Lipschitz
constant Lg not depending on x ∈ X,

• there exists ε0, D̂ > 0 such that

∆[Xε
F , X

ε′

F ] ≤ D̂|ε− ε′| for ε, ε′ ∈ 〈−3ε0, 3ε0〉,

then there exists a discrete distribution function Ḡ with finite number of atoms
such that

|ϕ(F, XF )− ϕ(Ḡ, XḠ)| ≤ M̄. (3.26)

Remark 3.2.

• According to Proposition 2.7 it is suitable the following relation

ε0 ≥ 2Lg
s∑
i=1

+∞∫
−∞

|Fi(zi)− Ḡi(zi)|dzi,

be fulfilled.

• In the case when XF fulfils the relation (1.2), then it is necessary to consider the
case 1, to assume A.4, A.5, LC̄‖kF (α)− kG(α)‖2 be sufficiently small, employ the
relation (2.7) and Proposition 2.5.

3.2. Multistage case

Till now we have considered problems with respect to one time point. However economic
activities are mostly developing in time and moreover it is reasonable to determine a
decision (in given time point) as a function of a random sequence realization and decision
to this time. Multistage stochastic programming problems pose to such situation. In
this paper we consider only special case of the multistage programs. To this end we
recall T + 1− stage stochastic programs by the following way:

Find
ϕF (T ) = inf {EF ξ0 g

0
F (x0, ξ0)| x0 ∈ K0}, (3.27)
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where the function g0
F (x0, z0) is defined recursively

gkF (x̄k, z̄k) = inf{E
F ξk+1|ξ̄k=z̄k g

k+1
F (x̄k+1, ξ̄k+1) |xk+1 ∈ Kk+1

F (x̄k, z̄k)},

k = 0, 1, . . . , T − 1,

gTF (x̄T , z̄T ) := gT0 (x̄T , z̄T ), K0 := X0.

(3.28)
ξj := ξj(ω), j = 0, 1, . . . , T denotes an s–dimensional random vector defined on a prob-
ability space (Ω, S, P ); F ξ

j

(zj), zj ∈ Rs, j = 0, 1 . . . , T the distribution function of
ξj and F ξ

k|ξ̄k−1
(zk|z̄k−1), zk ∈ Rs, z̄k−1 ∈ R(k−1)s, k = 1, . . . , T the conditional

distribution function (ξk conditioned by ξ̄k−1); PF ξj , PF ξk+1|ξ̄k , j = 0, 1, . . . , T, k =
0, 1, . . . , T−1 the corresponding probability measures; Zj := ZF ξj ⊂ Rs, j = 0, 1, . . . , T
the support of the probability measure PF ξj . Furthermore, the symbol gT0 := gT0 (x̄T , z̄T )
denotes a continuous function defined on Rn(T+1)×Rs(T+1); Xk ⊂ Rn, k = 0, 1, . . . , T
is a nonempty compact set; the symbol Kk+1

F (x̄k, z̄k) := Kk+1

F ξk+1|ξ̄k (x̄k, z̄k), k = 0, 1, . . .
. . . , T − 1 denotes a measurable multifunction defined on Rn(k+1) ×Rs(k+1) with “val-
ues” subsets of Rn. ξ̄k(:= ξ̄k(ω)) = [ξ0, . . . , ξk]; z̄k = [z0, . . . , zk], zj ∈ Rs; x̄k =
[x0, . . . , xk], xj ∈ Rn; X̄k = X0 ×X1 . . .×Xk; Z̄k := Z̄kF = ZF ξ0 × ZF ξ1 . . .× ZF ξk ,
j = 0, 1, . . . , k, k = 0, 1, . . . , M. Symbols EF ξ0 , E

F ξk+1|ξ̄k=z̄k , k = 0, 1, . . . , T − 1 de-
note the operators of mathematical expectation corresponding to F ξ

0
, F ξ

k+1|ξ̄k=z̄k , k =
0, . . . , T − 1.

In the multistage case, we restrict to the case when the following assumption is
fulfilled:

C.1 Random sequence {ξk}∞k=−∞ follows (generally) nonlinear autoregressive sequence

ξk = H(ξk−1, νk),

where ξ0, νk, k = 1, 2, . . . are stochastically independent s–dimensional random
vectors defined on (Ω, S, P ) and, moreover, νk, k = 1, . . . identically distributed.
H = (H1, . . . , Hs) is a Lipschitz vector function defined on Rs. We denote the
distribution function corresponding to ν1 = (ν1

1 , . . . , ν
1
s ) by the symbol F ν and

suppose the realization ξ0 to be known.

Evidently, the multistage stochastic programming problem (3.27), (3.28) depends essen-
tially on a system of (generally) conditional distribution functions

F = {F ξ
0
(z0), F ξ

k|ξ̄k−1
(zk|z̄k−1), k = 1, . . . , T}. (3.29)

Consequently, if we replace F by another system G

G = {Gξ
0
(z0), Gξ

k|ξ̄k−1
(zk|z̄k−1), k = 1, . . . , T}, (3.30)

we obtain another multistage stochastic programming problem with the optimal value
denoted ϕG(T ).
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Under Assumption C.1 the system F is determined by F ξ
0

and F ν . Consequently,
if we replace these two probability distribution functions by another Gξ

0
and Gν , we

obtain another system G.
Considering, furthermore, the constraint sets Kk+1

F (x̄k, z̄k), k = 0, . . . , T − 1 not
depending on the probability measure, then the assumptions under which

|ϕF (M)− ϕG(M)| ≤
s∑
i=1

CiW

∫
R1

|F νi (zi)−Gνi (zi)|dzi, CiW > 0, i = 1, . . . , s

can be found in [12]. Consequently, if we define discrete distributions Gξ0 , Gν determined
by the approach of Proposition 3.1 (the case 1), then we have an approximating system
G given by discrete mostly conditional distributional functions. Furthermore, it follows
from results of the above mentioned work that this approach can be generalized to the
case when constraints sets are given by the individual probability constraints (for more
details see, e. g., [12]).

Remark 3.3. In this subsection we have denoted only to deterministic scenario gener-
ation. However random scenario we can obtain by random sample. The corresponding
property of such approximation are given in the subsection “Empirical Estimation”.

4. SIMPLE FINANCIAL PROBLEM

We analyze very simple financial problem from the point of view of the stochastic pro-
gramming theory. The aim of this example is not only to demonstrate a utilizing the
former theory but also to present a life situation when this theory can not be completely
employed. To this end we consider a situation about a mortgage and its instalments.
Let us start with a common situation. People try to gain (in the last decades) own
residence (a flat or little house). Since young people do not posses necessary financial
resources, the bank sector offers them a mortgage. Of course banks can employ excellent
experts to minimize their risk and maximize profit in dependence of debtor’s position.
The aim of our approach is to analyze the situation from the second side. In particular,
our aim is to investigate the possibilities of the debtors not only in dependence on their
present–day situation, but also on their future private and subjective decisions and on
possible “unpleasant” events. In details the aim is to suggest a method for a recognition
of a “safe” loan and simultaneously to offer tactics to state a plausible environment for
future time. Of course we suppose that our analysis is first contribution to this sit-
uation. The stochastic programming theory will be employed to it. Let us start with
simple standard situation. A young married couple wants to gain own flat. They already
obtained an offer from banks determined by their present–day situation. However they
have subjective plans. According to this fact we try to analyze their possibilities. To
this end let us assume that (in the start time) their monthly income is

Z0 = U0 + V0, where U0 is an income of husband and V0 is an income of wife.

Evidently, this income can be divided into three parts Z1
0 , Z

2
0 , Z

3
0 , where Z1

0 denotes
means for a basic consumption, Z2

0 denotes means that can be employed for a repayment
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of installments and Z3
0 can be considered as an allocation to saving. Consequently

Z0 = Z1
0 + Z2

0 + Z3
0 , Z1

0 , Z
2
0 > 0, Z3

0 ≥ 0. (4.31)

Given the annuity repayments, which is the most standard way of repaying the loan;
if we denote by a symbol M the value of the loan, by m number of identical installments
and by ζ the loan interest rate, then the identical installments b(M) := b(ζ) in time
points t = 1, 2, . . . , m (see, e. g., [17] or [28]) are given by

b(M) := b(ζ) = Mζ
1−vm , ζ 6= 0, v = v(ζ) = (1 + ζ)−1,

1
m , ζ = 0.

(4.32)

It follows from the relations (4.31), (4.32) that (in the case when ζ 6= 0) it is desirable
(in “static” approach) the following inequality

Mζ(1 + ζ)m

(1 + ζ)m − 1
≤ Z2

0 (4.33)

to be fulfilled. Of course, this condition (in the extreme case) can be replaced by the
inequality

Mζ(1 + ζ)m

(1 + ζ)m − 1
≤ Z2

0 + Z3
0 . (4.34)

If it is possible to assume that the relations (4.31), (4.33) will be fulfilled also in future,
then the young people can take the loan equal to the maximal value M for which the
inequality (4.33) (respectively (4.34)) is fulfilled. However mostly it is necessary to
assume that the financial situation of young married couple can change. For example: it
is reasonable to assume that in some time period, say (m1, m2), 0 < m1 < m2 ≤ m the
married couple plan to have a baby. According to this fact and to the social politics of
a state the young people can assume the less income in this time, approximately equal
to

Z1 = U0 + V1 = Z1
0 + Z2

1 + Z3
1 , Z2

1 , Z
3
1 ≥ 0, Z2

1 ≤ Z2
0 ,

where V1 is the supposed income of wife in the time interval 〈m1, m2〉; Z2
1 denotes the

means, that can be employed for a repayment of installments (of course Z2
1 ≤ Z2

0 ) and
Z3

1 saved amount in every year of this time interval (of course mostly 0 ≤ Z3
1 ≤ Z3

0 ).
Evidently without financial reserve the inequalities

Z1
0 + Z2

0 ≤ U0 + V1

need to be fulfilled. Consequently, if

U0 + V1 < Z1
0 + Z2

0 ,

then a very serious trouble could arise. However, if the young couple saved every time
point t ∈ {0, . . . , m1 − 1} the amount Z3

0 and if the inequality

(m2 −m1)M [ζ(1 + ζ)m]
(1 + ζ)m − 1

≤ (m2 −m1)[Z2
0 − Z2

1 ] + (m1 − 1)Z3
0 (4.35)
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is fulfilled, then they endure the time period 〈m1, m2〉 without financial troubles.
To construct the relation (4.35), it has been assumed that the amount Z3

0 is determin-
istic, the same in every time point t ∈ {0, . . . , m1− 1} and that this amount can not be
changed. However this situation can be a little different. To explain a new approach we
suppose m1 = 2, m2 −m1 = 2; it means m1 = 2, m2 = 4 and m is determined by the
relation (4.32) (consequently dependent on M). Furthermore we denote Z2

t , t = 0, . . . m
the means that can be employed for a repayment of installments, Z3

t an allocation for a
saving (0 ≤ Z2

t ≤ Z2
0 , t = m1, . . . , m2, Z

3
t ≥ 0, t = 0, . . . , m).

We consider two special cases.

D 1. The deterministic value Z3
0 (in the relation (4.31)) can be replaced by random

values Z3
t ; Z3

t , t ∈ {0, 1, . . . , m} with probability one non negative. Consequently
the deterministic income Z0 = Z1

0 +Z2
0 +Z3

0 is replaced by random Zt = Z1
0 +Z2

t +
Z3
t in all points t = 0, 1, . . . , m. We assume that young people can these random

amount (in time point t = 0, 1) invest (for example) into two assets to obtain:

•

in the original year the value ξ0,1x0,1 + ξ0,2x0,2

under the assumptions x0,1 + x0,2 ≤ Z3
0 , x0,1, x0,2 ≥ 0,

•

in the second year the value ξ1,1x1,1 + ξ1,2x1,2

under the assumptions x1,1 + x1,2 ≤ Z3
1 , x1,1, x1,2 ≥ 0

(under the assumptions that the profit obtained in the time t = 0 can not
influence the invested amount in the time t = 1). Evidently, it is desirable
(for young people under the assumption Z2

2 = Z2
3 = Z2

4 ) the fulfilling of the
relation

(m2 −m1)M [ζ(1 + ζ)m]
(1 + ζ)m − 1

≤ 3[Z2
0 − Z2

2 ] +
1∑
t=0

[ξt,1xt,1 + ξt,2xt,2], (4.36)

and of course the maximization of a possible profit.

Z3
0 , Z

3
1 , ξ0,1, ξ0,2, ξ1,2, ξ1,2 are generally supposed to be random variables with “positive

support”. Consequently, it is necessary to “specify” the sense of relations in D.1. In
details, it is necessary to “specify” when the operator of mathematical expectation, prob-
ability constraints, risk constraints or stochastic dominance constraints are employed in
the optimization problems. We set (for simplicity) to this case a very simple stochastic
optimization problem.

Find maxM (4.37)

under the system of constraints

Mζ(1 + ζ)m

(1 + ζ)m − 1
≤ Z2

0 , (4.38)
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PF {xt,1 + xt,2 ≤ Z3
t } ≥ 1− εt, εt ∈ (0, 1), xt,1, xt,2 ≥ 0, t = 0, 1, (4.39)

PF { 3M [ζ(1+ζ)m

(1+ζ)m−1 ≤
4∑
t=2

[Z2
0 − Z2

t ] +
1∑
t=0

[ξt,1xt,1 + ξt,2xt,2]} ≥ 1− ε0,

ε0 ∈ (0, 1).
(4.40)

Evidently, in this case it is reasonable to add to an objective function (4.37) the second
one

EF

m∑
t=m1

[ξt,1xt,1 + ξt,2xt,2] (4.41)

with the corresponding constraints

PF {xt,1 + xt,2 ≤ max(0, Z3
t )} ≥ 1− εt, εt ∈ (0, 1), xt, 1, xt, 2 ≥ 0,

t = 2, 3, 4,

PF {xt,1 + xt,2 ≤ Z3
t } ≥ 1− εt, εt ∈ (0, 1), xt, 1, xt, 2 ≥ 0,

t = 5, . . . , m.

(4.42)

ξt,1, ξt, 2, t = m1, . . . ,m random value. Consequently, we have constructed two objective
stochastic programming problem with objective (4.37) and (4.41) and constraints (4.38),
(4.39), (4.40) and (4.42). Analyzing this model we can see

• constraints (4.38) are linear deterministic,

• constraints (4.39) and (4.42) (according to Lemma 2.1) can be expressed in equiv-
alent form of linear inequalities,

• (4.37) and (4.41) are linear objective functions. Employing a convex combination
we obtain only one linear objective.

Evidently, mentioned objective and constraints are suitable for discrete approximation.
However, it remains to deal with constraints set (4.40). This condition can be rewritten
in the equivalent form

PF

{ 4∑
t=2

[Z2
t − Z2

0 ] ≤
1∑
t=0

[ξt,1xt,1 + ξt,2xt,2] − 3M [ζ(1 + ζ)m

(1 + ζ)m − 1

}
≥ 1− ε0,

ε0 ∈ (0, 1).
(4.43)

There the function in the probability is not simultaneously, in decision parameter and
random factor, convex. Consequently, the corresponding constraint is not generally
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convex. It is question if it is not reasonable to employ Markowitz approach (for more
details see, e. g. [3]) and to replace (4.43). by

EF

1∑
t=0

[ξt,1xi,1 + ξt,2xt,2]−KV

[
1∑
i=0

[ξt,1xt,1 + ξt,2xt,2

]
≥

4∑
t=2

[Z2
t − Z2

0 ], (4.44)

where V denotes a symbol for the Variation, K > 0 i s a suitable constant. How to take
the constant K is however evidently beyond the scope of this paper.

D.2 Z3
t (1), t = 0, 1, . . . , m have a deterministic character. Let us assume that these

amounts can be invested into two assets (portfolio) with random returns ξ̄t,1, ξ̄t,2.
Mathematically saying, it is desirable to determine x0,1, x0,2, x1,1, x1,2 fulfilling
the relations

xt,1 + xt,2 ≤ Z3
t , xt,1, xt,2 ≥ 0,

to obtain random values ĝt = ξ̄t,1xt,1 + ξ̄t,2xt,2,

t = 0, 1, . . . , m.

Evidently, it is possible also to define random values Yt, by the following relation

Yt =
1
2
ξ̄t,1 +

1
2
ξ̄t,2, t = 0, 1, . . . , m. (4.45)

ĝt, Yt are random values “depending” on Z3
t .

Employing the theory of the stochastic dominance [26] it is “reasonable” to deter-
mine xt,1, xt,2 such that

Fĝt �1 FYt , or Fĝt �2 FYt , t = 0, 1, . . . , m. (4.46)

Evidently, in this case we can construct the following optimization problem.

Find maxM (4.47)

under the system of constraints

Mζ(1 + ζ)m

(1 + ζ)m − 1
≤ Z2

0 , (4.48)

Fĝt �2 FYt , t = 0, 1 (4.49)

PF { 3Mζ(1+ζ)m

(1+ζ)m−1 } ≤
4∑
t=2

[Z2
0 − Z2

t ] +
1∑
t=0

[ξ̄t,1xt,1 + ξ̄t,2xt,2]} ≥ 1− ε0,

ε0 ∈ (0, 1).
(4.50)

It is reasonable to add to an objective function (4.47) the second one
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EF

m∑
t=5

[ξ̄t,1xt,1 + ξ̄t,2xt,2] (4.51)

with the corresponding constraints

Fĝt �2 FYt , t = 2, . . . , m. (4.52)

Analyzing the approach D.2 we can see that in the constraints (4.49) and (4.52)
the “underlying” distribution function can be replaced by discrete one. However,
the constraint (4.50)) appears. This constraint is not convex, and evidently it has
to be replaced by another. However for philosophy of the problem this condition
is very important.

Remark 4.1. We have tried (in the last example) to analyze a situation of young
married couple and their problem with mortgage. We have included in the model their
private plans (to have baby), however we have neglected many troubles and situations
that can happen (e. g. illness, a loss of employment). But we also omitted a possibility
to gain “better” career or only increasing salary. Every of these possibilities are waiting
to be included.

5. CONCLUSION

The aim of the paper is to summarize a possibility to employ the results on the sta-
bility (based on the Wassersten metric and L1 norm) to some other parts of stochastic
programming. In particular, stochastic programming problems with “deterministic”
constraints, individual probability constraints and stochastic dominance constraints are
considered. To introduce the survey of possible applications, first, the corresponding
stability results are recalled. Further, the stability results are employed to empirical
estimates in the stochastic programming and scenario generation. The paper is finished
with a simple financial problem.

Evidently, by this approach a stochastic dependence between components of the ran-
dom element is neglected. However, all formulas are simple and, moreover, they are
acceptable from the numerical point of views. The idea to reduce s–dimensional case to
one–dimensional case is credited to G. Pflug [19] (see also [27]).

A very simple example is presented at the end of the paper. Two reasons exist for
this. First, to show that it is possible to analyze not only the optimize behaviour banks
but also debtors. Moreover, the theory of stochastic programming can be employed to
it. However to present a suitable numerical solution is beyond of the scop of this paper.
Maybe, it appears later including more complicated model.
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