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K Y B E R N E T I K A — V O L U M E 5 3 ( 2 0 1 7 ) , N U M B E R 6 , P A G E S 1 0 4 7 – 1 0 7 0

TWO-STAGE STOCHASTIC PROGRAMMING APPROACH
TO A PDE-CONSTRAINED STEEL PRODUCTION
PROBLEM WITH THE MOVING INTERFACE

Luboḿır Klimeš, Pavel Popela, Tomáš Mauder, Josef Štětina,
and Pavel Charvát

The paper is concerned with a parallel implementation of the progressive hedging algorithm
(PHA) which is applicable for the solution of stochastic optimization problems. We utilized
the Message Passing Interface (MPI) and the General Algebraic Modelling System (GAMS)
to concurrently solve the scenario-related subproblems in parallel manner. The standalone
application combining the PHA, MPI, and GAMS was programmed in C++. The created
software was successfully applied to a steel production problem which is considered by means of
the two-stage stochastic PDE-constrained program with a random failure. The numerical heat
transfer model for the steel production was derived with the use of the control volume method
and the phase changes were taken into account with the use of the effective heat capacity.
Numerical experiments demonstrate that parallel computing facility has enabled a significant
reduction of computational time. The quality of the stochastic solution was evaluated and
discussed. The developed system seems computationally effective and sufficiently robust which
makes it applicable in other applications as well.

Keywords: stochastic programming, progressive hedging, parallel computing, steel pro-
duction, heat transfer, phase change

Classification: 90C15, 90C06, 80A20, 80A22, 49M27, 93C20

1. INTRODUCTION

A number of decision-making engineering problems lead to optimization models con-
strained with ordinary or partial differential equations. Such models are frequently
large-scale as they consist of physical models derived by means of the finite difference,
finite volume, or finite element methods [5, 8, 33]. Applications in various engineering
areas can be found; e. g. in systems control [2, 19], in optimal design [30, 37], or in
scheduling problems [13, 27]. Moreover, the mentioned problems often include uncer-
tain parameters [1, 6, 26]. Stochastic programming that uses random variables for the
uncertainty modelling is a suitable solution approach to such kind of problems. The
further analysis of the problems revealed their stage-related decision structure and the
possibility to apply the assumption of the discrete probability distribution of random
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variables. This leads to the scenario-based approach and multi-stage decision making
problems.

In the paper we consider a large-scale steel production problem under uncertainty
which is modelled by a two-stage PDE-constrained programme. A computationally ef-
fective parallel implementation of the progressive hedging algorithm (PHA) that has
been modified for the considered problem by the authors has been adopted for an
efficient solution of the problem. The PHA, originally proposed by Rockafellar and
Wets [25, 34], decomposes the extensive form of the problem into the scenario-based
sub-problems which are linked together by means of penalties. The decomposition also
enables a straightforward parallel solution of individual scenario-based sub-problems,
and the computational time can significantly be reduced. The PHA therefore mitigates
computational problems which can particularly arise in large-scale problems exceeding
the computational capability. The PHA is an iterative method which gradually produces
a series of aggregated solutions which are implementable. Though the convergence to a
globally optimal solution is not guaranteed in case of non-convex non-linear and mixed-
integer problems, computational results presented in several studies have demonstrated
the applicability of the PHA to those kinds of problems with good results. Carpentier
et al. [7] presented the use of the PHA in the solution of the management of the hydro-
electric multireservoir systems under uncertainty. The CPLEX solver without parallel
computing was used for the solution of scenario-related sub-problems in sequential or-
der. Gul et al. [12] built a stochastic multi-stage mixed-integer model for the surgery
planning problem under uncertainty. The authors applied the PHA, they compared it
to a heuristic method and evaluated the value of the stochastic solution. Veliz et al. [32]
investigated a forest planning problem. A multi-stage stochastic problem was formu-
lated and solved by means of the PHA. The authors demonstrated that the PHA is well
applicable and competitive to a direct solution of the extensive form, even in case of
non-parallel implementation of the PHA. Goncalves et al. [11] applied the PHA to the
solution of the operation scheduling problem of a hydrothermal system. They utilized
the CPLEX solver and parallel computing on several processors. The authors reported
that they achieved the reduction of 80% of the computational time when comparing the
parallel implementation to the serial implementation. Gade et al. [10] reported the as-
sessment of the quality of solutions generated by the PHA by means of the lower bounds.
The authors presented a method for the determination of lower bounds for multi-stage
mixed-integer problems and they demonstrated computational results in stochastic unit
commitment and server location problems.

As for optimization studies related to the control of the continuous casting process,
most research papers are related to deterministic optimization with no randomness. A
number of studies aim at optimization of operational parameters of the casting machine,
of the scheduling, and of the secondary cooling zone, see e. g. [21,35,36]. However, only
a limited number of papers have been published on the topic of stochastic optimization
related to the continuous casting, e. g. [38]. To the best knowledge of the authors, there
is no paper related to the application of the PHA to the steel production problem or to a
heat transfer problem with the moving interface. The present paper builds on previous
research of the authors on the mathematical programming approach and random failures
in the continuous casting process [23,24]. A basis of presented results was conducted in
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Fig. 1. The schematic of the continuous steel casting method.

the master thesis [15] and some partial results have already been published at scientific
conferences [16,17,18].

The present paper summarizes the complete application of the stochastic approach
to the continuous casting process. A detailed description of the improved heat transfer
model based on the effective heat capacity is provided. A computationally efficient par-
allel implementation of the progressive hedging algorithm is presented and the Message
Passing Interface (MPI) was used to solve independent scenario-related sub-problems in
the parallel manner. Individual sub-problems are formulated in the General Algebraic
Modelling System (GAMS) and solved by the non-linear CONOPT solver. The use and
the applicability of the proposed implementation are demonstrated in the two-stage steel
production problem with a random failure.

2. STEEL PRODUCTION CONTROL PROBLEM UNDER UNCERTAINTY

2.1. Underlying principle of the steel production problem

The continuous steel casting is a modern production method of steel. Nowadays, more
than 95% of the total world steel production is cast by means of the continuous casting
[22]. The schematic of the horizontal continuous casting method is shown in Figure 1.
The molten steel enters the continuous casting machine through the water-cooled mould.
In the mould the initial amount of heat is withdrawn from the steel and this causes
the formation of the solid shell at the surface of the cast semi-product, the so-called
strand. The steel strand continues from the mould to the secondary cooling zone. The
secondary cooling zone consists of several independent cooling loops where the water
nozzles producing water sprays are installed. The heat withdrawal in the secondary
cooling zone therefore occurs due to the heat convection and radiation. The intensity
of the heat convection from the strand is driven by the heat transfer coefficient which is
directly dependent on water flow rates through the cooling loops, see e. g. [29].

2.2. Uncertainty in the steel production problem

There are several different categories of parameters under uncertainty which influence
the steel production problem. These mainly include the uncertainty in the chemical
composition of steel, random faults in parts of the casting machine, and clogging of
cooling nozzles. It is well reported [4] that the strand cooling, its distribution and
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intensity have a major influence on the steel quality and mechanical properties. Steel-
makers therefore pay attention mainly to the secondary cooling and they aim at the
gradual cooling in which the temperature of the strand smoothly decreases with no
reheating, temperature shocks or zig-zag temperature paths. One of serious faults in the
secondary cooling zone is an abrupt stop of water spray cooling within a cooling loop
and we investigate this case in the paper. Such a problem is typically caused by a fault
in the electric motor of the water pump. In that case there is no cooling of the strand
which leads to undesirable steep overheating of the strand and, as a consequence, to
irreversible steel quality problems.

2.3. Simplifications and assumptions

Technology. Casting machines can accommodate even more than 20 cooling loops in
the secondary cooling zone, particularly in case of large cross-section steel strands. In
the paper we consider the problem with a casting machine having four cooling loops
as shown in Figure 1. The reason is that requirements for the computational hardware
increase rapidly with higher number of cooling loops. Moreover, the goal of the paper is
to demonstrate the applicability of the PHA to the steel making problem rather than to
solve a huge realistic problem from industry. Nevertheless, the model presented in the
paper is formulated without the loss of generality and it can be used for modelling of a
problem with the casting machine having an arbitrary number of cooling loops.

Uncertainty and scenario tree. In the paper we focus on the case described above:
a cooling system in a loop can fail and as a result the heat withdrawal from the strand
stops causing overheating and quality issues. In general, the fail of cooling can occur in
an arbitrary cooling loop, even in several loops simultaneously. Hence, such uncertain
failures are represented by a random vector and its outcomes form the scenario tree that
is suitable for further computations.

3. HEAT AND MASS TRANSFER MODEL FOR CONTINUOUS STEEL CASTING

In the section the mathematical description of the model for the continuous steel casting
is provided. Further, the mathematical model is numerically reformulated with the use of
the control volume method to the form suitable for the implementation in the modelling
system GAMS; see [17,18] for further details.

3.1. Physical model

The heat and mass transfer model of the continuous steel casting is based on the Fourier-
Kirchhoff equation [14]. The governing equation incorporates the heat conduction within
the cast strand while the direct modelling of the fluid flow in the melt is omitted. As
the continuous steel casting relies on the phase transformation of steel from the liquid
phase to the solid phase, the model accounts for phase changes. There are several
approaches for phase change modelling, see e. g. [28]. We employ the effective heat
capacity method (see [28] for its details) as the method is quite simple and, in particular,
easily implementable into the optimization model. Only one half of the strand as shown
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in Figure 2 is considered in the model since the spatial domain is symmetrical with
respect to the horizontal axis, cf. Figures 1 and 2.

In the paper the casting process of so-called slabs is considered. A slab is a kind of
the strand having the rectangular cross-section with a high aspect ratio (usually 8 or
more); the width of the slab is therefore several times larger than its height. For such
slabs it is justifiable to consider a 2D heat transfer model which neglects interactions in
the perpendicular direction of the 2D domain. In the model explained below, the 2D
domain is considered as a longitudinal vertical cross-section of the slab in the middle of
the width of the slab.

The governing equation describing the 2D heat and mass transfer and phase trans-
formations within the cast strand (the spatial domain Ω) is [28]

%ceff
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where T (x, z, t) is the temperature in a spatial point (x, z) at time t ∈ (0, τ〉, % is the
density, ceff is the effective heat capacity, k is the thermal conductivity, vz is the casting
speed and τ is the final time.

The model is completed with the initial (2) condition specifying the initial tempera-
ture T0(x, z) in Ω and boundary conditions (3) – (6)

T (x, z, t) = T0(x, z) in Ω× {0}, (2)
T (x, z, t) = Tcasting in Γin × (0, τ〉, (3)

−k∂T
∂n

= 0 in Γout × (0, τ〉 and Γsym × (0, τ〉, (4)

−k∂T
∂n

= q̇mould in Γmould × (0, τ〉, (5)

−k∂T
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= hm (T (x, z, t)− T∞) +σε
(
T (x, z, t)4 − T 4

∞
)

in Γm × (0, τ〉, m = 1, . . . , nCC (6)

which are added to the governing equation (1). In Eq. (4) – (6), the vector n is the nor-
mal vector to the surface. The boundary condition (3) prescribes the constant pouring
temperature Tcasting at the meniscus in the mould (see Γin in Figure 4) the boundary
condition (4) simulates the physical symmetry at the plane of symmetry and the zero
heat flux at the end of the strand, see both Γout and Γsym boundaries in Figure 4. Fur-
ther, the defined heat flux q̇mould is prescribed in the mould (see Γmould boundary part)
according to the boundary condition (5). The convective and radiative heat transfer
is included in the boundary condition (6) and applied at surfaces of the strand. Here,
the cooling occurs due to the forced (in the spraying zones) and the natural (at free
surfaces) convection and radiation where hm is the heat transfer coefficient in the mth
cooling loop (see Γm in Figure 4), σ is the Stefan-Boltzmann constant, ε is the emissiv-
ity, and T∞ is the ambient temperature. As already mentioned in Section 2 the number
of cooling loops nCC in the secondary cooling can vary according to dimensions of cast
steel strands and according to the configuration of a casting machine. In the paper we
consider, without the loss of generality, the number of cooling loops nCC = 4.
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Fig. 2. The spatial domain for the steel production problem.

Fig. 3. The idea of the effective heat capacity method.

As mentioned above, the effective heat capacity method is applied to the phase change
modelling [28]. The principle of the method relies on the artificial increase of the physical
heat capacity in the temperature range of the phase change. The amount of the latent
heat accompanying the phase change is then proportional to the shaded area in Figure 3.
A typical bell shaped effective heat capacity as a function of the temperature is illustrated
in Figure 3. The effective heat capacity can be defined [28] as

ceff =
∂H

∂T
= %c− %Lf

∂fS

∂t

∂t

∂T
(7)

where H is the enthalpy, c is a specific heat, Lf is the latent heat of the phase change and
fS is the solid fraction expressing the ratio between the solid and liquid phases during
the solidification.

3.2. Numerical continuous casting model and its deterministic formulation

The mathematical model presented in the foregoing section was discretized with the
use of the control volume method. The discretization enables an implementation of the
model into the modelling system GAMS, and thus it makes possible to find the numerical
solution in discrete points within the domain. First, the spatial domain Ω is partitioned
into smaller elements, so-called control volumes specified by indices i = 1, . . . , Nx and
j = 1, . . . , Nz and denoted as [i, j]. The union of all the control volumes is often referred
to as the mesh. Similarly, the time domain (0, τ〉 is divided into the time steps indexed by
n = 1, . . . , Nτ . The energy conservation balance is then applied to each control volume.
The balances for all mesh elements form the system of equations and its solution is
considered as the numerical solution to the model described by Eqs. (1) – (7).
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Fig. 4. The discretization of the spatial domain into control volumes.

Let us assume that the time domain (0, τ〉 is partitioned into Nτ time intervals, each
with the length of ∆t (thus τ = Nτ∆t). The energy conservation law [14] states that
the sum of energies E[i,j] transferred inward and outward a control volume through its
boundaries during any time interval of length ∆t must be equal to the change of the
internal energy U of that control volume:

∑
[i,j]E[i,j] = ∆U . In the considered case, the

transferred energy is heat transferred due to heat transfer mechanisms (heat conduction
in interior control volumes and also heat convection and radiation in boundary control
volumes) and due to the mass transfer as the strand continuously moves through the
casting machine. Let us consider the interior control volume [i, j] shown in Figure 4

and the implicit discretization approach for the time scale. The energy conservation
law applied to the interior control volume specified by [i, j] and nth time interval where
i = 1, . . . , Nx, j = 1, . . . , Nz, and n = 1, . . . , Nτ yields to

k∆z
Tni−1,j − Tni,j

∆x
+ k∆z

Tni+1,j − Tni,j
∆x

+ k∆x
Tni,j−1 − Tni,j

∆z
+ k∆x

Tni,j+1 − Tni,j
∆z

+

+ vz%ceff∆x
(
Tni,j−1 − Tni,j

)
= %ceff∆x∆z

Tni,j − T
n−1
i,j

∆t
(8)

where ∆x and ∆z are the dimensions of the control volume in the x-axis and z-axis,
respectively and Tni,j values denote unknown temperature distribution. The four terms
on the first line of the left-hand side in Eq. (8) are the heat transfer rates that represent
the conduction heat transfer from the neighbouring control volumes. The fifth term on
the left-hand side of Eq. (8) is the energy input due to the movement of the strand
through the casting machine. The right-hand side of Eq. (8) represents the change of
the internal energy during the time interval ∆t. The energy conservation law is similarly
applied to boundary control volumes. For instance, let us consider the boundary control
volume [Nx, j] exposed to the water spray cooling in a cooling loop m = 3, see Figure 4.
The energy conservation law applied to the boundary control volume yields to

hm∆z(Tambient − TnNx,j) + σε∆z
(
T 4

ambient − (TnNx,j)
4
)

+

+ k∆z
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(
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)
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∆z
+ k

(
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2

)
TnNx,j+1 − TnNx,j

∆z
+

+ vz%ceff
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2
(
TnNx,j−1 − TnNx,j

)
= %ceff

(
∆x∆z

2

)
TnNx,j

− Tn−1
Nx,j

∆t
. (9)

The application of the energy conservation law to all control volumes leads to the
set of algebraic equations for the unknown temperature distribution Tni,j with a specified
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temperature Tambient. Since the spatial domain is partitioned into NxNz control volumes
and the time domain into Nτ time intervals, the set consists of the NxNzNτ algebraic
equations for the identical number of the unknown temperatures.

The phase change and the latent heat are implemented in the model by means of the
effective heat capacity. A bell-shape function might be used in case of steel having a
relatively wide temperature interval of the phase change. The effective heat capacity as
the function of the temperature is of the form

ceff(T ) = c0 + c̃ exp

{
−

(Tni,j − Tpc)2

ζT

}
(10)

where c0 is the heat capacity outside the temperature range of the phase change, c̃ is
the parameter characterising the amount of the latent heat of the phase change, Tpc is
the mean phase change temperature and ζT is a parameter related to the temperature
interval of the phase change ∆Tpc.

Several additional constraints are included to the model due to technological require-
ments of the continuous casting process. The cooling capacity of the spraying nozzles
installed in the secondary cooling zone is limited by the maximum water flow rate pro-
vided by the pump and also by the hydrodynamic limits of nozzles. The heat transfer
coefficient hm for the nozzles installed within the cooling loop m is therefore restricted
as

0 ≤ hm ≤ hm,max m = 1, . . . , nCC (11)

where the value of hm,max is known. Further, the quality of the produced steel is highly
dependent on the thermal history during the casting process, specifically the surface of
the strand suffers from defects and cracks due to large thermal gradients. In particular,
the surface temperatures of the strand are required to decrease gradually and smoothly
in the direction of casting with minimum reheating or temperature shocks. The surface
temperatures are therefore required to fit specific temperature ranges in defined control
points. Such control points are usually behind the mould and behind each cooling loop
as shown in Figure 2 (labelled as Qm) and thus

Tm,min ≤ TnNx,qm
≤ Tm,max m = 1, . . . , nCP (12)

where qm is the index of the control volume in the z-axis closest to the control point Qm
and nCP is the number of control points; in our case nCP = 5, see Figure 3. Additionally,
Tm,min and Tm,max values are known. Finally, the very important constraint is required
for the length of the liquid phase M shown in Figure 2. The distance M must fulfil
Mmin ≤M ≤Mmax. In terms of the temperature, it must hold that

T1,rmin ≥ Tliquidus and T1,rmax ≤ Tsolidus (13)

where rmin and rmax are the indices of the control volumes in the z-axis which are the
closest ones to the distances Mmin and Mmax, respectively. The steel is completely liquid
at and above the liquidus temperature Tliquidus and it is completely solid at and below
the solidus temperature Tsolidus.

Finally, the deterministic optimization problem for the steady-state continuous cast-
ing process can be formulated. The steel-maker requires the maximum productivity with
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the preservation of quality, and thus the relevant parameters of the casting process need
to be determined. In terms of the above defined quantities and derived relationships,
the deterministic model aims to{

maximize vz

subject to (8), (9), (10), (11), (12), (13).
(14)

The steel-maker is mainly interested in optimal values of operational parameters of the
continuous casting machine: the casting speed vz and the heat transfer coefficients hm in
cooling loops of the secondary cooling zone. A solution to the problem (14) also includes
the temperature distribution Tni,j which can be further investigated by metallurgists or
materials engineers.

4. TWO-STAGE STOCHASTIC FORMULATION FOR THE STEEL PRODUC-
TION PROBLEM AND PARALLEL PROGRESSIVE HEDGING ALGORITHM

In this section we transform the deterministic model discussed in the foregoing section
into a two-stage stochastic problem. As already mentioned in Section 2.2, there are
several sources of uncertainty in the steel production problem. We will focus on the
case with a fail of the water pump which is potentially the most dangerous case in
practice. Furthermore, we discuss the progressive hedging algorithm and its parallel
implementation suitable for computationally effective processing.

4.1. Stochastic optimization and scenario-based approach

Stochastic programming and the use of random variables is a common approach widely
applied in optimization problems with uncertainty [31]. A two-stage stochastic prob-
lem is considered in the paper which includes a here-and-now first stage decision and a
wait-and-see second stage decision [3]. In general, the solution to a stochastic problem
searches for the minimum of an objective function f(x, ξ) subject to equality and in-
equality constraints g(x, ξ) = 0 and h(x, ξ) ≤ 0, respectively, where x ∈ X ⊂ RN and
ξ is a K-dimensional random vector on a probability space (Ω,A , P ).

The paper is concerned with random variables having a discrete probability distri-
bution and the scenario-based approach is applied to take into account discrete random
variables [3]. Assume that the random vector ξ on a probability space (Ω,A , P ) has a
finite discrete distribution with |Ω| = L < ∞. Then, outcomes of the random vector
are denoted as particular real-valued vectors ξs and referred to as scenarios s ∈ S with
a probability ps and

∑
s∈S ps = 1. Then, the general deterministic equivalent based

on the expected objective with all constraints satisfied almost surely can be written as
follows

minimize
∑
s∈S psf(x, ξs)

subject to x ∈ ∩s∈S Cs
where Cs =

{
x ∈ X ⊂ RN : g(x, ξs) ≤ 0,h(x, ξs) = 0

}
.

(15)
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4.2. Two-stage stochastic formulation of the steel production problem

In this part, the deterministic formulation of the steel production problem described
in Section 3.2 is reformulated into a two-stage stochastic problem. A failure situation
within the secondary cooling zone is considered and the stochastic approach is used for
the modeling of randomness. In particular, failures of water pumps in the cooling loops
are assumed to occur. A failure of the pump means that no water is fed into the cooling
nozzles, and therefore there are no water sprays generated by the nozzles. This implies
that the heat transfer coefficient of the forced convection induced by cooling nozzles
drops to zero. Though there is still the natural convection to the ambient air, the total
heat transfer coefficient can be assumed zero (i. e. with the neglected natural convection)
as the heat transfer coefficient of the natural convection is much lower than that of the
forced convection due to cooling nozzles. The model with the scenario-based approach
and scenarios ξs, s ∈ S is utilized to take into account the uncertainty. One scenario
models the failure-free casting process while the other scenarios represent the casting
process with failures in the cooling loops of the secondary cooling zone. The steel-
maker is primarily interested in the first-stage decision which is the set of operational
parameters at the beginning of the casting process. However, the first stage decision
needs to take into account the possibility that a failure in the secondary cooling zone
can occur with a non-zero probability. And if the failure does occur, the second-stage
decision is used to revise the first stage decision and to keep the best conditions for the
casting process.

Some modifications to the deterministic model (14) are required for its transformation
into the two-stage stochastic model. In particular, the objective function in the model
(14) (cf. to f in the model (15)) is reformulated as

maximize
∑
s∈S

ps

[∑
n∈N

vz,n(ξs)

]
, (16)

where vz,n(ξs) represents the casting speed under random circumstances that can be
specific for different time periods n ∈ N = {1, . . . , Nτ} and scenarios s ∈ S. Let the
prime be used for variables related to the first-stage decision while the double prime be
used for variables related to the second-stage decision. The stage-related heat transfer
coefficients are now also dependent on a particular scenario ξs, s ∈ S and such depen-
dency is emphasized by the subscript s. For instance, the second-stage heat transfer
coefficient for the scenario s0 in a cooling loop m is denoted as h′′m,s0 and it has to be
considered constant for all second stage related time indices. So, they can be omit-
ted. Deterministic constraints to the range of heat transfer coefficients in Eq. (11) are
updated with respect to the two-stage structure of heat transfer coefficients as

0 ≤ h′m,s + h′′m,s ≤ hm,max for m = 1, . . . , nCC and s ∈ S. (17)

Let tf be the time when the failure of the pump within the second cooling loop occurs.
The set of time related indices n ∈ N that identify the period before the failure is denoted
by N ′ ⊂ N . Then the heat transfer coefficients hm in the heat balance equations (9)
for the surface control volumes are updated by

hm = h′m,s for n ∈ N ′, m = 1, . . . , nCC, s ∈ S, (18)
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and similarly the set of time related indices n that identify the period after the failure
is denoted by N ′′ ⊂ N . For these indices we replace hm as follows

hm = h′m,s + h′′m,s for n ∈ N ′′, m = 1, . . . , nCC, s ∈ S. (19)

Further, note that due to the scenario-based model the temperature variables Tni,j of the
heat transfer model in all equations and constraints presented above are also related to
a particular scenario s ∈ S.

We also assume that the first stage related casting speeds vz,n(ξs) and h′m,s variables
must satisfy the explicit nonanticipativity constraints. Therefore

vz,n(ξs) =
∑
r∈S

psvz,n(ξr), ∀s ∈ S, n ∈ N ′. (20)

and similarly

h′m,s =
∑
r∈S

prh
′
m,r, ∀s ∈ S. (21)

To keep the description compact and general, we will further write about the first stage
decision vector x′s containing first stage components vz,n, n ∈ N ′ and h′m,s. Similarly,
the second stage related components vz,n, n ∈ N ′′ and h′′m,s will be contained in the
second stage decision vector x′′s . Both vectors x′s and x′′s form the composed vector xs.

4.3. Progressive hedging algorithm

The progressive hedging algorithm (PHA) is an optimization method suitable for the
solution of multi-stage scenario-based stochastic problems. The PHA, originally pro-
posed by Rockafellar and Wets [25, 34] in 1980s, is a decomposition method which sep-
arates the scenario-based problem into smaller independent sub-problems, each related
to an individual scenario. The method is therefore particularly applicable in solution
of large-scale problems and fits well for parallel computing. The PHA is based on the
augmented Lagrangian method with relaxed non-anticipativity constraints. In general,
non-anticipativity constraints can be formulated explicitly or implicitly to define an ex-
tensive form. An implicit formulation is usually easier for the solution as it introduces
shared variables instead of scenario-related variables as in case of the explicit formula-
tion. However, even the implicit formulation can lead to stochastic problems which are
difficult for the solution due to their large dimensions as reported in [32].

Let us assume a scenario-based stochastic problem (15) with L scenarios s ∈ S, each
with the probability ps. Then each particular scenario s forms the sub-problem{

minimize f(x, ξs)
subject to x ∈ Cs =

{
x ∈ Xs ⊂ RN : g(x, ξs) ≤ 0,h(x, ξs) = 0

}
.

(22)

The optimal solution to the problem (15) is denoted as x∗. The progressive hedging
algorithm is the iterative algorithm which requires solutions xs of the sub-problems (22)
and generates a sequence of solutions x̂k converging to the solution x∗ of the original
scenario-based problem (15). In terms of the steel production problem considered in
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the paper, the objective function f aims at the maximization of the production rate vz

(cf. to Eq. (16)). The vector function g of inequality constraints includes inequality
conditions (e. g. Eqs. (12), (13), (17)) while the vector function h of equality constraints
incorporates the heat transfer model (Eqs. (8) and (9)) and other equality conditions
(e. g. Eqs. (18) and (19)).

List of symbols for the PHA
D the error
ε the termination parameter
L the number of scenarios L = ‖S‖
% the penalty parameter
x′k,s the first-stage decision for iteration k and scenario s
x′′k,s the second-stage decision for iteration k and scenario s
x̂′k the first-stage “average” decision for iteration k

x̂′′k,s the second-stage iterated decision for iteration k and scenario s
w′k,s the first-stage weight vector for iteration k and scenario s

Two-stage Progressive Hedging Algorithm

Initialization. Choose the penalty parameter % > 0 and the termination parameter
ε > 0. Set k = 1, w′0,s = 0, x̂′0 = 0 and x̂′′0,s = 0 for all s ∈ S.

Main part.

1. For all s ∈ S solve the scenario-based sub-problem{
minimize f(x′,x′′, ξs) +w′ ᵀk−1,s · x′ +

1
2%
∥∥x′ − x̂′k−1,s

∥∥2

subject to x′,x′′ ∈ Cs

and let x′k,s and x′′k,s be its first-stage and second-stage solution, respectively.

2. Calculate the updated first-stage and second-stage solutions x̂′k and x̂′′k,s,
respectively, for all s ∈ S:

x̂′k =
∑
s∈S

psx
′
k,s and x̂′′k,s = x′′k,s.

In the case that the termination condition

D =

(
L
∥∥x̂′k−1 − x̂

′
k

∥∥2 +
∑
s∈S

∥∥x̂′′k−1,s − x̂
′′
k,s

∥∥2 +
∑
s∈S

ps
∥∥x′k,s − x̂′k∥∥2

) 1
2

≤ ε

is fulfilled, then stop, x̂′k and x̂′′k,s are the the first-stage and the second-
stage solution, respectively, to the scenario-based optimization problem (15).
Otherwise, for all s ∈ S update the first-stage weights according to

w′k,s = w′k−1,s + %
(
x′k,s − x̂

′
k

)
,

set k = k + 1 and return to the step 1 of the main part of algorithm.
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As can be seen from the detailed description of the PHA, the second-stage decision
x̂′′k,s is dependent on a particular scenario while the first-stage “average” decision x̂′k
is not. The reason is that the first-stage decision is the here-and-now decision [3] and
it is made at the beginning of the process, i. e. before the decision maker observes a
particular outcome of random failure in our case. The first-stage decision is therefore
independent on what will happen in the future and represents the initial setup of control
variables. This property is referred to as the non-anticipativity [34]. On the other hand,
the second-stage decision is the wait-and-see decision and it is made after the decision
maker has already observed the failure and particular values of the random vector are
fully known at that moment.

4.4. Parallel implementation of the progressive hedging algorithm

As already mentioned, the progressive hedging algorithm allows for the direct paral-
lelism. The parallel processing can be accomplished due to the decomposition of the
original optimization problem into smaller optimization sub-problems which are inde-
pendent to each other. The General Algebraic Modelling System (GAMS) was utilized
as the optimization solver for the scenario-based sub-problems. The Message Passing
Interface (MPI) was used to run the GAMS instances in parallel, each solving an indi-
vidual sub-problem. The progressive hedging algorithm itself was implemented as the
standalone principal application in C++. For detailed information on the implementa-
tion, we refer readers to [15,16].

Principal PHA application. The principal application aggregates the PHA, MPI,
and GAMS. The application also

• controls the flow of the PHA,

• creates the scenario-based sub-problems in the form of input files for the GAMS,

• runs the GAMS instances in parallel by means of MPI,

• loads the solutions to sub-problems from the output files produced by the GAMS,

• computes the “average” first-stage and second-stage decisions and

• evaluates the termination condition.

The block diagram and the flow chart of the algorithm are shown in Figure 5 on the left
side and on the right side, respectively.

Message Passing Interface. The MPI is an API Windows library which serves the
platform for high performance parallel computing. In particular, the LAM/MPI envi-
ronment was employed for parallel launch of GAMS instances. Each instance of the
GAMS is used to solve one of the scenario-based sub-problems. The maximum number
of parallel GAMS instances is dependent on the particular hardware. In case the num-
ber of scenarios exceeds the maximum number of parallel processes, parallel runs are
repeated until all the scenario-based sub-problems are solved.
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PHA
in C++

MPI

GAMS

GAMS

GAMS

...

D ≤ ε

Subproblems
∀s ∈ S solved?

GAMS GAMS GAMS. . .

Update w′
j,s

MPI

Initialization

Preprocessing

Process 1 Process 2 Process np

yes

no

no

yes

End

Fig. 5. The block diagram (left) and the flow chart (right) of the

parallel implementation of the progressive hedging algorithm.

GAMS. The General Algebraic Modelling System (GAMS) is one of modelling sys-
tems applicable to the solution of optimization problems. Various solvers designed for
linear, non-linear, integer of mixed integer optimization problems are available. The
use of distinct non-linear solvers was investigated. In conclusion, the non-linear solver
CONOPT [9] having the best performance was used for the solution of scenario-based
sub-problems of the progressive hedging algorithm.

5. NUMERICAL RESULTS AND DISCUSSION

The parallel implementation of the progressive hedging algorithm described in Section 4
was used to solve the two-stage stochastic problem of the steel production described in
Section 4.2. The steel-maker is interested in the following questions: “How should the
casting machine be set up in order to maximize its productivity but with regard to a
failure in the secondary cooling zone which can occur with a given probability?” And in
case the failure does occur: “How should the first-stage setup of the machine be modified
to preserve optimal casting conditions?”
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5.1. Input parameters

As already mentioned in the introduction, we consider the casting machine with four
cooling loops, and therefore nCC = 4. Further, we consider that the pump fail can occur
in the second cooling loop (i = 2) of the secondary cooling; two scenarios s0 and s2 are
therefore taken into account. The selection of the second cooling loop for a random fail
of the pump is justifiable from the metallurgical point of view as follows; among all the
loops the second cooling loop is crucial for the steel quality since the liquid pool (liquid
phase) ends here (see Figure 1) and any fluctuations in the temperature and in the heat
withdrawal can cause the formation of separated liquid bulks surrounded by the solid
steel leading to serious defects such as interior cracks or non-homogeneity [4].

A low carbon steel grade with the solidus and liquidus temperatures of 1490 ◦C and
1515 ◦C, respectively, was taken into account. The half strand with the height of 125 mm
and with the length of 20 m was considered. The spatial domain consisted of 400 control
volumes and the time domain of 5 minutes was divided into 300 steps with the time step
of 1 s. The scenario-based sub-problem therefore includes about 120 000 variables. The
thermal conductivity of steel was 35 W/m K and the ambient air temperature was 20 ◦C.
The heat flux withdrawn from the mould of 3 kW/m2 was assumed. The constraints for
the heat transfer coefficients, see Eq. (11), were h1 = 500 W/m2K, h2 = 400 W/m2K,
h3 = 400 W/m2K and h4 = 300 W/m2K. The constraints for the surface temperatures
at the control points, see Eq. (12), are presented in Table 1.

Control point

Constraint Q1 Q2 Q3 Q4 Q5

Tj,min 1300 ◦C 1050 ◦C 900 ◦C 700 ◦C 700 ◦C
Tj,max 1480 ◦C 1250 ◦C 1000 ◦C 900 ◦C 800 ◦C

Tab. 1. Temperature constraints for the control points.

5.2. Set-up of scenarios

The problem with two scenarios s0 and s2 is considered. The scenario s0 is used for
the failure-free situation in the casting process and its probability was p0 = 0.95. The
scenario s2 models the failure of the pump in the second cooling loop of the secondary
cooling zone and its probability is p2 = 0.05. Without the loss of generality of the
presented stochastic model, we consider the simplified case with a possible fail in one
particular cooling loop. It should be noted here that the above presented stochastic
problem is formulated for the two-stage structure with a general number of scenarios and
additional scenarios can be added straightforwardly to the model along with constraints.
The described simplification will lead to the stochastic steel production problem with two
scenarios. A problem including two scenarios may seem to be quite non-comprehensive.
However, it should be noted that an attempt to solve the complete (non-decomposed)
steel production programme including the two scenarios was made with no success as the
problem exceeded the computational capability of the CONOPT solver. On the other
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hand, the PHA separates the problem into scenario-related sub-problems which are
simpler and solvable by the CONOPT solver. The decomposition principle is therefore
a crucial point in the solution of the steel production problem under uncertainty by
means of the PHA even for small number of scenarios.

Though the simplified problem with two scenarios was considered, such solution is
still quite realistic and applicable in practice. The reason is that the casting problem
with a possible failure generally does not require a large number of scenarios for the de-
scription of various combinations of failures in cooling loops. The possibility of multiple
breakdowns in distinct cooling loops is very low as individual cooling loops are operated
by independent pumps and control systems. As explained above, a failure in the second
cooling loop was selected since the second cooling loop controls the end of solidification
zone in the strand having an important influence on the quality. The second cooling loop
can be therefore considered as the most important loop in the secondary cooling zone.
As for computational requirements of the proposed PHA implementation, the method is
definitely not applicable for real-time applications. However, the PHA implementation
can reasonably be used for a pre-calculation of various failure situations in advance and
their solutions can be then concatenated into a solution manual applicable by operators
of the casting machine in failure cases.

For the failure-free scenario s0, the void second-stage decision h′′m,s0 = 0 for m =
1, 2, 3, 4 is obviously required (see Eq. (17)) since the operators of the casting machine
modify its setting only in case of the failure. As for the scenario s2, the failure situation
within the second cooling loop at the time tf = 60 s occurs, and thus h′2,s2 + h′′2,s2 = 0
(see Eq. (19)).

5.3. Discussion on parameters

The problem was solved with the use of a computer running 64-bit Ubuntu operating
system equipped with Intel Quad CPU having four cores and 8 GB of the RAM memory.
A crucial point in case of the practical application of the PHA is the choice of the penalty
parameter % since the penalty parameter can significantly influence the feasibility of
iteratively generated solutions and the convergence of the PHA. An improper value of
the penalty parameter can considerably increase the number of iterations required by
the PHA, or it may even lead to divergence (oscillatory behaviour) of the algorithm. The
penalty parameter can be considered a constant value or it can vary through iterations
[25]. Unfortunately, there is no general procedure for the determination of a suitable
value of %. Due to this reason a trial-and-error approach is often used by users of the
PHA. In the paper we determined the penalty parameter % to 10−3. The termination
parameter D was set to 10−9.

5.4. Results

Efficiency of the parallel MPI implementation. The parallel MPI implementa-
tion of the PHA was used to solve the presented two-stage stochastic steel production
problem. The PHA required 74 iterations performed in about 14 hours and 30 min of the
computational time. After 74 iterations the algorithm converged to an optimal solution.
The solution of a scenario-related sub-problem (in a particular iteration of the PHA)
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Casting parameters

Stage Scenario Decision h1 h2 h3 h4 vz

First s0, s2 x′ 476 W
m2K 249 W

m2K 309 W
m2K 87 W

m2K 2.2156 m
min

Second s0 x′′1 0 W
m2K 0 W

m2K 0 W
m2K 0 W

m2K 2.2156 m
min

Second s2 x′′2 24 W
m2K −249 W

m2K −240 W
m2K −15 W

m2K 1.8366 m
min

Tab. 2. The first-stage and second-stage decisions to the steel

production problem determined with the use of the PHA.

took about 12 min in average and two sub-problems (two scenarios) were concurrently
solved via MPI at the same time. On the other hand, the computational time required
by the PHA to load results, compute the aggregated solution, update the weights, evalu-
ate the termination condition and to assemble the GAMS files for the next iteration was
virtually negligible and less than 1 s. From that point of view the parallel implementa-
tion enabled the reduction of the computational time to about a half in the comparison
to a sequential (non-parallel) processing.

Solution to the two-stage steel production problem. The scenario-dependent
optimal decisions are presented in Table 2. The first-stage “here-and-now” decision x′

is scenario-independent due to the non-anticipativity as mentioned in Section 4.3. The
value of the objective function (i. e. the casting speed vz) corresponding to the first-stage
decision is equal to 2.216 m/min.

In case the failure does not occur in the secondary cooling zone (scenario s0), the
second-stage “wait-and-see” decision x′′1 prescribes no change in the casting parameters.
This means that the casting parameters in the second stage are x′ + x′′1 = x′ with
the casting speed unchanged. On the other hand, if the failure in the second loop of
the secondary cooling zone does occur, the second stage decision x′′2 is applied by the
operator of the casting machine according to Table 2. In that case the casting parameters
are updated to x′+x′′2 . Observe that the heat transfer coefficient for the second cooling
loop h2 is equal to 0 W

m2K as it is used to simulate the failure. Since there is almost
no heat withdrawal from the strand in the second loop, the casting speed has to be
reduced to 1.8366 m/min in order to fulfil the temperature constraints and the range of
the metallurgical length given by Eqs. (12) and (13), respectively.

The resultant temperature distributions of the strand for the failure-free scenario s0

and for the scenario with the failure s2 are shown in Figures 6 and 8, respectively. The
temperature profiles at the selected longitudinal cross-sections of the strand are pictured
in Figures 7 and 9. As can be seen in the figures, the temperature distributions for both
the scenarios fulfil quite well the requirement of the gradual decrease of the temperature.
In case of the scenario with the failure, there is a small reheating at the surface (see
Figure 9) at the distance of about 6 m from the mould. However, such reheating is only
local with the peak of about 150 ◦C and it can therefore be accepted by metallurgists
with no negative influence on the surface quality of the strand.
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Fig. 6. The resultant temperature distribution of the strand for the

failure-free scenario s0.
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Fig. 7. The temperature profiles in the longitudinal cross-sections of

the strand for the failure-free scenario s0.
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Fig. 8. The resultant temperature distribution of the strand for the

scenario s2 with the failure.
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Fig. 9. The temperature profiles in the longitudinal cross-sections of

the strand for the scenario s2 with the failure.

5.5. Evaluation of the results

As mentioned in Section 4 the progressive hedging algorithm was used to determine the
solution to the expected objective (EO) problem having the general form

{
minimize Eξ

(
f(x, ξ)

)
subject to x ∈ X : g(x, ξ) = 0,h(x, ξ) ≤ 0 almost surely.

(23)
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In general, it is more difficult to solve the EO problem (23) than the simpler expected
value (EV) problem (24){

minimize f
(
x,E(ξ)

)
subject to x ∈ X : g

(
x,E(ξ)

)
= 0,h

(
x,E(ξ)

)
≤ 0

(24)

as the EV formulation reduces the stochastic problem into the deterministic problem
because the random variables are replaced by their expected values [3].

Value of stochastic solution (VSS). The VSS is the useful measure for the eval-
uation of the potential profit which can be obtained if the EO problem (23) is solved
instead of the EV problem (24). The VSS is defined as [3]

VSS = EEV− Eξ

(
f(xEO, ξ)

)
(25)

where xEO is the optimal solution to the problem (23) and the EEV is called the expected
result of using EV solution [3], EEV = Eξ

(
f(xEV, ξ)

)
where xEV is the optimal solution

to the problem (24). The EV solution instead of the EO solution can be well applied
in cases having small values of the VSS. On the other hand, the higher the value of the
VSS the higher the profit that can be acquired using the EO solution instead of the EV
solution.

The EV formulation of the steel production problem presented in the paper was
solved and the values of the objective function are 2.1885 m/min and 1.8355 m/min for
the failure-free scenario s0 and for the scenario with the failure s2, respectively. The
value of the EEV is 2.1709 m/min and the VSS for the maximization problem then is

VSS = Eξ

(
f(xEO, ξ)

)
− EEV = 0.0258 m/min. (26)

Though the value of the VSS is rather small, the profit in the strand production of
2.6 cm per minute is not negligible when considering the 24-hour casting operation and
the price of the steel strand between 1,000BC and 10,000BC per meter. Moreover, in
case of the failure the important aim of steelworkers is not only to optimally solve the
problem from the point of the maximum productivity. A crucial task is to maintain
the casting process in operation and to provide sufficient time for a repair/solution of
the failure. In some cases, a failure in the secondary cooling zone could cause a serious
breakout situation in which the solid shell at the surface of the strand cracks and the
molten steel inside the strand then leaks out stopping the casting machine for several
days.

Expected value of perfect information (EVPI). The EVPI, another useful mea-
sure, evaluates the profit which can be acquired in case the full information about the
future is available [3]. The EVPI therefore states the maximum amount of “money”
which is reasonable to pay for information about the future. The EVPI is defined as

EVPI = Eξ

(
f(xEO, ξ)

)
− zWS (27)

where zWS is the objective value of the wait-and-see (WS) deterministic formulation to
the problem, see [3]. The WS formulation of the steel production problem presented
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in the paper was solved. The values of the objective function are 2.2158 m/min and
1.8396 m/min for the failure-free scenario s0 and for the scenario with the failure s2,
respectively. The value of zWS is 2.1970 m/min and the EVPI for the maximization
problem is then

EVPI = zWS − Eξ

(
f(xEO, ξ)

)
= 0.0003 m/min. (28)

Nonetheless, the information about the future is usually not available at any price in
technical optimization problems. The VSS is therefore more informative parameter in
the studied steel production problem than the EVPI.

6. CONCLUSIONS

The parallel implementation of the two-stage progressive hedging algorithm (PHA) is
presented. The Message Passing Interface (MPI) was used for the parallel run of the Gen-
eral Algebraic Modelling System (GAMS) which solves the scenario-based sub-problems.
The standalone application wrapping the PHA, MPI, and GAMS was created in C++.
The applicability of the developed software was demonstrated for the solution of the
two-stage PDE-constrained steel production problem considering a random failure. The
discretization of the heat transfer model with phase changes for the steel production by
means of the control volume method is discussed. The evaluation of the solution quality
is presented and the proposed computational approach seems effective and sufficiently
robust for similar kinds of problems. The further research will be mainly aimed at the
improvement of the heat transfer model of continuous casting as numerous simplifica-
tions were made. Due to requirements from the steel industry, the attention has recently
also focused on real-time control algorithms based on predictive control and fuzzy logic
approach.
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[11] R. E. C. Gonçalves, E. C. Finardi, and E. L. da Silva: Applying different decom-
position schemes using the progressive hedging algorithm to the operation planning
problem of a hydrothermal system. Electr. Power Syst. Res. 83 (2012), 19–27.
DOI:10.1016/j.epsr.2011.09.006

[12] S. Gul, B. T. Denton, and J. W. Fowler: A progressive hedging approach for
surgery planning under uncertainty. INFORMS J. Comput. 27 (2015), 755–772.
DOI:10.1287/ijoc.2015.0658

[13] S. Ikeda and R. Ooka: A new optimization strategy for the operating schedule of energy
systems under uncertainty of renewable energy sources and demand changes. Energ.
Build. 125 (2016), 75–85. DOI:10.1016/j.enbuild.2016.04.080

[14] T. L. Bergman, A. S. Lavine, F. P. Incropera, and D. P. Dewitt: Fundamentals of Heat
and Mass Transfer. Seventh edition. Wiley, New York 2011.
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Brno. Czech Republic.

e-mail: stetina@fme.vutbr.cz

Pavel Charvát, Brno University of Technology, Energy Institute, Technická 2896/2,
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