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PIECEWISE-POLYNOMIAL SIGNAL SEGMENTATION
USING CONVEX OPTIMIZATION

Pavel Rajmic, Michaela Novosadová and Marie Daňková

A method is presented for segmenting one-dimensional signal whose independent segments
are modeled as polynomials, and which is corrupted by additive noise. The method is based on
sparse modeling, the main part is formulated as a convex optimization problem and is solved by
a proximal splitting algorithm. We perform experiments on simulated and real data and show
that the method is capable of reliably finding breakpoints in the signal, but requires careful
tuning of the regularization parameters and internal parameters. Finally, potential extensions
are discussed.

Keywords: signal segmentation, denoising, sparsity, piecewise-polynomial signal model,
convex optimization

Classification: 46N10, 47N10, 65K10, 90C25, 90C30, 90C90

1. INTRODUCTION

Segmentation of a signal is one of the most important applications in digital signal pro-
cessing. In practice, segmentation is largely used in image processing, but segmentation
of one-, three- and even more-dimensional signals is an important task as well.

In the article, convex optimization is used to perform the segmentation of an one-
dimensional signal, i. e. to automatically find the partitioning of such a signal into its
segments, while the particular segments exhibit consistent character. In our case, the
clean, underlying signal is assumed to break into several polynomial segments, non-
overlapping and independent of one another, whose number is assumed to be consider-
ably lower than the total number of the observed signal samples. This last fact suggests
utilizing sparse signal processing techniques.

A number of real-world time series can be considered piecewise-polynomial, and thus
this method is of practical interest as presented below. Nevertheless, this paper can also
be seen as an intermediate step towards segmentation of images or volumes. Indeed, the
methods which will be presented can be smoothly generalized to a higher dimension,
where the piecewise-polynomial structure of segments is also present; for example, [33,
21] showed that images can, to a great extent, be modeled as piecewise-smooth 2D
functions.
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The recent publication [14], coping with segmentation of images, was actually the
motivation for this work. The authors of [14] use greedy [36] approach enabling state-
of-the-art results, and our goal was to explore to what extent the convex relaxations of
sparsity measures [11] will compare with it.

Polynomial smoothing of time series has commonly been done by the so-called moving
least-squares methods. Such methods consist in selecting a moving window and comput-
ing the respective windowed (i. e. local) least-squares polynomial approximations. The
resulting curve is smooth, and approximates well if the underlying noiseless function is
smooth [22]. However, such methods are not applicable to our setup since discontinuities
are allowed.

Finding consistent segments in a signal/time series is an old problem, referred to
as the change-point problem in the field of statistics. Most resources in the literature
cope with finding change points in a noisy, piecewise-constant signal, which is either
singlevariate [23] or multivariate [2, 13] (the latter is the case where most of the signals
or all of them change simultaneously). In a more general context of detecting sudden
changes in the underlying, latent parameters we mention works [37] and [1]. Article
[31] utilizes the sparse techniques, but it considers the polynomial model for the entire
signal, with additive sparse ramp discontinuities.

When the signal is assumed to lack jumps (i. e. the segments’ borderpoints have to
coincide), efficient methods have been presented, based on sparse modeling, see [17] or
[35] in a more general setup.

Although our segmentation problem relates to the above-mentioned change-point
problems, it is different, as will be revealed shortly in detail. To the best of our knowl-
edge, there is no other work apart from [14] which would use over-parametrization for
segmenting the signal, and apart from [32] which, however, constructs non-convex opti-
mization problems.

Our previous work. We have already made some progress in the proposed direc-
tion. Our publication [30] discussed the use of convex total variation (TV) regularizers
for the segmentation task. Then, a recent conference paper [24] extended the former
basic approach in several directions, involing the shift to group-sparsity, for example.
This article naturally follows up on [24] and provides, among many small improvements:
(1) a deeper explanation of the model and the algorithms, (2) improved numerical stabi-
lity, (3) better assesment in the changepoint detection phase, (4) an experiment on real
data, (5) a software package.

Organization of the paper. Section 2 formulates the segmentation/denoising prob-
lem in the mathematical perspective and explains the resulting optimization program.
Section 3 presents the proximal splitting algorithms and explains in detail how the
Chambolle-Pock algorithm is utilized to find a solution to our problem. In addition, this
section introduces post-processing steps needed to establish the segment breakpoints
and to find the final signal estimate. The experiments on synthetic and real data are
presented in Section 4. Section 5 describes the software used for the experiments, fol-
lowing the idea of reproducible research. A thorough discussion on the strengths and
weaknesses of the proposed convex program is presented in Section 6. It also discusses
possible modification of this problem that would render better and more stable results.
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2. PROBLEM FORMULATION

Let the signal y = [y1, . . . , yN ]> ∈ RN be given, which is assumed to be piecewise-
polynomial. The consecutive segments do not have to “meet” at the segment borders,
i. e. jumps in y are allowed. Suppose there are S segments. Within a particular segment
s ∈ {1, . . . , S}, elements of the vector y can be described by the K + 1 parametrization
coefficients xs,0, xs,1, . . . , xs,K that represent the local intercept, the local slope etc.,
respectively. The ith element of observed y is

yi = xs,0 + xs,1 · i+ xs,2 · i2 + · · ·+ xs,K · iK + ei, (1)

where ei stands for perturbations by uncorrelated Gaussian noise with zero mean and
positive variance. In (1), we use the standard polynomial basis {1, i, i2, . . . , iK}, which
is shared across all segments. In vector notation, the signal model is

y =
[
I D1 . . . DK

] x0

...
xK

+ e (2)

where xk = [x1,k, x2,k, . . . , xN,k]> ∈ RN , k ∈ 0, . . . ,K, are the parametrization vectors,
I = IN is the identity matrix, D = diag(1/N, 2/N, . . . , 1) is the diagonal matrix with
linearly growing elements1, Dj is its power (and therefore D0 = I), and e represents
the noise vector. We will often use a shortened notation y = Ax + e instead of (2) for
simplicity.

Due to the above mentioned formulation, it is obvious that signal generation by
A · x is heavily over-parametrized, meaning that there are infinitely many vectors x
that generate identical Ax. On the other hand, the parameters in x should be strongly
related—consider that for a signal consisting of S consecutive segments built from poly-
nomials up to degree K, the parametrization vectors xk stay piecewise-constant within
each segment; in addition, the breakpoints in all K + 1 vectors xk appear at the same
position. This is a crucial observation which will be used next, in composing the opti-
mization problem.

Together with the assumption S � N , the above motivates the use of a measure of
sparsity for our segmentation/denoising problem. A vector is termed m-sparse when it
consists of no more than m nonzero elements. Optimization problems involving such
a vector characterization, were, however, shown to be NP-hard [3, 4]. Probably the most
popular choice of a surrogate that approximates true-sparsity-inducing functionals is the
`1-norm defined by ‖z‖1 =

∑
n |zn|. Such a choice performs surprisingly well, while this

fact has also been theoretically justified [10, 12].
We formulate the problem as follows:

x̂ = arg min
x

{
1
2
‖y −Ax‖22 + ‖[τ0∇x0, . . . , τK∇xK ]‖21

}
(3)

1Note that in contrast to (1), the basis’ time vector is rescaled. We observed that using D =
diag(1, 2, . . . , N) as in [14, 24, 30] leads to numerical problems for even a moderate N . Personal com-
munication with the authors of [14] confirms this issue.
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where τ = [τ0, . . . , τK ]> are K + 1 positive weights, corresponding to individual poly-
nomial degrees. These scalars should be set carefully according to the noise level and
prior experience.

In (3), the first term is the “data fidelity” term, enforcing the estimate to approxi-
mately correspond to the observation y. The eucleidian `2-norm reflects the fact that
gaussianity of the noise is assumed.

The second term in (3) is the “regularizer”. This functional mathematically tran-
scripts the desired properties of the estimate and assigns high values to vectors x
that lack such properties. Piecewise-constant vectors xk suggest that these vectors
are sparse under the finite difference operation, which will be denoted ∇, and defined
by ∇z = [z2− z1, . . . , zN − zN−1]. We use the so-called mixed `21-norm [20], which acts
on a matrix Z of size p× q and is formally given by

‖Z‖21 =
∥∥∥ [‖Z1,:‖2, ‖Z2,:‖2, . . . , ‖Zp,:‖2

] ∥∥∥
1

= ‖Z1,:‖2 + . . .+ ‖Zp,:‖2 , (4)

i. e. the `2-norm is applied to the particular rows of Z and the resulting vector is evaluated
by the `1-norm. Therefore, the `21-norm, used as a regularizer, promotes sparsity across
columns of the matrix, and does not promote sparsity across the rows. In our case,
matrix columns are the difference vectors τk∇xk, and therefore the joint sparsity of
differences is enforced. This means that the differences should be zero at most matrix
positions, and nonzero values should be concentrated in a few rows, i. e. at the points
corresponding to the changepoints in the model.

The solution, i. e. vector x̂ = [x̂>0 . . . x̂
>
K ]> contains the obtained N(K + 1) optimiz-

ers, and (desirably joint) nonzero values in ∇x̂ks indicate the possible segment borders
(changepoints).

3. ALGORITHMS

This section provides a description of how the optimization problem (3) is numerically
solved and how the result is postprocessed to achieve the final segmented (and denoised)
estimate.

3.1. Proximal splitting methods

Proximal splitting methodology is a tool for iterative solution of convex minimization
problems [8]. Proximal algorithms are especially effective in finding the minimum of
a sum of convex functions fi, with mild assumptions about these functions. Based
on the properties of the functions, proximal algorithms perform iterations involving an
evaluation of gradients and/or proximal operators related individually to each fi, which
is much simpler than minimizing the composite functional by other means. Such first-
order methods are in particular suitable for large-scale problems [6]. Proximal algorithms
provide sequences that are guaranteed to converge to the optimal value. The speed of
convergence is influenced by the properties of particular fis and by particular values of
the parameters chosen in the algorithms.

For our problem (3), we use the Chambolle-Pock (CP) algorithm [6], which will be
described in Section 3.3. While other algorithms could be utilized as well, we found
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that the CP algorithm was the fastest available. See for example our study in [24],
which shows that gradient-based algorithms (like the Forward-backward based primal-
dual algorithm [18]) are not suitable for our purpose, as they provide slow convergence
due to the matrix A being ill conditioned.

3.2. Proximal operators

A proximal operator of a function h maps z ∈ RN to another vector in RN , such that

prox
h

(z) = arg min
x∈RN

{
h(x) +

1
2
‖z− x‖22

}
. (5)

Note that below, matrices will be regarded as reshaped one-dimensional vectors,
where appropriate.

This article will make use of proximal operators of two particular functions. First,
we have that for real-valued matrix A [8, 9],

prox
τ
2 ‖A· −y‖22

(z) = (I + τA>A)−1(z + τA>y). (6)

Second, the proximal operator of the `21-norm is

prox
τ‖[·,...,·]‖21

(Z) = softrowτ (Z), (7)

mapping matrix Z = [zij ] to another [19]. It can be shown that it is a case of soft thresh-
olding over groups consisting of rows of the matrix; specifically, softrowτ is a mapping

zij 7→
zij
‖Zi,:‖2

max(‖Zi,:‖2 − τ). (8)

Given a convex function f , the proximal operator of its Fenchel–Rockafellar conjugate
f∗ can be computed at virtually the same cost as proxf owing to the Moreau identity
[9, 18]:

prox
αf∗

(u) = u− α prox
f/α

(u/α) for α ∈ R+. (9)

3.3. Chambolle-Pock splitting

The Chambolle-Pock (CP) algorithm [6] is tailored to solve problems of type

minimize f1(x) + f2(Lx), (10)

where both f1 and f2 are convex, lower semi-continuous functions with non-empty do-
mains, mapping real vectors to (−∞;∞]. Both the functions can be non-smooth, and
L stands for any linear operator (representable by a matrix in our finite-dimensional
setting). The CP algorithm is primal–dual and iterative, while each iteration consists of
two proximal steps with respect, in turn, to f1 and f2, respectively, combined with the
application of L and L>.
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Algorithm 1: The Chambolle-Pock (CP) algorithm

Input: Functions f1, f2, and a linear operator L ∈ Rq×p
Output: p̄(n)

Set parameters ζ, σ > 0 and θ ∈ [0, 1];
Set initial primal variables p(0) ∈ Rp and dual variables q(0) ∈ Rq;
Set initial output variables p̄(0) = p(0);
Set iteration counter n = 0;
repeat

q(n+1) = proxσf∗2
(
q(n) + σL p̄(n)

)
;

p(n+1) = proxζf1
(
p(n) − ζL>q(n+1)

)
;

p̄(n+1) = p(n+1) + θ(p(n+1) − p(n));
n← n+ 1;

until convergence;
return p̄(n)

The CP algorithm is provided in Algorithm 1. For θ = 1, the authors of [6] show that
the convergence is ensured when ζσ‖L‖2 < 1, where ‖ · ‖ denotes the operator/spectral
norm. Note, however, that later a more general algorithm appeared [9] that recovers
the CP algorithm as its special case, while the step parameter could range to as much
as θ ∈ (0, 2). The latter fact can significantly improve the convergence speed. Iterations
are terminated if a convergence criterion is met, for example if the relative change in
the primal variables is small enough: ‖p̄(n+1) − p̄(n)‖2/‖p̄(n)‖2 ≤ ε.

Returning to (3), assign f1(x) = 1
2‖y −Ax‖22. Although it is a smooth function, its

gradient will not be utilized, since the model matrix A is ill conditioned, and therefore
the iterative gradient steps are not quite effective. The proximal operator of f1 is
displayed in (6).

Next, assign f2(u) = f2(u0, . . . ,uK) = ‖[u0, . . . ,uK ]‖21. It is a non-smooth function
and the proximal operator of f2 has been established in (7) and (8); there we have τ = 1.
Moreover, for use in the CP algorithm, the relation (9) for the conjugate function should
be used.

The linear operator L and its transpose are

L(x) = L(x0, . . . ,xK) = [τ0∇x0, . . . , τK∇xK ] (11)

L>(u) = L>(u0, . . . ,uK) =

 τ0∇
>u0

...
τK∇>uK

 (12)

with∇ of size (N−1)×N . The reader may notice that the mapping L : RKN → RN−1×K

also involves reshaping a long vector to a matrix and back, which is necessary for the
application of the `21-norm as defined in (4). The analogue holds for L> : RN−1×K →



Piecewise-polynomial signal segmentation using convex optimization 1137

RKN . The operator ∇> can be implemented as efficiently as ∇ since

∇>u = ∇

 0
−u
0

 . (13)

An upper bound on ‖L‖ will also be needed:

‖L‖2 = max
‖x‖2=1

‖Lx‖22

= max
‖x‖2=1

‖[τ0∇x0, . . . , τK∇xK ]‖22

= max
‖x‖2=1

(
‖τ0∇x0‖22 + . . .+ ‖τK∇xK‖22

)
≤ τ2

0 max
‖x‖2=1

‖∇x0‖22 + . . .+ τ2
K max
‖x‖2=1

‖∇xK‖22

≤ τ2
0 ‖∇‖2 + . . .+ τ2

K‖∇‖2

≤ 4(τ2
0 + . . .+ τ2

K).

since it can be easily shown that it holds ‖∇‖ ≤ 2. From the above it follows that

‖L‖ ≤ 2
√∑K

k=0 τ
2
k =: 2‖τ‖2. In turn, convergence of the CP algorithm is guaranteed

whenever ζσ ≤ 1/(4‖τ‖22).
In the described setting, the main steps of the particular CP algorithm thus read
• q(n+1) = (Id − softrow1/σ)

(
q(n)/σ + L p̄(n)

)
• p(n+1) =

(
I + ζA>A

)−1 (
p(n) − ζL>q(n+1) + τA>y

)
with Id standing for the identity operator. Note that the matrix

(
I + ζA>A

)−1 can
be precomputed, and Theorem 1 in the Appendix introduces an explicit formula for
computing the inversion, which is possible thanks to the multi-diagonal structure of
A>A. In addition, A>y can also be precomputed.

3.4. Signal segmentation and final estimation

Vectors x̂ obtained as optimizers of our problem (3) allow simple estimation of the
underlying noiseless signal according to ŷ = Ax̂. This section discusses the means by
which this reconstruction could be improved at a negligible computational cost.

Recall that nonzero values in ∇x̂0, . . . ,∇x̂K indicate segment borders. However,
only in rare cases, can regularization weights τ0, . . . , τK be fine-tuned to achieve truly
piecewise-constant optimizers. The non-strict convexity of the total-variation-like regu-
larizer ‖∇· ‖21 in (3) makes the problem no easier; see, for example, the discussion of
this phenomenon in [28, 30]. Even when the K + 1 scalars τk are set properly, vectors
∇x̂k are in practice full of small values, besides larger entries indicating possible segment
borders. The underlying signal is assumed to be piecewise-polynomial, and therefore,
a two-part procedure is applied to obtain the denoised signal: first, the borders of the
signal segments are detected and fixed, and second, optimal parameters are found for
each detected segment individually.
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3.4.1. Changepoints detection

The process of changepoints detection attempts avoiding false alarms caused by small
values in the difference vectors. Thanks to the use of the mixed norm, significant values
in ∇x̂ks tend to be situated at identical indexes, and our detection procedure can benefit
from this property. Thus, we start by forming a single vector out of all achieved ∇x̂ks,
which is done by computing the euclidean distance according to the formula

d =
√

(α0∇x̂0)2 + · · ·+ (αK∇x̂K)2, (14)

where all the operations are considered as acting elementwise on the vectors. The scalars
α0, . . . , αK are positive weights used as balancers because the range of values in the pa-
rametrization vectors differs with the order of the polynomial they correspond to.2 The
weights are computed as αk = 1/max(|∇x̂k|). Then, a moving median filter is applied to
d and the filtered signal obtained is subtracted from d, yielding d̂. This approach leaves
the significant breakpoints and filters the segments between breakpoints, such that it
provides a signal with more zero (or close to zero) values in d̂. Finally, the indexes in d̂

satisfying
∣∣∣d̂∣∣∣ > λ with a properly set threshold λ constitute the detected breakpoints.

Occasionally, two or even more breakpoints could be detected that are adjacent to
each other. In ideal conditions, this would indicate segments of length one. We ob-
served that in practice, however, such a situation can appear for long segments as well.
Therefore, anytime such a situation is detected, only the absolute largest index is chosen.

3.4.2. Obtaining final optimal parameters

As the final step, denoising/smoothing is applied to each detected segment separately.
This is done simply by forming a regression matrix consisting of the polynomial basis
up to order K as its columns, and applying an ordinary least-squares method to data
y restricted to the segment range. By doing this, we obtain a new parametrization
coefficient set ẋ, which is constant on the segment-by-segment basis. The complete
denoised signal ẏ is then reconstructed according to ẏ = Aẋ. The least-squares refit
could be seen as a procedure usually termed “debiasing”, commonly used in LASSO-type
estimation [5, 34], which is inherently biased by the use of the `1-norm [29].

4. EXPERIMENTS

4.1. Experiments on synthetic data

Quadratic signal with low noise. A randomly generated piecewise-polynomial sig-
nal of degree 2 and of total length N = 300 was used. The signal contained six inde-
pendent polynomial segments. The parametrization vectors x0, x1 and x2 in RN used
for the generation of the signal are piecewise-constant, as had been assumed. The signal
y is created by computing [I D D2][x>0 x>1 x>2 ]> and the independent and identically
distributed (iid) Gaussian noise is added to it, such that the signal-to-noise ratio (SNR)
is 30.15 dB.

2Alternatively, other measures can be used, for example `p-norms for different p ∈ [1,∞]. In our
experience, however, the `2-distance as in (14) was the best one for the practical experiments.
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Figure 1 shows an approximation of this signal achieved with τ0 = 0.1153, τ1 = 0.0807,
τ2 = 0.0576 (these regularization parameters were tuned to obtain the parametrization
coefficients as close to piecewise-constant as possible). The CP algorithm was stopped
after 2,000 iterations. The median filter window of length 5 and the threshold λ = 0.1
were used, see Sec. 3.4. While the SNR of the input signal was 30.15 dB, the SNR of the
signal Ax̂ was 34.57 dB and the SNR of the final estimate after the least-squares method
(Aẋ, shown in the upper figure in green) was 43.61 dB. Observe the perfect detection of
the changepoints and the great fit of the polynomial segments.

Quadratic signal with high noise. The same as above, a signal has been generated,
but with the parametrization vectors x0, x1 and x2 taken differently, including different
positions of the changepoints. The iid Gaussian noise for this case had higher variance,
the SNR is 19.77 dB.

Figure 2 shows the results that have been achieved using τ0 = 0.8439, τ1 = 0.5907,
τ2 = 0.4219 after 1,000 iterations of the CP algorithm, again followed by the least-
squares refitting. A median filter window of length 5 and the threshold λ = 0.22 were
used. The SNR of the signal Ax̂ was 29.85 dB and the SNR of the final estimate Aẋ was
33.66 dB. Note that the model fit is worse due to stronger noise but, at the same time,
the changepoints have again been detected perfectly, including the very short segment
around time index 130.

4.2. Experiment on real data

Our model has been tested on a signal acquired by an OTDR (Optical Time Domain
Reflectometer) instrument.3 Optical Time Domain Reflectometry [15] is a basic method
used for evaluating the quality of optical routes in optical networks. A series of subse-
quent optical pulses with a duration in the order of tens or hunderds of nanoseconds is
launched into the fiber and the amount of back-scattered light is measured.

Since the reflections follow an exponential model, the acquired data are subject to
logarithmization, which makes the measurement linearized. Our linearized signal is
depicted in red in Fig. 3. Such data can be used to characterize the fiber along its
length. Separate sections of the cable can be detected, since the welding points are
visible in the graph as jumps. We can also characterize the attenuation factor of each
cable segment, as it is represented by the local slope of the signal.

The signal was 446 samples long, which corresponds to ca 55 kilometers of cable. The
signal was measured with a wavelength of 1310 nm. The cable consists of five segments
of almost identical length. We run our optimization program on this data with τ0 = 1.6
and τ1 = 1.4. After 1500 iterations of the CP algorithm and subsequent post-processing
(with median filter length 25 and λ = 0.11), we got perfect detection of the changepoints.

The time-domain result of the OTDR segmentation/denoising is depicted in green
in Fig. 3. Fig. 4 shows the intermediate steps in terms of the parametrization vectors.
We observe that x̂0, x̂1 are far from having stepwise character, in contrast to what is
desirable. On the other hand, ∇x̂0 and ∇x̂1 still carry significant values that lead to
the detection of segments.

3Our signal is one of the example signals from the OTDR FTB-7000 software by EXFO Inc., Canada,
ver. 6.14.72.280.
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Fig. 1. Approximation of a random piecewise-polynomial signal in

the low-noise case. In the upper figure, the clean signal and its noisy

version y are depicted, as well as the final approximation achieved by

our algorithm. In the lower figure, the respective parametrization

coefficients are presented (i. e. the vectors x̂k subsequently used for

the changepoint detection).
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Fig. 2. Similarly to Fig. 1, an approximation of a random

piecewise-polynomial signal is presented, this time in the high-noise

regime. The bottom plot shows the parametrization coefficients before

they are passed on to the changepoint detection.
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0 50 100 150 200

22

23

24

25

26

27

28

29

30

31

Samples

S
ig

na
ls

 v
al

ue
s

 

 
signal noisy
signal recon CP+LS

250 300 350 400

14

15

16

17

18

19

20

21

22

23

Samples

S
ig

na
ls

 v
al

ue
s

 

 
signal noisy
signal recon CP+LS
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cable consists of five segments. We got perfect detection of the

changepoints.
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Right: post-processing of x̂0, x̂1 for the detection of segment borders.
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5. SOFTWARE

The experiments have been done in Matlab (R2010a) and for the proximal algorithms
we benefited from using the flexible UnLocBox toolbox4 [27] in version 1.7.2. In the
spirit of reproducible research, we make the experiments-related codes available. The
reader can download the archive at
http://www.utko.feec.vutbr.cz/~rajmic/software/sparse_signal_segment.zip

A brief description of the main m-files follows:
DEMO 1 . . . . . . . . . . . . . . . . . . . . script that performs the synthetic experiment with low noise

(datafile DEMO 1 data.mat), see Fig. 1

DEMO 2 . . . . . . . . . . . . . . . . . . . . script that performs the synthetic experiment with higher
noise (file DEMO 2 data.mat), see Fig. 2

DEMO 3 . . . . . . . . . . . . . . . . . . . . script that performs the segmentation experiment on real
data (datafile DEMO 3 data.mat), see Fig. 3 and Fig. 4

lib CP . . . . . . . . . . . . . . . . . . . . function which computes the parameters x̂ using the CP
algorithm; this function internally uses Unlocbox routines

lib recon from params . . . function that reconstructs the signal from the (estimated)
parameters

lib least squares fit . . . function refitting a given segment of the signal by the ordi-
nary least-squares method, producing the parameters ẋ

matrix inversion . . . . . . . . function that computes the inversion of I +λA>A according
to Theorem 1

lib generate signal . . . . . function that randomly generates a piecewise-polynomial sig-
nal of selected degree, number of segments and length

lib signal denoising . . . . function which takes x̂, performs changepoints detection,
least-squares refitting of each detected segment, and the final
signal reconstruction ẏ

lib chanpoint detect . . . . function that detects borders of the segments.

6. DISCUSSION AND CONCLUSION

The experiments show that the proposed methodology of signal segmentation/denoising
is very promising. However, careful tuning of the parameters must be carried out to
obtain proper segmentation.

More specifically, the less a changepoint is barely recognizable (in our case with the
naked eye in a 1D signal), the more tuning is required, and there are signals whose
segmentation is very user-demanding. We experienced such a case with OTDR data
(not published here), where, despite much effort, we were not able to force a breakpoint
belonging to a tiny jump in the time series. However, we notice that this behaviour is
in fact in agreement with the analysis in [30], where we argued that an easy (or easier)
achievement of good results is in fact complicated by the TV(-like) regularizer. In this
article, the `21-norm is used, which actually exhibits the properties of the total variation
regularizer. In brief, the main problem of the functionals containing the difference
operator and the `1-norm is their non-strict convexity.

4https://lts2.epfl.ch/unlocbox

http://www.utko.feec.vutbr.cz/~rajmic/software/sparse_signal_segment.zip
https://lts2.epfl.ch/unlocbox
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One could therefore hope for better results via using more robust recovery programs,
developed by introducing non-convex regularizers. For example, using `p-“norms” with
p < 1 [7] would be a natural step further.

One could also think about imitating non-convexity via a series of convex programs.
Such an approach is not new in general, it has been both theoretically and practically
justified in [5], for example. To be more specific, a series of convex problems is formulated
where the parameters of the currently solved problem depend on the latest solution. In
our case, this approach would suggest augmenting problem (3) by changing the regu-
larizer to elementwise weighted differences, instead of applying a common weight τk to
the vector ∇xk in (3). Such weights for all difference terms would change adaptively
after a suitable number of iterations of the CP algorithm, based on the latest solution.
The points which are most probably the breakpoints would gradually be assigned lower
weight, thus less penalized. The procedure would stop when the breakpoint locations
become stable. In fact, problem (3) would change merely by introducing a modified
linear operator

L̄(j)(x) =


diag

(
w(j)

1

)
· ∇ · · · 0

. . .

0 · · · diag
(
w(j)
K

)
· ∇

 · x,

where j represents the number of problem repetitions.

Despite its theoretical attractivity, we report that we were not successful with such
an approach. The explanation is that adaptively changing the weights w(j)

k causes
disbalance between the data fidelity term and the regularizer. Due to the complex
structure of the regularizer, it is definitively not clear how one should “normalize” the
weights in each repetition to keep a desirable balance.

A way to avoid the described complication is to solve a series of constrained convex
problems,

arg min
x

∥∥∥L̄(j)x
∥∥∥

21
subject to ‖y −Ax‖2 ≤ δ, (15)

where δ is the estimate of the noise level. Constructing an efficient algorithm to solve
(15) is however outside the scope of this article.5

5In the course of the review process, our study addressing this issue has been published, see [25].
The paper compares different numerical approaches to solve (15) and at the same time it shows that
although reweighting brings some improvement in detecting breakpoints, careful tuning of parameters
has still to be carried out.
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7. APPENDIX

Theorem 1. Let A =
[
I D D2 . . . Dk

]
be a matrix with D = diag (d1, . . . , dN ) square

and diagonal. Then for the inversion of the N(k+ 1)×N(k+ 1) matrix I + λA>A with
λ ∈ R+ it holds (

I + λA>A
)−1

= I− λ
(
I⊗C−1

)
A>A,

where the identity matrices I are of appropriate sizes, the symbol ⊗ denotes the Kro-
necker product and the N ×N matrix C is defined by

C = I + λ

k∑
i=0

D2i = I + λAA>.

P r o o f . In the definition of matrix C, we utilize the fact that AA> =
[
I . . . Dk

]
·[

I . . . Dk
]> =

∑k
i=0 D2i. We have (I⊗C)−1 =

(
I⊗C−1

)
and we use this fact to find

the product: (
I + λA>A

)−1 ·
(
I + λA>A

)
=
[
I− λ

(
I⊗C−1

)
A>A

]
·
(
I + λA>A

)
= I− λ

(
I⊗C−1

)
A>A + λA>A− λ2

(
I⊗C−1

)
A>AA>A

= I +
(
I⊗C−1

) [
−I + (I⊗C)− λA>A

]
λA>A.

Now, since

I⊗C =

I + λ
∑k
i=0 D2i · · · 0

...
. . .

...
0 · · · I + λ

∑k
i=0 D2i


and

A>A =


I D D2 . . . Dk

D D2 D3 . . . Dk+1

D2 D3 D4 . . . Dk+2

...
...

...
. . .

...
Dk Dk+1 Dk+2 . . . D2k

 ,
we see that

−I + (I⊗C)− λA>A =


λ
∑
i 6=0 D2i −λD −λD2 · · · −λDk

−λD λ
∑
i 6=1 D2i −λD3 · · · −λDk+1

−λD2 −λD3 λ
∑
i6=2 D2i · · · −λDk+2

...
...

...
. . .

...
−λDk −λDk+1 −λDk+2 · · · λ

∑
i6=k D2i

 .

Multiplying this matrix from right by λA>A results in the zero matrix.
Since I + λA>A is symmetric, so is its inverse, and it is not necessary to prove the

multiplication in the opposite order.
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We note that the theorem could be proven with the help of the (Sherman–Morrison–
Woodbury) inversion lemma [16, 26], but we prefer the presented approach for clarity.
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