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KYBER NET IKA — VOLUM E 5 3 ( 2 0 1 7 ) , NUMBE R 5 , P AGES 7 6 5 – 7 7 9

SYNCHRONIZATION OF TIME-DELAYED SYSTEMS
WITH DISCONTINUOUS COUPLING

Hong-jun Shi, Lian-ying Miao, Yong-zheng Sun

This paper concerns the synchronization of time-delayed systems with periodic on-off cou-
pling. Based on the stability theory and the comparison theorem of time-delayed differential
equations, sufficient conditions for complete synchronization of systems with constant delay
and time-varying delay are established. Compared with the results based on the Krasovskii–
Lyapunov method, the sufficient conditions established in this paper are less restrictive. The
theoretical results show that two time-delayed systems can achieve complete synchronization
when the average coupling strength is sufficiently large. Numeric evidence shows that the
synchronization speed depends on the coupling strength, on-off rate and time delay.
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Classification: 34F05, 34H10

1. INTRODUCTION

Since the pioneer work of Pecora and Carroll [18], chaos synchronization in coupled
systems has been extensively studied in many areas, such as biological systems, infor-
mation processing, secure communications, economical systems, etc [3]. There are many
different kinds of synchronization, such as complete synchronization [24], generalized
synchronization [15], anti-synchronization [17], projective synchronization [7], etc.

As a typical dynamics behaviour of coupled nonlinear systems, synchronization is
ubiquitous in nature, technology, and society. Sun et al. [27] showed that the velocity
synchronization of multi-agent systems with mismatched parameters is achieved when
the sampled period is chosen appropriately. Synchronization of duplex networks was
investigated in Ref. [11]. Tan et al. illustrated that the common decision of a group
can well reflect the concerns of all group members with evolutionary dynamics [30].
In Ref. [31], a microscopic deterministic formulation is developed for analyzing and
controlling the evolutionary game dynamics on complex networks. To verify the presence
of generalized synchronization of complex networks, a rigorous theoretical basis for the
applicability of auxiliary system approach is established in Ref. [37]. Due to different
applications of synchronization, a wide variety of approaches and controllers have been
proposed, including adaptive control [4, 12, 13, 23, 34, 35], finite-time control [1, 29, 32],
sliding mode control [5, 16, 20, 21, 22, 33] and so on.
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Most previous works focused on the synchronization of coupled systems with contin-
uous coupling [2, 19, 36]. In this case, the synchronization condition can be derived by
using the Lyapunov function or functional method. However, in real-word systems, the
dynamical interactions between two communities or networks may be switched off some-
times. For example, the dynamics of biological populations are affected by climate, such
as temperature and seasonality, the interactions between them may be activated and
depressed periodically. This phenomenon can be described in on-off coupling to some
extent. Therefore, the study of synchronization between two on-off coupled chaotic
systems is very important to the perspective of control theory and practical applica-
tions. In Refs. [25, 28], the synchronization of coupled systems with on-off coupling was
investigated.

The effect of time delay, which arise from a realistic consideration of finite communi-
cation times and processing speeds, is a key issue that has received increasing attention
from many fields of science and engineering [6, 9, 14, 26]. It has been discovered that time
delays have great influence on the behavior of complex dynamical systems. In spite of
these investigations, a systematic study of the synchronization of time-delayed systems
with on-off coupling has been lacking. From recent works [6, 9, 14, 26], the Krasovskii–
Lyapunov theory is useful for discussing the synchronization of coupled time-delayed sys-
tems with continuous coupling. According to the Krasovskii–Lyapunov theory, coupled
time-delayed systems can realize synchronization if the coupling strength is sufficiently
large for all time. However, this condition is not valid for the general case where the
coupling is switched off in some time intervals. Therefore, it is necessary and important
to propose the synchronization conditions for time-delayed systems with on-off coupling.

Motivated by the above analysis, in this paper, for the first time we investigate the
synchronization of time-delayed systems with discontinuous coupling. Based on the sta-
bility theory of differential equations and the comparison theorem, sufficient conditions
for systems with both constant delay and time-varying delay are presented. Different
from the Krasovskii–Lyapunov method, we use the comparison theorem of differential
equations to obtain the sufficient conditions for time-delayed systems with periodic on-
off coupling. Compared with the results based on the Krasovskii–Lyapunov method,
the sufficient conditions established in this paper are less restrictive. In particular, we
show that two time-delayed systems can realize synchronization if the average coupling
strength is large enough.

The rest of this paper is organized as follows. In Section 2, we give the system
formulation and some useful preliminaries. In Section 3, the sufficient conditions for
synchronization are established. In Section 4, numerical simulations are provided to
verify the effectiveness of the theoretical results. Finally, some conclusions are provided
in Section 5.

Notations: Throughout this paper unless specified we let ‖ · ‖ be Euclidean norm. If
A is a vector or matrix, its transpose is denoted by AT .

2. SYSTEM FORMULATION AND PRELIMINARIES

Consider the following system:

ẋ(t) = f(x(t)) + g(x(t− τ(t))), (1)
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where x(t) = (x1(t), . . . , xn(t))T ∈ Rn is the state vector of the system, f : Rn → Rn

and g : Rn → Rn are continuously differentiable nonlinear vector functions, τ(t) is the
time-varying delay and satisfies 0 < τ(t), τ̇(t) ≤ ε < 1, ε is a positive constant.

To realize the synchronization of two time-delayed chaotic systems, we refer to model
(1) as the drive system, and the response system is given by the following equation:

ẏ(t) = f(y(t)) + g(y(t− τ(t))) + u(t), (2)

where y(t) = (y1, . . . , yn)T ∈ Rn is the state vector of the response system (2), u(t) is
the control input to be designed. Let e(t) = y(t) − x(t) is the synchronization error
between the drive system (1) and the response system (2), then one gets the following
error system:

ė(t) = f(y(t))− f(x(t)) + g(y(t− τ(t)))− g(x(t− τ(t))) + u(t). (3)

Definition 2.1. (Shi et al. [24]) Chaotic systems (1) and (2) are said to achieve
complete synchronization if, for any initial states x(0), y(0),

lim
t→∞

‖y(t, y(0))− x(t, x(0))‖ = 0.

The following assumption will be used throughout this paper in establishing our
synchronization conditions.

Assumption 2.2. (Shi et al. [23]) For functions f(·), g(·) and ∀x, y ∈ Rn, there exist
two nonnegative constants lf and lg such that

(y − x)T [f(y)− f(x)] ≤ lf (y − x)T (y − x), ‖g(y)− g(x)‖ ≤ lg‖y − x‖.

3. SUFFICIENT CONDITIONS FOR SYNCHRONIZATION

3.1. Complete synchronization with time-invariant delay

In this section, we will study the complete synchronization between systems (1) and
(2) with time-invariant delay. The drive-response systems (1) and (2) can be rewritten
as:

ẋ(t) = f(x(t)) + g(x(t− τ)), (4)

ẏ(t) = f(y(t)) + g(y(t− τ)) + u(t), (5)

where
u(t) = −k(t)e(t). (6)

Here we choose the coupling strength k(t) as the on-off periodic coupling,

k(t) =
{
k, nT ≤ t < (n+ θ)T ;
0, (n+ θ)T ≤ t < (n+ 1)T , (n = 0, 1, 2, . . .) (7)

where k is a positive constant, T > 0 is called the on-off period, θ(0 < θ < 1) is called
the on-off rate. It is easy to see that (6) is a discontinuous coupling when 0 < θ < 1,
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while θ = 1, corresponds to the continuous case. Then we can rewrite error system (3)
in the following form:

ė(t) = f(y(t))− f(x(t)) + g(y(t− τ))− g(x(t− τ))− k(t)e(t). (8)

In order to get our main results on time-invariant delay, we need a lemma as follows:

Lemma 3.1. (Hmamed [8]) Consider the time-delayed system

Ẇ (t) = BW (t) + CW (t− τ), (9)

where W (t) ∈ Rn, B and C are matrices in proper dimensions. The stability of system
(9) is equivalent to the stability for the following system

Ḣ(t) = (B + zC)H(t),∀|z| = 1, (10)

where z = exp(jη), η ∈ (−π, π], j =
√
−1.

One of the main theorems of the paper is presented here.

Theorem 3.2. Suppose that Assumption 2.2 holds and the following condition is sat-
isfied:

k(t) > kc , lf + lg, (11)

where k̄(t) is the time-average coupling strength defined by k̄(t) = 1
T

∫ T
0
k(s)ds. Then,

under the controller (6), systems (4) and (5) can achieve complete synchronization.

P r o o f . Based on the theory of differential equations, it is easy to see that differential
equation (8) has a unique global solution on t ≥ 0, denoted by e(t, e(0)) for any initial
data e(0) = y(0)−x(0). And e(t, 0) ≡ 0 is a trivial solution of the system (8). Obviously,
if this trivial solution is globally asymptotic stable, then the linear time-delay differential
equation (8) is asymptotically stable about their zero solution and systems (4) and (5)
can achieve complete synchronization.

Without using the Krasovskii–Lyapunov method, this paper constructs a positively-
defined function as follows.

V =
1
2
eT (t)e(t).

Then the derivative of V along the trajectory of (8) is

dV
dt

= eT (t)ė(t)

= eT (t)[f(y(t))− f(x(t)) + g(y(t− τ))− g(x(t− τ))− k(t)e(t)]
≤ [lf − k(t)]eT (t)e(t) + eT (t)[g(y(t− τ))− g(x(t− τ))].

From Assumption 2.2, we have

eT (t)[g(y(t− τ))− g(x(t− τ))] ≤ ‖eT (t)‖‖g(y(t− τ))− g(x(t− τ))‖

≤ lg‖eT (t)‖‖e(t− τ)‖ ≤ lg
2

(‖eT (t)‖2 + ‖e(t− τ)‖2)

=
lg
2

[eT (t)e(t) + eT (t− τ)e(t− τ)]. (12)
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Therefore

dV
dt

≤
[
lf − k(t) +

lg
2

]
eT (t)e(t) +

lg
2
eT (t− τ)e(t− τ)

= [2lf − 2k(t) + lg]V (t) + lgV (t− τ). (13)

By using the comparison theorem of the delayed equation[10], V (t) satisfies

V (t) ≤W (t),∀t > 0, (14)

where W (t) is the solution of the following differential equation:

dW
dt

= [2lf − 2k(t) + lg]W (t) + lgW (t− τ), (15)

with the initial condition W (0) = V (0). If we can prove that limt→∞W (t) = 0, then we
get limt→∞ V (t) = 0, which further results in limt→∞ e(t) = 0.

Recalling Lemma 3.1, the stability of system (15) is equivalent to the stability of the
following system:

dH
dt

= [2lf − 2k(t) + lg + zlg]H(t), (16)

where z = exp(jη), η ∈ (−π, π], j =
√
−1.

In the following, we will show that the trivial solution of Eq. (16) is globally expo-
nentially stable. From (16) we get

H(t) = H(0) exp
{∫ t

0

[2lf − 2k(s) + lg + zlg]ds
}

= H(0) exp{(2lf + lg)t} exp
{
−2
∫ t

0

k(s)ds
}

exp{zlgt}. (17)

Taking the modulus of both sides of (17) yields

|H(t)| = |H(0) exp{(2lf + lg)t} exp
{
−2
∫ t

0

k(s)ds
}

exp{zlgt}|

≤
∣∣∣∣H(0)‖ exp{(2lf + lg)t}‖

∥∥∥∥exp
{
−2
∫ t

0

k(s)ds
}∥∥∥∥ exp{zlgt}

∣∣∣∣ . (18)

It is easy to see that for any t in [0,∞) there exists a positive integer m such that
t ∈ [mT, (m+ 1)T ), then we have∫ t

0

k(s)ds ≥
∫ mT

0

k(s)ds = m

∫ T

0

k(s)ds = mTk̄(t) ≥ k̄(t)(t− T ), (19)

which implies∣∣∣∣exp
{
−2
∫ t

0

k(s)ds
}∣∣∣∣ = exp

{
−2
∫ t

0

k(s)ds
}
≤ exp{−2k̄(t)(t− T )}. (20)
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From the definition of k(t) we have

k̄(t) =
1
T

∫ T

0

k(s)ds =
1
T

∫ θT

0

kds = kθ.

Note that z = exp(jη) = cos η + j sin η, and exp{zlgt} = exp{(cos η + j sin η)lgt}, then

| exp{zlgt}| = exp{(cos η)lgt} ≤ exp{lgt}. (21)

Combining inequalities (18) – (21) results in

|H(t)| ≤ |H(0)| exp{2k̄(t)T} exp{−2[k̄(t)− lf − lg]t}
= M exp{−2[k̄(t)− lf − lg]t}, (22)

where M = |H(0)|exp{2k̄(t)T} = |H(0)|exp(2kθT ).
Therefore, if the condition (11) is satisfied, then the trivial solution of Eq. (16) is glob-

ally exponentially stable, which means that limt→∞W (t) = 0. So we get limt→∞ V (t) =
0, which further results in limt→∞ e(t) = 0. This means that complete synchronization
between systems (4) and (5) could be achieved for every initial data. The proof is
completed. �

Remark 3.3. Recently, the Krasovskii–Lyapunov method has been extensively used
to analyze the synchronization problems of time-delayed systems. The Krasovskii–
Lyapunov method requires that the derivative of a Lyapunov functional V is negative for
all time. Taking the Lyapunov functional V (t) = 1

2e
T (t)e(t) +

∫ t
t−τ e

T (s)e(s)ds, one can
easily obtain a sufficient condition for synchronization k(t) > lf + lg for all time. How-
ever, for the on-off coupling defined in (7), this condition can not hold when k(t) = 0.
Different from the Krasovskii–Lyapunov method, we use the comparison theorem of dif-
ferential equations to derive sufficient conditions for the synchronization of time-delayed
systems with periodic on-off coupling, which does not require the negativeness of the
derivative of the positively-defined function. Compared with the results based on the
Krasovskii–Lyapunov method, the sufficient conditions established in this paper are less
restrictive.

Remark 3.4. As we all know, the synchronization speed is an important issue in chaotic
synchronization. From the inequality (22), one can see that the speed of synchronization
is proportional to the coupling strength k and the on-off rate θ. So we can accelerate the
speed of synchronization by increasing k or θ, which will be confirmed by the numerical
results in Section 4.

3.2. Complete synchronization with time-varying delay

In Theorem 3.2, we have introduced the complete synchronization between two
chaotic systems with time-invariant delay. But many real-world systems are charac-
terized instead by evolving, adaptive couplings which always vary in time according to
different environmental conditions. For examples, swarms under varying environmen-
tal conditions; wireless sensor networks that gather and communicate data to a central



Synchronization of two time-delayed systems with discontinuous coupling 771

base station. Therefore, establishing complete synchronization of on-off coupled chaotic
systems with time-varying delay is a challenging task.

Consider coupled systems (1) and (2) with time-varying delay, the coupling function
u(t) of response system is defined by

u(t) = −k(t)e(t)− 2µk(t)
e(t)
|e(t)|2

∫ t

t−τ(t)
eT (s)e(s)ds, (23)

where k(t) is the coupling strength as noted above, µ is a positive constant.

Theorem 3.5. Consider coupled systems (1) and (2) with time-varying delay τ(t). Sup-
pose that 0 < τ(t), τ̇(t) ≤ ε < 1 and Assumption 2.2 holds. If there exist µ(> 0) and
k(t) such that inequalities

µ >
lg

2(1− ε)
, k(t) > lf + µ+

lg
2

(24)

hold, then under the controller (23), systems (1) and (2) can achieve complete synchro-
nization.

P r o o f . The synchronization error between systems (1) and (2) can be written as:

ė(t) = f(y(t))− f(x(t)) + g(y(t− τ(t))− g(x(t− τ(t)))− k(t)e(t)
−2µk(t) e(t)

|e(t)|2
∫ t
t−τ(t) e

T (s)e(s)ds. (25)

We can see that if the origin of the error system (25) is asymptotically stable, then
systems (1) and (2) can achieve complete synchronization.

Let

V =
1
2
eT (t)e(t) + µ

∫ t

t−τ(t)
eT (s)e(s)ds.

Then the derivative of V along the trajectory of (25) is

dV
dt

= eT (t)ė(t) + µeT (t)e(t)− µ(1− τ̇(t))eT (t− τ(t))e(t− τ(t))

= eT (t)[f(y(t))− f(x(t)) + g(y(t− τ(t))− g(x(t− τ(t)))− k(t)e(t)]

−2µk(t)
∫ t

t−τ(t)
eT (s)e(s)ds+ µeT (t)e(t)− µ(1− τ̇(t))eT (t− τ(t))e(t− τ(t)).

From Assumption 2.2, we have

eT (t)[g(y(t− τ(t)))− g(x(t− τ(t)))] ≤ lg‖eT (t)‖‖e(t− τ(t))‖

≤ lg
2

[eT (t)e(t) + eT (t− τ(t))e(t− τ(t))].(26)

So one gets

dV
dt

≤ [lf + µ− k(t) +
lg
2

]eT (t)e(t)− 2µk(t)
∫ t

t−τ(t)
eT (s)e(s)ds

+(
lg
2
− µ+ µε)eT (t− τ(t))e(t− τ(t)). (27)
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Applying condition (24), we obtain

dV
dt

≤
[
lf + µ− k(t) +

lg
2

]
eT (t)e(t)− 2µk(t)

∫ t

t−τ(t)
eT (s)e(s)ds

≤ [2lf + 2µ− 2k(t) + lg]

[
1
2
eT (t)e(t) + µ

∫ t

t−τ(t)
eT (s)e(s)ds

]
= [2lf + 2µ− 2k(t) + lg]V (t). (28)

By using the comparison theorem of the delayed equation, V (t) satisfies

V (t) ≤W (t),∀t > 0, (29)

where W (t) is the solution of the following differential equation:

dW
dt

= [2lf + 2µ− 2k(t) + lg]W (t), (30)

with the initial condition W (0) = V (0).
From (30) we get

W (t) = W (0) exp
{∫ t

0

[2lf + 2µ− 2k(s) + lg]ds
}

= W (0) exp{(2lf + 2µ+ lg)t} exp
{
−2
∫ t

0

k(s)ds
}
. (31)

The rest procedure of the proof is similar to that in the proof of Theorem 1, hence we
omit it. Finally, we get

|W (t)| ≤ |W (0)| exp{2k̄(t)T} exp{[2lf + 2µ− 2k̄(t) + lg]t}

= M exp
{
−2
[
k̄(t)− lf − µ−

lg
2

]
t

}
, (32)

where M = |W (0)|exp(2k̄(t)T ) = |W (0)|exp(2kθT ).
Therefore, if the condition (24) is satisfied, then the trivial solution of Eq. (30) is glob-

ally exponentially stable, which means that limt→∞W (t) = 0. So we get limt→∞ V (t) =
0, which further results in limt→∞ e(t) = 0. The proof is completed. �

Remark 3.6. From the criterion presented in Theorem 3.5, we can conclude that: on-off
coupled systems (1) and (2) with time-varying delay can achieve complete synchroniza-
tion, if the following inequality is satisfied:

k(t) > k′c , lf +
lg
2

+
lg

2(1− ε)
. (33)

When τ(t) = τ(ε = 0), the inequality (33) is equivalent to (11), which also implies that
Theorem 3.5 is the extension of Theorem 3.2.
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Remark 3.7. In the pervious works [24], we have discussed the synchronization of
chaotic systems with on-off periodic coupling, but time delay hasn’t been mentioned.
On the one hand, time delay extensively occurs in many biological or physical systems
and should be taken into account. On the other hand, from Theorems 3.2 and 3.5, we
can see that our results are valid for arbitrarily periodic coupling only if the time-average
coupling strength k(t) is large enough. Therefore, the results in this paper complement
and extend existing results.

4. SIMULATION RESULTS

In order to demonstrate the effectiveness of proposed approaches, several chaotic
systems with different structures are used as examples to illustrate how to apply the
results obtained.

Example 1. In the first example, we take the Ikeda system with time-invariant delay
as the dynamic of the drive-response systems. The Ikeda system describing the dynamics
of an optical bistable resonator was well known for delay-induced chaotic behavior and
can be described as follows:

ẋ(t) = −αx(t) + β sin(x(t− τ)) , f(x(t)) + g(x(t− τ)). (34)

From the simulations in Ref. [6], we can see that system (34) exhibits chaotic behavior,
for suitable parameters α, β, τ .

0 1 2 3 4 5
−0.5

0

0.5

1

  t

 e
(t

)

Fig. 1. Trajectory of the synchronization error between systems (1)

and (2) with α = 5, β = 20 and k = 20, θ = 0.4, τ = 0.2.

It is easy to compute that (y − x)(−αy + αx) = −α(y − x)2 and |β sin y − β sinx| =
|β|| sin y − sinx| ≤ 2|β|| sin y−x

2 || cos y+x2 | ≤ |β||y − x|. By taking α = 5, β = 20, we
can see that Assumption 1 is satisfied with lf = 0, lg = 20. When k = 20, θ = 0.4, τ =
0.2, the simulation result is exhibited in Figure 1. One can see that the complete
synchronization is realized exponentially, and the simulation matches the theoretical
results perfectly. It should be pointed out that the condition (11) is just a sufficient
condition, systems (1) and (2) may achieve synchronization when k̄(t) is less than kc,
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which can be confirmed by the fact that complete synchronization can be achieved with
k̄(t) = 8 < kc = 20.
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Fig. 2. (a) The variation of synchronization error e(t) between

chaotic systems (1) and (2) with α = 5, β = 20, θ = 0.4 and

k = 20, 40, 60; (b)The corresponding logarithmic plot.

To study the effect of the average coupling strength k̄(t) on the synchronization speed,
we simulate the evolution of two systems through taking different values of k or θ. Both
the simulation results in Figures 2 and 3 show that systems with large k̄(t) converge
faster than those with small k̄(t), which is consistent with the analysis of Remark 3.4.
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Fig. 3. (a) The variation of synchronization error e(t) between

chaotic systems (1) and (2) with α = 5, β = 20, k = 20 and

θ = 0.4, 0.8, 2.0; (b)The corresponding logarithmic plot.

Although the theoretical analysis shows that the synchronization between two systems
does not depend on time delay, we want to analyze the effect of time delay on the
synchronization speed. Figure 4 indicates that the smaller time delay is, the faster
synchronization speed converges, which is consistent with the reality.

Example 2. In order to demonstrate the effectiveness of the theoretical results of
Theorem 3.5, we take the Mackey-Glass system as the dynamic of the drive-response
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Fig. 4. (a) The variation of synchronization error e(t) between

chaotic systems (1) and (2) with α = 5, β = 20, k = 20, θ = 0.4 and

τ = 0.2, 0.4, 0.6; (b)The corresponding logarithmic plot.

systems. As a model for producing high-dimensional chaos to test various methods of
chaotic time series analysis, controlling chaos, the Mackey-Glass system has been widely
investigated. The drive-response systems can be described as follows:

ẋ(t) = −cx(t) + a
x(t− τ(t))

1 + xb(t− τ(t))
, f(x(t)) + g(x(t− τ(t))), (35)

ẏ(t) = −cy(t) + a
y(t− τ(t))

1 + yb(t− τ(t))
+ u(t) , f(y(t)) + g(y(t− τ(t))) + u(t), (36)

where a, b, c > 0, τ(t) is a time-varying delay. Without loss of generality, we set τ(t) =
0.3 + 0.1 sin(2t); obviously, 0 < τ(t) < 0.4, τ̇(t) ≤ 0.2 = ε < 1.
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Fig. 5. Trajectory of the synchronization error between systems (35)

and (36) with a = 3, b = 10, c = 1,

k = 20, θ = 0.4, τ = 0.3 + 0.1 sin(2t).

It is easy to see that |g′(x)| ≤ a(b−1)2/4b and |g(y)−g(x)| = |g′(ξ)||y−x|. Therefore
Assumption 1 is satisfied with lf = 0, lg = |a(b−1)2/4b|. When we take a = 3, b = 10, c =
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1, and k = 20, θ = 0.4, the simulation result exhibited in Figure 5 indicates that the
complete synchronization is realized exponentially. Figures 6 and 7 show that systems
with large k̄(t) converge faster than those with small k̄(t), which also in accordance with
the analysis of Remark 3.4.
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Fig. 6. (a) The variation of synchronization errors e(t) between

chaotic systems (35) and (36) with θ = 0.4 and k = 20, 40, 80; (b)The

corresponding logarithmic plot.
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5. CONCLUSIONS

In conclusion, we have investigated the complete synchronization between two time-
delayed systems with on-off periodic coupling. Sufficient conditions for the complete
synchronization are obtained based on the stability theory and the comparison theorem
of time-delayed differential equations. The theoretical results show that time-delayed
chaotic systems with on-off coupling can achieve complete synchronization when the
time-average coupling strength is large enough. Numerical simulations fully verify our
main results.
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We have developed a new approach to analyze the synchronization of time-delayed
systems with periodic on-off coupling, which can derive less restrictive synchronization
conditions than those resulting from the Krasovskii–Lyapunov theory. Our method has
broad applications in synchronization problem of complex systems. For example, it is
applicable to investigate the generalized synchronization of two different time-delayed
systems with discontinuous coupling. Our method is as well applicable to synchroniza-
tion of gene regulatory networks and neural networks with discontinuous coupling and
time delays.
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