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ADAPTIVE FINITE-TIME GENERALIZED OUTER
SYNCHRONIZATION BETWEEN TWO DIFFERENT
DIMENSIONAL CHAOTIC SYSTEMS WITH NOISE
PERTURBATION

Zhi-cai Ma, Jie Wu, Yong-zheng Sun

This paper is further concerned with the finite-time generalized outer synchronization be-
tween two different dimensional chaotic systems with noise perturbation via an adaptive con-
troller. First of all, we introduce the definition of finite-time generalized outer synchronization
between two different dimensional chaotic systems. Then, employing the finite-time stability
theory, we design an adaptive feedback controller to realize the generalized outer synchro-
nization between two different dimensional chaotic systems within a finite time. Moreover,
we analyze the influence of control parameter on the synchronous speed. Finally, two typical
examples are examined to illustrate the effectiveness and feasibility of the theoretical result.

Keywords: finite-time synchronization, different dimensional chaotic systems, adaptive
control, noise perturbation

Classification: 65L99, 70K99

1. INTRODUCTION

Synchronization of oscillations is a phenomenon common to a large variety of nonlinear
dynamical systems in physics, chemistry, and biology [6, 28]. Since the pioneering work
of Pecocra and Carroll [27], chaos synchronization has become a hot topic and it has
been applied in many fields, such as information processing, secure communication,
biological system, etc. A focused problem in chaos synchronization is how to design
a appropriate controller to synchronize chaotic systems. Due to different applications,
a wide variety of approaches and controllers have been proposed, including feedback
control [20, 21], adaptive control [2, 9, 19, 25, 42], sliding mode control [1, 10, 29, 37], the
distributed impulsive control [16,17] and sampled-data control [18].

For example, using the linear feedback control and nonlinear feedback control, the
chaotic Hindmarsh-Rose Neurons have been studied and some synchronization criteria
were derived in [20] and [21]. Associated with the distributed impulsive control, the
quasi-synchronization of heterogeneous dynamic networks and the problem of network-
based leader-following consensus of non-linear multi-agent systems were investigated
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in [17] and [16]. By sampled-data control, the Leader-Following consensus of non-linear
multi-agent systems with stochastic sampling was concerned in [18].

All of the methods mentioned above have been proposed to guarantee the asymptotic
stability of the synchronization error dynamics. This means that the trajectories of the
response system can not reach to the trajectories of the drive system in a finite-time.
From a practical point of view, it will be more reasonable to realize chaos synchro-
nization in a settling time. For instance, in secure communication the range of time
during which the oscillators are not synchronized corresponds to the range of time dur-
ing which the encoded message can not be recovered or sent [7]. Therefore, in practical
engineering process, we may hope two systems achieve synchronization in a finite-time.
To achieve faster convergence in control systems, finite-time control is a very useful tech-
nique [23, 31, 34, 35, 36, 38]. Moreover, the finite-time control techniques have demon-
strated better disturbance rejection and robustness against uncertainties [5]. It may be
noted that all above studies only focus on the outer synchronization of two identical
or similar chaotic systems, but the study of generalized outer synchronization between
two different dimensional chaotic systems is of critical importance. One example is the
synchronization that occurs between heart and lung, where one can observe that both
circulatory and respiratory systems behave in a synchronous way [30], even though their
models have different orders. And the synchronization of different dimensional chaotic
systems has been studied in Refs. [3, 4, 8, 12, 26, 41]. In Ref. [8], Cai, Li and Jing pro-
posed two control strategies to realize the generalized synchronization of chaotic systems
with different orders in finite-time and the synchronization problem for a drive-response
chaotic system with different orders. Under the effect of both unknown model uncer-
tainties and external disturbance are investigated by active control strategy in Ref. [3].
In Ref. [4], the authors used the nonlinear feedback control method to achieve the robust
finite-time increasing order and reduced order synchronization of the chaotic systems.
As is known to all, noise is ubiquitous in the real systems. Therefore, the effect of noise
on the synchronization is unavoidable, it has been well studied in [11, 15, 22, 24, 32, 33].
Up to now, to the best of our knowledge, there are no published results about the
finite-time generalized outer synchronization between two different dimensional chaotic
systems with noise perturbation.

Inspired by the above analysis, the questions which we address in our present study are
“Can finite-time generalized synchronization between two different dimensional chaotic
systems be achieved with the perturbation of noise?” and “Besides the numerical evi-
dences, are there any analytical arguments illustrating this phenomenon?” In this paper,
utilizing the finite-time stability theory of stochastic differential equations, by employing
a time-varying feedback gain in the linear part of the adaptive controller which automat-
ically converge to suitable constants, we can see that two different dimensional chaotic
systems can realize finite-time generalized outer synchronization with noise perturba-
tion. Otherwise, the upper bound of the convergence time is also given. Finally, two
numerical examples are examined to illustrate the effectiveness of the theoretical result.

The rest of this paper is organized as follows. In Section 2, we give the problem
statement and some preliminaries. In section 3, the main result is derived based on the
finite-time stability theory. In Section 4, numerical simulations are given to show the
effectiveness of the theoretical results. Finally, some conclusions are drawn in Section 5.
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2. PROBLEM STATEMENT AND PRELIMINARIES

Consider the following drive system described by:

ẋ(t) = Ax(t) + f(x(t)), (1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector of the chaotic system,
A ∈ Rn×n is a constant matrix and f(x) ∈ Rn is a continuously differentiable nonlinear
vector function.

Remark 2.1. Many chaotic and hyperchaotic systems can be transferred in the form
of system (1). For instance, one may see the two chaotic systems in [30] and [8].

To realize the finite-time generalized outer synchronization between two different
dimensional chaotic systems with noise perturbation, we refer to system (1) as the drive
system. Likewise, the response chaotic system with circumstance noise is described as
follows:

ẏ(t) = By(t) + g(y(t)) + h(y − φ(x))dw(t) + u(t), (2)

where y(t) = [y1(t), y2(t), . . . , ym(t)] ∈ Rm is the state vector of the response system,
B ∈ Rm×m is a constant matrix and g(y) ∈ Rm is a continuously differentiable nonlinear
vector function, h ∈ Rm is the noise intensity function and φ : Rn → Rm is an arbitrary
continuously differentiable function, for a better presentation, we set h(y−φ(x))dw(t) =
σ ·(y−φ(x))dw(t), σ is the noise strength and w(t) is one-dimensional Brownian motion.
u(t) ∈ Rm is the control input which is yet to be determined.

Remark 2.2. In this paper, we are going to studying the finite-time generalized outer
between two different dimensional chaotic systems with noise perturbation, that is in
systems (1) and (2) the order n 6= m and the functions f(·) 6= g(·). The finite-time
synchronization of the same order chaotic systems with noise perturbation has been
researched in [36] and the finite-time generalized synchronization of chaotic systems with
different order has been studied in [8]. However, there are few theoretical results about
the finite-time generalized outer synchronization of two different dimensional chaotic
systems with noise perturbation.

Definition 2.3. We say the chaotic systems (1) and (2) are finite-time generalized
synchronization with respect to the vector map φ if, for any initial states x(0) ∈ Rn\{0}
and y(0) ∈ Rm\{0}, there exists a finite-time function T0 such that

P{|y(t, y(0))− φ(x(t, x(0)))| = 0} = 1, (3)

for all t > T0 and T0 = inf{T : y(t) = φ(x(t, x(0))),∀t ≥ T} is called the stochastic
settling time.

Remark 2.4. The stochastic settling time function T0 is not only a function of x(0) and
y(0), but a stochastic variable for fixed x(0) and y(0). Hence, the finite-time property
of T0 is evaluated by 0 < E(T0) < +∞.

For the noise intensity function, because the speed of the environmental fluctuations
is far less than the change rate of practical systems, we have the following assumption.
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Assumption 2.5. The noise intensity function σ(e(t)) satisfy the Lipschitz condition
and there exists a nonnegative constant q such that

trace(σT (e(t))σ(e(t))) ≤ 2qeT (t)e(t).

Moreover, σ(0) ≡ 0.

Consider the following d-dimensional stochastic differential equation:

dz = ϕ(z)dt+ ψ(z)dw(t), (4)

on t ≥ 0, where z(t) ∈ Rd is an Itô process, ϕ ∈ L1(R+, R
d) and ψ ∈ L2(R+, R

d×m) are
continuous and satisfy ϕ(0) = 0, ψ(0) = 0. It is assumed that Eq. (4) has a unique and
global solution denoted by z(t, z(0))(0 < t < +∞), where z(0) is the initial state.

Let V ∈ C1,2(R+, R
d×R+). Then V (t, z(t)) is again an Itô process with the stochastic

differential given by

dV (t, z(t)) = LV (t, z(t))dt+ Vz(t, z(t))ψ(t, z(t))dw, (5)

where

LV (t, z(t)) = Vt(t, z(t)) + Vz(t, z(t))ϕ(t) + (1/2)trace[ψT (t)Vzz(t, z(t))ψ(t)]. (6)

Lemma 2.6. (Yin et al. [39]) For system (4), define

T (x(0)) = inf{T ≥ 0 : y(t; y(0)) = φ(x(t;x(0))),∀t ≥ T}.

Assume that system (4) has the unique global solution. If there exists a positive definite,
twice continuously differentiable and radially unbounded Lyapunov function V : Rd →
R+, K∞ class functions µ1 and µ2, positive real numbers c > 0 and 0 < ρ < 1, such
that for all x ∈ Rd and t ≥ 0,

µ1(|x|) ≤ V (x) ≤ µ2(|x|),

LV (x) ≤ −c(V (x))ρ,

where |x| denotes the Euclidean norm
√

(
∑n
i=1 x

2
i ), then the trivial solution of (4) is

finite-time stable in probability, and the stochastic settling time function T satisfies

E[T (x0)] ≤ V 1−ρ(x0)
c(1− ρ)

. (7)

Lemma 2.7. (Hardy et al. [14]) Let a1, a2, . . . , an > 0 and 0 < r < p. Then(
n∑
i=1

api

) 1
p

≤

(
n∑
i=1

ari

) 1
r

.
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3. SUFFICIENT CONDITIONS FOR FINITE-TIME GENERALIZED OUTER
SYNCHRONIZATION

In this section, we will investigate the finite-time generalized outer synchronization be-
tween two different dimensional chaotic systems with noise perturbation. From Defini-
tion 2.3, we know that the study of the finite-time generalized synchronization between
systems (1) and (2) can be translated into the analysis of the finite-time stability of error
system (8). Next, we discuss the finite-time stability of error system (8) and obtain the
following result.

In order to study the finite-time generalized synchronization between the drive system
(1) and the response system (2), we define the generalized synchronization error e(t) =
y(t)− φ(x(t)), where φ : Rn → Rm is a continuously differentiable map. Then the error
system is described by:

ė(t) = Be(t) +Bφ(x) + g(y(t))− Jφ(x)Ax(t)− Jφ(x)f(x(t)) + σ(e(t))dw(t) + u(t)
= Be(t) +R(x, y) + σ(e(t))dw(t) + u(t), (8)

where R(x, y) = Bφ(x) + g(y(t)) − Jφ(x)Ax(t) − Jφ(x)f(x(t)) and Jφ(x) denote the
Jacobin matrix of the map φ(x):

Jφ(x) =


∂φ1(x)
∂x1

∂φ1(x)
∂x2

. . . ∂φ1(x)
∂xn

∂φ2(x)
∂x1

∂φ2(x)
∂x2

. . . ∂φ2(x)
∂xn

...
...

. . .
...

∂φm(x)
∂x1

∂φm(x)
∂x2

. . . ∂φm(x)
∂xn

 .

In this paper, we designed an adaptive controller as follows:

u(t) =

{
−R(x, y)− r(t)e(t)− η

[
sign(e(t)) + |r(t)−r̂|e(t)

‖e2(t)‖

]
, if e(t) 6= 0,

0, if e(t) = 0,
(9)

where arbitrary positive constant η > 1, sign(e(t)) ∈ Rm is the signum function. Thus,
the denominator term ||e2(t)|| 6= 0 when e(t) 6= 0. And the control u(t) = 0 when the
synchronization error is zero. The feedback gain r(t) ∈ Rm is adapted according to the
following update law:

ṙ(t) = kie
T (t)e(t), (10)

where ki(i = 1, 2, . . . ,m) is any positive constant. For brevity, we set ki = 1.

Theorem 3.1. Consider error system (8) under Assumption 2.5, if there exists a suffi-
ciently large positive constant r̂ such that

r̂ > q + λmax(B), (11)

where B = B+BT

2 , then system (8) is finite-time stabilization with the controller u(t)
designed in the form of (9).
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P r o o f . Construct the following positive-definite function:

V (t) =
1
2
eT (t)e(t) +

1
2

(r(t)− r̂)2. (12)

Thus the diffusion operator L defined in (5) onto the function V along the error system
(8) gives

LV (t) = eT (t)ė(t) + (r(t)− r̂)ṙ(t) + (1/2)trace(σT (e(t))σ(e(t))). (13)

By introducing ė(t) and ṙ(t) (given by (8) and (10)) into the right-hand side of Eq. (13),
we have

LV (t) = eT (t)[Be(t) +R(x, y) + u(t)] + r(t)eT (t)e(t)− r̂eT (t)e(t)
+(1/2)trace(σT (e(t))σ(e(t))). (14)

Substituting (9) into (14) yields

LV (t) = eT (t)Be(t)− η
[
eT (t)sign(e(t)) +

|r(t)− r̂|eT (t)e(t)
‖e2(t)‖

]
−r̂eT (t)e(t) + (1/2)trace(σT (e(t))σ(e(t))). (15)

Since eT (t)sign(e(t)) = |e(t)| is always satisfied, one has

LV (t) = eT (t)Be(t)−η(|e(t)|+|r(t)−r̂|)−r̂eT (t)e(t)+(1/2)trace(σT (e(t))σ(e(t))). (16)

Noting that

eT (t)Be(t) ≤ λmax(B)eT (t)e(t). (17)

By Assumption 2.5, we obtain

(1/2)trace(σT (e(t))σ(e(t))) ≤ qeT (t)e(t). (18)

Then, from (16),(17) and (18), we have

LV (t) ≤ −(r̂ − q − λmax(B))eT (t)e(t)− η(|e(t)|+ |r(t)− r̂|). (19)

Let us choose r̂ > q + λmax(B), then (19) implies that

LV (t) ≤ −η(|e(t)|+ |r(t)− r̂|). (20)

From Lemma 2.7, we obtain

LV (t) ≤ −η
[
eT (t)e(t) + (r(t)− k̂)2

] 1
2

= −η(2V
1
2 (t))

= −
√

2ηV
1
2 (t). (21)

According to Lemma 2.6, the trivial solution of the error system (8) is finite-time stable.
It implies there exists a T0 > 0 such that e(t) = 0 if t > T0. This means that the systems
(1) and (2) achieved the finite-time generalized outer synchronization by the controller
u(t) in the form of (9). This completes the proof. �
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Remark 3.2. According to Lemma 2.6, we can see that the convergent time is related
to the initial states of systems and parameter ρ. The relationship can be given as follows.
From (21), we can obtain that

c =
√

2η, ρ =
1
2
. (22)

Substituting (22) into (7) yields

E[T0] ≤
√

2
η
V

1
2 (0), (23)

where V (0) = [e2(0) + (r(0)− r̂)2]/2.

Remark 3.3. From the inequality (11) we can see that, for any high level noise, there
exits a sufficiently large positive constant r̂ such that the finite-time generalized outer
synchronization is realized in probability. Hence, the synchronization is robust to the
noise perturbation. From Eq. (23), one can see that the convergence time of proposed
algorithm is closely related to the parameter η and the initial state V (0). For fixed
initial state V (0), the synchronization time decreases as η increases.

4. SIMULATION RESULTS

In this section, illustrative examples are given to verify the effectiveness of the theoretical
criteria obtained in the preceding section. The synchronization error e(t) and the total
synchronization error E(t) = ‖e(t)‖ are used to measure the evolution process. In the
numerical simulations, we consider two cases n > m and n < m, respectively.

Example 1. (n > m) In this example, the Chua’s circuit is used to describe the drive
system and the Duffing system is used to be the response system.

The Chua’s circuit can be described as

ẋ =

 −p− pb p 0
1 −1 1
0 −q 0

 x1

x2

x3

+

 ϕ(x1)
0
0

 .= Ax+ f(x), (24)

where x = (x1, x2, x3)T ∈ R3 is the state vector, ψ(x1) = 0.5p(b− a)(|x1 + 1| − |x1− 1|).
In all of the simulations, we always choose the system parameters of the Chua’s circuit
as p = 10, q = 14.87, a = −1.27, b = −0.68, which causes the Chua’s circuit to exhibit
a double-scroll chaotic attractor.

The controlled Duffing system is described by

ẏ =
(

0 1
1 −c

)(
y1
y2

)
+
(

0
−y3

1 + dcost

)
+
(
u1

u2

)
.= By + g(y) + u, (25)

where y = (y1, y2)T ∈ R2 is the state vector, when c = 1, d = 0.8 the system (25) is
chaotic.
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The error dynamic system is ė(t) = Be(t) + Bφ(x) + g(y) + u(t) − Jφ(x)Ax(t) −
Jφ(x)f(x), where the map φ is defined as

φ(x) = (x1, x2 + x3)T .

Then,

Jφ(x) =
(

1 0 0
0 1 1

)
.

According to (8), the error dynamic system can be written as follows:{
ė1 = e2 − 3.2x1 − 9x2 + x3 + 0.295ψ(x1) + u1,
ė2 = e1 − e2 + 14.87x2 − 2x3 − y3

1 + 0.8cost+ u2.
(26)

According to (9), we get the controllers u1 = 3.2x1 + 9x2 − x3 − 0.295ψ(x1)− r1e1 − η
(

sign(e1) + |r1−r̂|e1
‖e1‖2

)
,

u2 = −14.87x2 + 2x3 + y3
1 − 0.8cost− r2e2 − η

(
sign(e2) + |r2−r̂|e2

‖e2‖2

)
.

(27)

Next, we will illustrate the two chaotic systems achieving synchronization with adap-
tive controller (9) in a finite-time. We take the initial values of systems (24) and (25)
as x1(0) = 4, x2(0) = 2, x3(0) = 1 and y1(0) = 5, y2(0) = 2. It is easy to compute that
λmax(B) = 0.6180. Take r̂ = 2 and q = 1.2, obviously the condition (11) is satisfied. The
value of parameter η is set as η = 2. The trajectories of synchronization error e(t) and
the total synchronization error E(t) are shown in Figures 1(a) and (b). From Figure 1,
it can be observed that the finite-time generalized outer synchronization between the
chaotic systems (24) and (25) under the controller (27) is achieved about T0 = 0.25.
By computing (23), we get E[T0] ≤ 0.9998. The simulations match the theoretical re-
sult perfectly. Figure 2 shows the updated feedback strength which reach some certain
constants when the systems (24) and (25) are synchronized.
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Fig. 1. Trajectories of the synchronization error (a) and the total

synchronization error (b) between systems (24) and (25) with η = 2

and σ = 1.
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Fig. 2. Feedback strength ri of adaptive controller (9) for systems

(24) and (25) with η = 2 and σ = 1.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

  t

 E
(t

)

 

 
η=0.5
η=2
η=4

Fig. 3. Time evolutions of total synchronization error E(t) with

control parameter η = 0.5, 2, 4 and σ = 1.

To study the effect of the control parameter η on the settling time, we simulate the
trajectories of two chaotic systems with the controller defined in Eq. (9) through taking
different values of η. Figure 3 shows that the synchronization time decreases when
parameter η increases, which is consistent with the analysis of Remark 3.3.

Example 2. (n < m) In this example, the Duffing system is used to the drive system
and the Chua’s circuit is used to be the response system. They can be describe as
follows:

ẋ =
(

0 1
1 −c

)(
x1

x2

)
+
(

0
−x3

1 + dcost

)
.= Ax+ f(x), (28)

and

ẏ =

 −p− pb p 0
1 −1 1
0 −q 0

 y1
y2
y3

+

 ψ(y1)
0
0

+

 u1

u2

u3

 .= By + f(y) + u. (29)
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The error dynamic system is ė(t) = Be(t) + Bφ(x) + g(y(t)) + u(t) − Jφ(x)Ax(t) −
Jφ(x)f(x(t)), where the map φ is defined as

φ(x) = (x2
1, x1 + x2, x

2
2)T .

Then,

Jφ(x) =

 2x1 0
1 1
0 2x2

 .

According to (8), the error dynamic system can be written as follows: ė1 = −3.2e1 + 10e2 − 3.2x2
1 + 10x1 + 10x2 − 2x1x2 + ψ(y1) + u1,

ė2 = e1 − e2 + e3 + x2
1 − x3

1 + x2
2 − 2x1 − x2 − 0.8cost+ u2,

ė3 = −14.87(e2 + x1 + x2)− 2x1x2 + 2x2
2 − 2x3

1x2 − 1.6x2cost+ u3.
(30)

According to (9), we get the controllers
u1 = 3.2x2

1 − 10x1 − 10x2 + 2x1x2 − ψ(y1)− r1e1 − η
(

sign(e1) + |r1−r̂|e1
‖e1‖2

)
,

u2 = −x2
1 − x2

2 + x3
1 + 2x1 + x2 + 0.8cost− r2e2 − η

(
sign(e2) + |r2−r̂|e2

‖e2‖2

)
,

u2 = 14.87x1 + 14.87x2 + 2x1x2 − 2x2
2 + 2x3

1 − r3e3 − η
(

sign(e3) + |r3−r̂|e3
‖e3‖2

)
.

(31)

(a)
0 0.2 0.4 0.6 0.8 1

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

 t

  e
1, e

2,  
e 3

 

 
  e

1

 e
2

 e
3

(b)
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2

2.5

3

  t

 E
(t

)

Fig. 4. Trajectories of the synchronization error (a) and the total

synchronization error (b) between systems (28) and (29) with η = 2

and σ = 2.

Next, we will illustrate the two chaotic systems achieving synchronization with adap-
tive controller (9) in a finite time. We take the initial values of systems (28) and (29)
as x1(0) = 1, x2(0) = 1 and y1(0) = 0, y2(0) = 4, y3(0) = 2. It is easy to compute that
λmax(B) = 7.8570. Take r̂ = 10 and q = 1.2, obviously the condition (11) is satisfied.
The value of parameter η is set as η = 2 and the noise strength σ = 2. The trajectories
of synchronization error e(t) and total synchronization E(t) are shown in Figures 4 (a)
and (b). From Figure 4, it can be observed that the finite-time generalized synchro-
nization between the chaotic systems (28) and (29) under the controller (31) is achieved
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Fig. 5. Feedback strength ri of adaptive controller (9) for systems

(28) and (29) with η = 2 and σ = 2.
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about T0 = 0.18. By computing (23), we get E[T0] ≤ 1.7318. The simulations match
the theoretical result perfectly. The feedback strength is shown in Figure 5. In Figure 6,
we simulated the different value of parameter η, from the figure we can see that the
synchronization time decreases when parameter η increases, which is consistent with the
analysis of Remark 3.3.

5. CONCLUSIONS

In this paper, we have investigated the finite-time generalized outer synchronization be-
tween two different dimensional chaotic systems with noise perturbation via adaptive
control strategy. First of all, the sufficient condition for finite-time generalized outer
synchronization is obtained based on the finite-time stochastical stability theory. The
theoretical result show that two chaotic systems with noise perturbation can achieve
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finite-time generalized outer synchronization even if the two chaotic systems have differ-
ent dimensional. Numerical simulations fully verify our main result. Then, we considered
the effect of control parameter on the synchronization time. From the simulation results
we can see that the synchronization time decreases along with the control parameter
increases. Besides, we simulated the trajectories of the adaptive feedback strengths.

However, in the proposed synchronization framework, the drive system and the re-
sponse system are connected point-to-point as the controller uses continual states of
these systems. In most practical synchronization applications, networking the drive and
response systems is more preferable. For instance, the distributed networked control
systems and the remote surgery master slave system [13,40]. In this case, the controller
should be designed in the presence of some network-induced constraints, such as com-
munication delays, data losses, limited resources. This is our future research direction.
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