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ON MINIMAL IDEALS IN THE RING OF REAL-VALUED

CONTINUOUS FUNCTIONS ON A FRAME

Abolghasem Karimi Feizabadi, Ali Akbar Estaji, and Mostafa Abedi∗

Abstract. Let RL be the ring of real-valued continuous functions on a frame
L. The aim of this paper is to study the relation between minimality of ideals
I of RL and the set of all zero sets in L determined by elements of I. To
do this, the concepts of coz-disjointness, coz-spatiality and coz-density are
introduced. In the case of a coz-dense frame L, it is proved that the f -ring
RL is isomorphic to the f -ring C(ΣL) of all real continuous functions on the
topological space ΣL. Finally, a one-one correspondence is presented between
the set of isolated points of ΣL and the set of atoms of L.

1. Introduction

In studying the ring C(X) of all real continuous functions on a topological
space X, zero sets are a powerful tool, defined by Z(f) = {x ∈ X : f(x) = 0}, for
f ∈ C(X). For a frame L, the ring RL is defined as a pointfree version of C(X).
In the pointfree topology, cozero elements are considered as a dual concept of zero
sets. Cozero elements are defined by coz(α) =

∨
{α(p, 0) ∨ α(0, q) : p, q ∈ Q}, for

α ∈ RL.
Recall that in [12], considering the prime elements of a given frame L as pointfree

points of L, the trace of an element α of RL on any point p of L is defined as a real
number denoted by α[p]. Then the zero set of α is defined by Z(α) = {p ∈ ΣL :
α[p] = 0}. The real number α[p] is defined by the Dedekind cut (L(p, α), U(p, α)),
where L(p, α) = {r ∈ Q : α(−, r) ≤ p} and U(p, α) = {s ∈ Q : α(s,−) ≤ p}).
Also, the map p̃ : RL → R given by p̃(α) = α[p] is an f -ring homomorphism
(Propositions 2.2, 2.4).

The main results of this paper are based on a theorem about the ring C(X)
which gives some equivalent conditions regarding the minimality of an ideal I of
C(X) as follows:

Theorem 1.1 ([16]). Let X be a completely regular space. The following are
equivalent.
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(1) I is a minimal ideal.
(2) |Z[I]| = 2.
(3) There is an isolated point x0 ∈ X such that Z[I] = {X,X − {x0}}.

In [9], Themba Dube obtained a pointfree version of Theorem 1.1, by using
coz[I] of RL instead of Z[I] of C(X) as follows:

Theorem 1.2 ([9]). An ideal I of RL is minimal if and only if coz[I] consists
only of two elements.

From the cited theorem, it will follow that achieving equivalence between mini-
mality of ideal I and the condition |Z[I]| = 2 is useful. For finding the equivalence,
we require the equivalence of conditions |Z[I]| = 2 and | coz(I)| = 2. So, we need
the equivalence coz(α) = coz(β) if and only if Z(α) = Z(β), for every α, β ∈ RL. In
the Theorem 3.11, it is proved for a frame L, the following are evidently equivalent:

(1) L is coz-spatial.
(2) For every α, β ∈ RL, Z(α) = Z(β) if and only if coz(α) = coz(β).

Coz-disjoint frames are introduced in Section 3; also every completely regular
frame is coz-disjoint (Proposition 3.5). In the coz-disjoint frame L, if P is a prime
ideal of RL, then |

⋂
Z[P ]| ≤ 1 (Theorem 3.8). For every α ∈ RL, Mα is defined by

{β ∈ RL : Z(α) ⊆ Z(β)}. If L is a coz-disjoint frame, it is shown that Mα = Mp if
and only if Mα is a prime ideal in Proposition 3.15.

In the last section, we study and analyze the three following conditions, without
coz-spatiality, and with some other concepts like coz-disjointness, coz-density, and
coz-spatiality.

(1) I is a minimal ideal.
(2) |Z[I]| = 2.
(3) There exists p ∈ ΣL such that Z[I] = {ΣL,ΣL− {p}}.

(1)⇒(2)⇒(3) are proved in Propositions 4.3 and 4.4 with the assumptions of
coz-disjointness and coz-density. For (3)⇒(1), we suppose the concept of coz-density,
which is weaker than weakly spatiality (Corollary 4.18).

In Proposition 4.17, it is proved that if L is a coz-dense frame then RL is
isomorphic to a ring C(X) for some topological space X. In fact, RL ' C(ΣL)
as two f -rings. In Corollary 4.22, we construct a one-one correspondence between
the set of isolated points of ΣL and the set of atoms of L. The relations among
coz-dense, coz-spatial, weakly spatial, spatial, coz-disjoint, and completely regular
conditions are explained in Remark 4.23.

2. Preliminaries

We recall some basic notions and facts about frames and spaces. For further
information see [4, 17] on frames and [14] on spaces.

A frame is a complete lattice L in which the distributive law x∧
∨
S =

∨
{x∧ s :

s ∈ S} holds for all x ∈ L and S ⊆ L. We denote the top element and the bottom
element of L by > and ⊥, respectively. The frame of open subsets of a topological
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space X is denoted by OX. A frame homomorphism (frame map) between frames
is a map which preserves finite meets, including the top element, and arbitrary
joins, including the bottom element.

An element x of a frame L is said to be:
(1) prime (point) if x < > and, for a, b ∈ L, a ∧ b ≤ x implies a ≤ x or b ≤ x,
(2) an atom if ⊥ < x and, for any a ∈ L, ⊥ ≤ a ≤ x imply a = ⊥ or a = x.

The pseudocomplement of an element a of a frame L is the element

a? =
∨
{x ∈ L : x ∧ a = ⊥} .

An element a of a frame L is said to be rather below an element b ∈ L, written
a ≺ b, provided that a? ∨ b = >. On the other hand, a is completely below
b, written a ≺≺ b, if there are elements (cq) indexed by the rational numbers
Q ∩ [0, 1] such that c0 = a, c1 = b, and cp ≺ cq for p < q. A frame L is said
to be regular if a =

∨
{x ∈ L | x ≺ a} for each a ∈ L, and completely regular if

a =
∨
{x ∈ L | x ≺≺ a} for each a ∈ L.

We recall the contravariant functor Σ from Frm to the category Top of topolo-
gical spaces which assigns to each frame L its spectrum ΣL of prime elements with
Σa = {p ∈ ΣL|a 6≤ p} (a ∈ L) as its open sets. Also, for a frame map h : L→M ,
Σh : ΣM → ΣL takes p ∈ ΣM to h∗(p) ∈ ΣL, where h∗ : M → L is the right
adjoint of h characterized by the condition h(a) ≤ b if and only if a ≤ h∗(b) for all
a ∈ L and b ∈M .

Recall from [4] that the frame L(R) of reals is obtained by taking the ordered
pairs (p, q) of rational numbers as generators and imposing the following relations:

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s),
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s,
(R3) (p, q) =

∨
{(r, s) | p < r < s < q},

(R4) > =
∨
{(p, q) | p, q ∈ Q}.

Note that the pairs (p, q) in L(R) and the open intervals 〈p, q〉 = {x ∈ R : p <
x < q} in the frame OR have the same role; in fact there is a frame isomorphism
λ : L(R) → OR such that λ(p, q) = 〈p, q〉. In other word, L(R) is the frame
generated by Q×Q with equations {R1, R2, R3, R4}, so we have the following
lemma.

Lemma 2.1. Let f : Q×Q→ L be a function satisfying the following relations:
(R1′) f(p, q) ∧ f(r, s) = f(p ∨ r, q ∧ s),
(R2′) f(p, q) ∨ f(r, s) = f(p, s) whenever p ≤ r < q ≤ s,
(R3′) f(p, q) =

∨
{f(r, s)|p < r < s < q},

(R4′) > =
∨
{f(p, q) | p, q ∈ Q}.

Then there exists a unique frame map g : L(R)→ L such that g(p, q) = f(p, q) for
every p, q ∈ Q.
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The set RL of all frame homomorphisms from L(R) to L has been studied as
an f -ring in [4].

Corresponding to every continuous operation � : Q2 → Q (in particular +, ·, ∧,
∨) we have an operation on RL, denoted by the same symbol �, defined by:

α � β(p, q) =
∨
{α(r, s) ∧ β(u,w) : (r, s) � (u,w) ≤ (p, q)} ,

where (r, s) � (u,w) ≤ (p, q) means that for each r < x < s and u < y < w we
have p < x � y < q. For every r ∈ R, define the constant frame map r ∈ RL by
r(p, q) = >, whenever p < r < q, and otherwise r(p, q) = ⊥.

The cozero map is the map coz : RL→ L, defined by

coz(α) =
∨
{α(p, 0) ∨ α(0, q) : p, q ∈ Q} = α((−, 0) ∨ (0,−))

where
(0,−) =

∨
{(0, q)) : q ∈ Q, q > 0} and (−, 0) =

∨
{(p, 0)) : p ∈ Q, p < 0} .

For A ⊆ RL, we write Coz[A] to denote the family of cozero-elements {coz(α) :
α ∈ A}. On the other hand, the family Coz[RL] of all cozero-elements in L will
also be denoted, for simplicity, by CozL. It is known that L is completely regular
if and only if Coz(RL) generates L. For more details about the cozero map and its
properties, which are used in this paper, see [4].

Here we see the necessary notations, definitions, and results of [10].

Proposition 2.2 ([10]). Let L be a frame. If p ∈ ΣL and α ∈ RL, then
(L(p, α), U(p, α)) is a Dedekind cut for a real number, denoted by p̃(α).

Proposition 2.3 ([10]). If p is a prime element of a frame L, then there exists a
unique map p̃ : RL −→ R such that for each α ∈ RL, r ∈ L(p, α), and s ∈ U(p, α),
we have r ≤ p̃(α) ≤ s.

By the following proposition, p̃ is an f -ring homomorphism.

Proposition 2.4 ([10]). If p is a prime element of a frame L, then p̃ : RL −→ R
is an onto f -ring homomorphism. Also, p̃ is a linear map with p̃(1) = 1.

Let L be a frame and p be a prime element of L. Throughout this paper for
every f ∈ RL, we define f [p] = p̃(f).

Recall [12] for α ∈ RL, Z(α) = {p ∈ ΣL : α[p] = 0}. For A ⊆ RL, we write
Z[A] to denote the family of zero-sets {Z(α) : α ∈ A}. On the other hand, the
family Z[RL] of all zero-sets in L will also be denoted, for simplicity, by Z[L]. The
following lemma and proposition play important roles in this paper.

Lemma 2.5. Let p be a prime element of frame L. For α ∈ RL, α[p] = 0 if and
only if coz(α) ≤ p. Hence Z(α) = ΣL− Σcoz(α).

Proposition 2.6. For every α, β ∈ RL, we have
(1) For every n ∈ N, Z(α) = Z(|α|) = Z(αn).
(2) Z(α) ∩ Z(β) = Z(|α|+ |β|) = Z(α2 + β2).
(3) Z(α) ∪ Z(β) = Z(αβ).
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(4) If α is a unit of RL, then Z(α) = ∅.
(5) Z(L) is closed under the countable intersection.

In [15], using the technique of sublocales, the authors present zero sublocales. A
sublocale S of a frame L is a zero sublocale if it is of the form(

f∗(0,−)
)∗ ∧ (f∗(−, 0)

)∗
for some localic map f : L→ L(R) as the right Galois adjoint of a frame homomor-
phism h = f∗ : L(R)→ L. The zero sets used in this paper are different from the
zero sublocales.

3. coz-disjointness and coz-spatiality

We introduce the concept of coz-disjoint for frames as follows:

Definition 3.1. A frame L is called coz-disjoint if for every two distinct prime
elements p, q ∈ L, coz(L)∩ ↓ p 6= coz(L)∩ ↓ q.

Proposition 3.2 ([11]). If p is a prime element of a frame L and Mp = {α ∈
RL : α[p] = 0} = ker p̃, then Mp is a maximal ideal.

Lemma 3.3. Let L be a frame and p, q ∈ L be prime elements. The following
statements are equivalent:

(1) coz(L)∩ ↓ p = coz(L)∩ ↓ q.
(2) p̃ = q̃.
(3) Mp = Mq.

Proof. (1)⇔(2) By [10, Corollary 3.10(1)].
(2)⇒(3) Obvious.
(3)⇒(2) Let α ∈ RL and r = p̃(α). So, 0 = p̃(α)− r = p̃(α)− p̃(r) = p̃(α− r).

That is to say q̃(α− r) = 0, and hence q̃(α) = r. Therefore p̃ = q̃. �

The foregoing lemma gives directly the following corollary.

Corollary 3.4. Let L be a frame. The following statements are equivalent:

(1) L is a coz-disjoint frame.
(2) If Mp = Mq, then p = q.

We regard the Stone-Čech compactification of L, denoted βL, as the frame of
completely regular ideals of L (for more details, see [5]). We denote the right adjoint
of the join map jL : βL→ L by rL and recall that rL(a) = {x ∈ L : x ≺≺ a}. We
define M I = {α ∈ RL : rL(coz(α)) ⊆ I}, for all 1βL 6= I ∈ βL. If M I = MJ then
I = J (see [7]).

Proposition 3.5. Every completely regular frame is coz-disjoint.

Proof. Let p, q ∈ ΣL and Mp = Mq. So, MrL(p) = Mp = Mq = MrL(q). That is
to say, rL(p) = rL(q), and hence p = q. �
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Remark 3.6. The converse of Proposition 3.5 is not true. To see this, let L be a
frame such that ΣL = ∅. Define a frame M = L ∪ {∗} where ∗ 6∈ L and x < ∗ for
all x ∈ L. We have ∗ is the top element of M , and >L is the only prime element of
M , so M is a coz-disjoint frame, but M is not regular, because for every x, y ∈ L,
x∗ ∨ y 6= >M . This means that x 6≺ y.
Proposition 3.7 ([12]). Every prime ideal in RL is contained in a unique maximal
ideal.
Theorem 3.8. Let L be a coz-disjoint frame. If P is a prime ideal of RL, then
|
⋂
Z[P ]| ≤ 1.

Proof. If p, q ∈
⋂
Z[P ], then P ⊆Mp and P ⊆Mq. By Proposition 3.7, Mp = Mq.

Therefore, by Corollary 3.4, p = q and the proof is complete. �

By Proposition 3.5, Theorem 3.8 is a more general result than [12, Proposition
6.14].

Strongly z-ideals in RL are introduced in [12], and it is proved there that every
strongly z-ideal of RL is a z-ideal. We define the concept of a coz-spatial frame
and study the relation between coz-spatial frames and strongly z-ideals.
Definition 3.9. Let L be a frame and I be an ideal of RL.

(1) I is called a z-ideal if for any α ∈ RL and β ∈ I, coz(α) = coz(β) (or
coz(α) ≤ coz(β)) implies α ∈ I [6].

(2) I is called a strongly z-ideal if Z(α) ⊆ Z(β) and α ∈ I imply β ∈ I.
(3) L is called coz-spatial if coz(α) 6≤ coz(β) implies that there exists a prime

element p ∈ L such that coz(α) 6≤ p and coz(β) ≤ p.
Note that in studying the ring C(X), z-ideals play important role (for more

details see [1, 2, 3, 14]).
Remark 3.10. Every spatial frame is coz-spatial, but the converse is not necessarily
true. To see this, consider the frame M discussed in Remark 3.6. We have Coz(M) =
{⊥, ∗} and it is directly checked that M is coz-spatial.
Theorem 3.11. Let L be a frame. The following statements are equivalent:

(1) L is coz-spatial.
(2) Every z-ideal of RL is a strongly z-ideal.
(3) For every α, β ∈ RL, Z(α) = Z(β) if and only if coz(α) = coz(β).

Proof. (1)⇒(2) Let I be a z-ideal. Suppose Z(α) ⊆ Z(β) and α ∈ I. Assume
coz(β) 6≤ coz(α). Since L is coz-spatial, there exists a prime element p ∈ L such
that coz(β) 6≤ p and coz(α) ≤ p. So p ∈ Z(α) and p 6∈ Z(β). This contradiction
shows that coz(β) ≤ coz(α). Since I is a z-ideal and α ∈ I, β ∈ I. Therefore I is a
strongly z-ideal.

(2)⇒(1) Suppose coz(α) 6≤ coz(β). Let I = {γ ∈ RL : coz(γ) ≤ coz(β)}. Then,
I is a z-ideal such that β ∈ I and α 6∈ I. By hypothesis I is a strongly z-ideal.
Hence Z(β) 6⊆ Z(α). So there is p ∈ ΣL such that p ∈ Z(β) and p 6∈ Z(α), and so
coz(β) ≤ p and coz(α) 6≤ p. Therefore L is coz-spatial.



ON MINIMAL IDEALS IN RL 7

(1)⇒(3) Suppose Z(α) = Z(β). If coz(α) 6≤ coz(β), since L is coz-spatial, there
exists p ∈ ΣL such that coz(α) 6≤ p and coz(β) ≤ p, hence Z(α) 6= Z(β) and obtain
a contradiction. Therefore coz(α) = coz(β).

(3)⇒(1) Suppose coz(α) 6≤ coz(β). If Z(β) ⊆ Z(α), we have Z(αβ) = Z(α),
and hence coz(αβ) = coz(β). Thus coz(α) ≤ coz(β), which is a contradiction.
So Z(β) 6⊆ Z(α), that is to say, there exist p ∈ ΣL such that coz(α) 6≤ p and
coz(β) ≤ p. Therefore L is coz-spatial. �

The next corollary can easily be deduced from Theorems 1.2 and 3.11.

Corollary 3.12. Let L be a coz-spatial frame. An ideal I of RL is minimal if and
only if Z[I] consists only of two elements.

For every α ∈ RL, we put Mα = {β ∈ RL : Z(α) ⊆ Z(β)}. One can easily
conclude the following proposition.

Proposition 3.13. For every α ∈ RL, Mα is a strongly z-ideal of RL.

Proposition 3.14. Let L be a coz-disjoint. For p ∈ ΣL and α ∈ RL, Mα = Mp

if and only if Z(α) = {p}.

Proof. (⇒) It is clear that p ∈ Z(α). Let q ∈ Z(α). If β ∈Mα, then Z(α) ⊆ Z(β).
So β[q] = 0 that is to say β ∈Mq. So Mp = Mq. Therefore, by Corollary 3.4, p = q.
The converse is obvious. �

Proposition 3.15. Let L be coz-disjoint. For α ∈ RL, Mα is a prime ideal if and
only if there exists p ∈ ΣL such that Mα = Mp.

Proof. (⇒) By Proposition 3.14, it is enough to show that |Z(α)| = 1. If Z(α) = ∅,
then

Mα = {β ∈ RL : ∅ = Z(α) ⊆ Z(β)} = RL ,
which is a contradiction. Now, suppose p, q ∈ Z(α). Hence Mα ⊆Mp ∩Mq and, by
[7, Lemma 4.3] and Proposition 3.13, Mp ∩Mq is a prime ideal, hence Mp = Mq.
Therefore, by Corollary 3.4, p = q. By Proposition 3.2, the converse is obvious. �

4. Zero sets of minimal ideals

In the case of a coz-spatial frame L, coz(α) = coz(β) if and only if Z(α) = Z(β).
So, | coz[I]| = 2 if and only if |Z[I]| = 2. Thus, by Theorems 1.2 and 3.11, for
a coz-spatial frame L, we have I is minimal if and only if |Z[I]| = 2. Because
coz-spatiality is rather strong, in this section the following three conditions are
studied, using coz-disjoint and coz-density.

(1) I is a minimal ideal.
(2) |Z[I]| = 2.
(3) There exists p ∈ ΣL such that Z[I] = {ΣL,ΣL− {p}}.

We recall that a ring A is reduced if it has no nonzero nilpotent element. It is
easy to check that for every frame L, RL is reduced. In a reduced ring A, every
minimal ideal is generated by an idempotent element.
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Definition 4.1. A frame L is called coz-dense if Σcoz(α) = ∅ implies α = 0.

Recall [11] that L is weakly spatial if x = >, whenever Σx = ΣL.

Remark 4.2.
(1) Every coz-spatial frame is coz-dense. To see this, let α 6= 0, hence coz(α) 6≤

coz(0). Since L is coz-spatial, there is a prime element p ∈ L such that
coz(α) 6≤ p. Therefore Σcoz(α) 6= ∅.

(2) Every weakly spatial frame is coz-dense (see Lemma 3.5 in [12]).

Proposition 4.3. Let L be a coz-disjoint and coz-dense frame. If I is a nonzero
minimal ideal of RL, then |Z[I]| = 2.

Proof. Let 0 6= δ be an idempotent in RL such that I = δRL. Then M =
(1 − δ)RL is a maximal ideal hence δ 6= 0 and is not unit. Since L is coz-dense,
ΣL 6= Z(δ) 6= ∅. Suppose that p ∈ ΣL− Z(δ). By Proposition 2.4, δ[p](1− δ)[p] =
p̃(δ(1− δ)) = 0, which follows that (1− δ)[p] = 0, and hence M1−δ ⊆Mp. Since
M ⊆ M1−δ, we conclude that M = M1−δ = Mp, and so, by Proposition 3.14,
Z(1− δ) = {p} and Z(δ) = ΣL− {p}. Therefore Z[I] = {ΣL,ΣL− {p}} and the
proof is complete. �

Proposition 4.4. Let L be a coz-disjoint frame. If I is a proper ideal of RL such
that |Z[I]| = 2, then there exists p ∈ ΣL such that Z[I] = {ΣL,ΣL− {p}}.

Proof. Let 0 6= α ∈ I. We prove that Z(α) = ΣL − {p} for some p ∈ ΣL. Let
p, q ∈ ΣL − Z(α) be distinct prime elements. Then, by Corollary 3.4, Mp 6= Mq.
Hence there is β ∈ RL such that β[p] = 0 and β[q] 6= 0. Since, by Proposition 2.6,
Z(α) ⊂ Z(α) ∪ {p} ⊆ Z(αβ) ∈ Z[I] and |Z[I]| = 2, we can conclude that
Z(αβ) = ΣL. So α[q]β[q] = 0, that is to say α[q] = 0 or β[q] = 0, which is a
contradiction. Therefore, there exists p ∈ ΣL such that Z[I] = {ΣL,ΣL−{p}}. �

Let f : ΣL→ R be a continuous function. For every p, q ∈ Q, define f̂(p, q) =∨
{a ∈ L : f(Σa) ⊆ 〈p, q〉}, where 〈p, q〉 = {x ∈ R : p < x < q}. Then, we have the

following lemma.

Lemma 4.5. Let L be a frame and f : ΣL→ R be a continuous function. Then
the following relations hold:

(1) f̂(p, q) ∧ f̂(r, s) = f̂(p ∨ r, q ∧ s).
(2) f̂(p, q) ∨ f̂(r, s) = f̂(p, s) whenever p ≤ r < q ≤ s.
(3) f̂(p, q) =

∨
{f̂(r, s)|p < r < s < q}.

(4) > =
∨
{f̂(p, q)|p, q ∈ Q}.

Hence f̂ : L(R)→ L is a frame map.

Proof. By Lemma 2.1, it is obvious. �

Remark 4.6. Let L be a regular frame. If f , g : L→M are two frame maps such
that for every x ∈ L, f(x) ≤ g(x), then f = g, by regularity of L. In particular, if
α, β ∈ RL and for every r, s ∈ Q, α(r, s) ≤ β(r, s), then α = β.
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Proposition 4.7. Let L be a frame. The map ϕ : C(ΣL)→ RL given by ϕ(f) = f̂
is an f -ring homomorphism.

Proof. Let f , g ∈ C(ΣL) and � ∈ {+, ·,∨,∧} be an operation. We prove that
f̂ � g = f̂ � ĝ. Let r, s ∈ Q and 〈t, u〉 � 〈v, w〉 ⊆ 〈r, s〉. Then

f̂(t, u) ∧ ĝ(v, w) =
∨
{a : f(Σa) ⊆ 〈t, u〉} ∧

∨
{b : g(Σb) ⊆ 〈v, w〉}

=
∨
{a ∧ b : f(Σa) ⊆ 〈t, u〉, g(Σb) ⊆ 〈v, w〉}

≤
∨
{a ∧ b : f � g(Σa ∩ Σb) ⊆ 〈t, u〉 � 〈v, w〉}

=
∨
{a ∧ b : f � g(Σa∧b) ⊆ 〈t, u〉 � 〈v, w〉}

≤
∨
{c : f � g(Σc) ⊆ 〈r, s〉}

= f̂ � g(r, s) .

Hence f̂ � ĝ(r, s) =
∨
{f̂(t, u) ∧ ĝ(v, w) : 〈t, u〉 � 〈v, w〉 ⊆ 〈r, s〉} ≤ f̂ � g(r, s). By

Remark 4.6, f̂ � g = f̂ � ĝ. �

Remark 4.8. Let L be a frame and t ∈ R. We can easily check t̂ = t, in particular
1̂ = 1. Thus for every f , g ∈ C(ΣL), f̂ + tg = f̂ + t̂ĝ = f̂ + tĝ. Therefore ϕ is a
linear function.

Lemma 4.9. Let L be a frame, f : ΣL → R be a continuous function, p ∈ ΣL,
and r, s ∈ Q. Then r < f(p) < s if and only if there exists a ∈ L such that a 6≤ p
and f(Σa) ⊆ 〈r, s〉.

Proof. Assume that r < f(p) < s. Since f is continuous, f−1(〈r, s〉) is an open
set in ΣL. Thus there is a ∈ L such that f−1(〈r, s〉) = Σa. Therefore f(Σa) ⊆ 〈r, s〉
and p ∈ Σa, and so, a 6≤ p. The converse is obvious. �

Remark 4.10. There is a homeomorphism τ : ΣL(R)→ R such that r < τ(p) < s
if and only if (r, s) 6≤ p for all prime elements p of L(R) and all r, s ∈ Q (see
Proposition 1 of [4, page 12]).

Proposition 4.11. Let L be a frame and f : ΣL → R be a continuous function.
Then τ ◦ Σf̂ = f .

Proof. Let p ∈ ΣL and r, s ∈ Q such that r < f(p) < s. By Lemma 4.9, there
exists a ∈ L such that a 6≤ p and f(Σa) ⊆ 〈r, s〉. Thus

f̂(r, s) =
∨
{a : f(Σa) ⊆ 〈r, s〉} 6≤ p .

Since Σf̂(p) = f̂∗(p), where f̂∗ is the right adjoint of f̂ , (r, s) 6≤ Σf̂(p). Thus, by
Remark 4.10, r < τ(Σf̂(p)) < s, and so f(p) = τ(Σf̂(p)). Therefore f = τ ◦Σf̂ . �

According to the foregoing proposition, we can immediately conclude the follo-
wing corollary.



10 A. KARIMI FEIZABADI, A.A. ESTAJI AND M. ABEDI

Corollary 4.12. The f-ring homomorphism ϕ : C(ΣL) → RL is a monomor-
phism.

Proposition 4.13. Let L be a frame and f : ΣL → R be a continuous function,
then Z(f̂) = Z(f).

Proof. Assume that f(p) = 0. Let a ∈ L be such that f(Σa) ⊆ 〈−∞, 0〉 ∪ 〈0,+∞〉.
Hence, for every q ∈ Σa, f(q) 6= 0. Thus p 6∈ Σa, and so a ≤ p. Hence coz(f̂) =∨
{a : f(Σa) ⊆ 〈−∞, 0〉 ∪ 〈0,+∞〉} ≤ p. Therefore, by Lemma 2.5, p ∈ Z(f̂).

Conversely, suppose f(p) 6= 0. Since f is continuous, there exists a ∈ L such that
p ∈ Σa and f(Σa) ⊆ 〈−∞, 0〉 ∪ 〈0,+∞〉. So a 6≤ p and a ≤ coz(f̂), and hence
coz(f̂) 6≤ p. Thus p 6∈ Z(f̂). Therefore Z(f̂) = Z(f). �

Notation 4.14. Let p ∈ ΣL be an isolated point. We define

χp(x) =
{

1, x = p

0, x ∈ ΣL− {p} .

It is clear that χp : ΣL→ R is a continuous map. Define εp = χ̂p ∈ RL.

Lemma 4.15. Let L be a frame and p ∈ ΣL be an isolated point. Then
(1) εp is an idempotent element of RL.
(2) Z(εp) = ΣL− {p}.
(3) Assume that L is a coz-dense frame. For every α ∈ RL, if Z(α) = ΣL−{p},

then εpα = α.

Proof. (1) By Proposition 4.7, ε2p = χ̂p
2 = χ̂2

p = χ̂p = εp.
(2) By Proposition 4.13, Z(εp) = Z(χp) = ΣL− {p}.
(3) By Remark 4.8, εp − 1 = χ̂p − 1, and hence Z(εp − 1) = Z(χp − 1) = {p},

by Proposition 4.13. Now, let β = α(εp − 1). Then, by Proposition 2.6, Z(β) =
Z(α) ∪ Z(εp − 1) = ΣL. Thus, for every prime element q ∈ L, coz(β) ≤ q. Since L
is coz-dense, β = 0. Therefore, εpα = α. �

Remark 4.16. Let α ∈ RL. Define α : ΣL → R by α(p) = p̃(α). Then, there
is an f -ring homomorphism ψ : RL → C(ΣL) given by ψ(α) = τ ◦ Σα, by [10,
Proposition 3.9]. Moreover, if p ≤ q, then ψ(α)(p) = q̃(α) for every α ∈ RL. In
particular, (τ ◦ Σα)(p) = ψ(α)(p) = p̃(α) for every p ∈ ΣL. Therefore α = τ ◦ Σα,
so α is continuous.

Proposition 4.17. If L is a coz-dense frame, then ψ : RL → C(ΣL) is an iso-
morphism, and ψ−1 = ϕ.

Proof. First we show that ψ is a monomorphism. Let α = 0. Then for every
p ∈ ΣL, we have coz(α) ≤ p. Since L is coz-dense, α = 0. Therefore ψ is a
monomorphism and, by Proposition 4.11, ψ is onto. So ψ is an isomorphism. Also,
for every f ∈ C(ΣL), ψ(f̂) = f , by Proposition 4.11. Hence, ψ ◦ ϕ = id, that is to
say ψ−1 = ϕ. �
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Corollary 4.18. Let L be a coz-dense frame and p be an isolated point of ΣL. If I
is a nonzero z-ideal of RL such that Z[I] = {ΣL,ΣL− {p}}, then I is a minimal
ideal.

Proof. Let 0 6= α ∈ I. Then Z(α) = ΣL − {p}. Therefore, by Lemma 4.15 (3),
α = εpα ∈ εpRL, and hence I ⊆ εpRL. It is enough to show that εpRL is a
minimal ideal. To see this, let 0 6= J ⊆ εpRL. If 0 6= β ∈ J , then β ∈ εpRL, hence
Z(β) ⊇ Z(εp) = ΣL − {p}, and so Z(β) = ΣL − {p}. Therefore β = εpβ. Let
k = β(p) 6= 0. By Proposition 4.17, εp = χp = 1

k (β) = 1
kβ, and also εp = 1

kβ ∈ J .
Thus, J = εpRL. Therefore εpRL is a minimal ideal. Since I ⊆ εpRL, I = εpRL is
a minimal ideal. �

By Propositions 4.3, 4.4 and foregoing corollary, we can easily prove the following
theorem.

Theorem 4.19. Let L be a coz-disjoint and coz-dense frame and I be a nonzero
ideal of RL. Then the following statements are equivalent.

(1) I is a minimal ideal.
(2) |Z[I]| = 2.
(3) There exists p ∈ ΣL such that Z[I] = {ΣL,ΣL− {p}}.

In Theorem 1.1 the minimal ideals of C(X) are characterized by zero sets and
isolated points of X. This is extended by Dube in Theorem 1.2 to arbitrary RL,
where the minimal ideals of RL are characterized by cozero elemens and atoms
of L. The approaches in Theorem 1.1 and Theorem 1.2 are completely different.
The approach used in the proof of Theorem 4.19 is similar to the proof of Theo-
rem 1.1. This approach enables us to introduce the new concepts of coz-disjointness,
coz-spatiality and coz-density, and find a relation between the rings RL and C(ΣL).
These concepts can be useful in further research; for example, by coz-density, we
present a description of the socle of the ring RL based on minimal ideals of RL
and zero sets in pointfree topology (for more details, see [13]).

For any > 6= a ∈ L, the set R(a) = {α ∈ RL : coz(α) ≤ a} is an ideal of RL.
Let L be a completely regular frame. An ideal of RL is minimal if and only if it is
of the form R(a), for some atom a of L ([9, Lemma 3.4]).

Proposition 4.20. Let L be a coz-dense frame. If p is an isolated point of ΣL,
then

∧
ΣL− {p} is an atom of L.

Proof. Let a =
∧

ΣL−{p}. If α ∈ R(a), then for every q ∈ ΣL−{p}, coz(α) ≤ q,
and so, by Lemma 2.5, Z(α) = ΣL or Z(α) = ΣL − {p}. Thus Z[R(a)] =
{ΣL,ΣL − {p}}, and hence, by Corollary 4.18, R(a) is a minimal ideal of RL.
Therefore a is an atom of L. �

Proposition 4.21. Let L be a coz-disjoint and coz-dense frame. If a is an atom of
L, then there exists an isolated point p of ΣL such that {q ∈ ΣL : a ≤ q} = ΣL−{p}.

Proof. Let a be an atom of L. Then R(a) = {α ∈ RL : coz(α) ≤ a} is a
minimal ideal of RL, and so, by Theorem 4.19, there exists p ∈ ΣL such that
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Z[R(a)] = {ΣL,ΣL−{p}}. If 0 6= α ∈ R(a) and a ≤ q ∈ ΣL, then, by Lemma 2.5,
q ∈ Z(α). Hence {q ∈ ΣL : a ≤ q} ⊆ ΣL−{p}. Let q ∈ ΣL−{p} and 0 6= α ∈ R(a).
Then α[q] = 0, and hence, by Lemma 2.5, ⊥ 6= coz(α) ≤ a ∧ q. Since a is an atom
of L, a ≤ q. �

Corollary 4.22. Assume that L is a coz-disjoint and coz-dense frame. Then ΣL
has an isolated point if and only if L has an atom. Moreover, the assignment
p 7→

∧
ΣL− {p} gives a bijection between the set of isolated points of ΣL and the

set of atoms of L.

Proof. Suppose that
∧

ΣL− {p} =
∧

ΣL− {q} = a. If p 6= q, then p ∈ ΣL− {q}.
So a ≤ p. Thus

∧
ΣL = p∧

∧
ΣL−{p} = a, and hence a ≤ r for all r ∈ ΣL, Since L

is coz-dense, a = 0, which is a contradiction. This proves that the correspondence is
one-one. It suffices to prove ontoness. Let a be an atom. Then, by Proposition 4.21,
there is an isolated point p ∈ ΣL such that {q ∈ ΣL : a ≤ q} = ΣL − {p}, and
so a ≤

∧
ΣL − {p} = b. By Proposition 4.20, b is an atom. Therefore a = b =

ΣL− {p}. �

Remark 4.23. Here, we explain the relations among coz-spatial, coz-dense,
coz-disjoint, weakly spatial, spatial and completely regular conditions. By Re-
mark 3.10, being spatial implies being coz-spatial (weakly spatial) and, by Re-
mark 4.2, being coz-spatial (or weakly spatial) implies being coz-dense. None of
the conditions (coz-spatial, weakly spatial, and coz-disjoint) can imply either being
spatial or completely regular. Also, by Proposition 3.5, completely regular implies
coz-disjoint. Finally, coz-spatial does not imply weakly spatial. To see this, let L
and M be two frames such that L∩M = ∅ and ΣL = ΣM = ∅. Let K = L∪M . For
every x ∈ L and y ∈M define x < y. So K is a frame such that ΣK = {>L} and
coz(K) = {⊥ = ⊥L,> = >M}. Then, K is not weakly spatial, but it is coz-spatial.
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