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Abstract. The free motion of a thin elastic linear membrane is described, in a simply-
fied model, by a second order linear homogeneous hyperbolic system of partial differential
equations whose spatial part is the Laplace Beltrami operator acting on a Riemannian 2-
dimensional manifold with boundary. We adapt the estimates of the spectrum of the Lapla-
cian obtained in the last years by several authors for compact closed Riemannian manifolds.
To make so, we use the standard technique of the doubled manifold to transform a Rie-
mannian manifold with nonempty boundary (M,∂M, g) to a compact Riemannian manifold
(M♯M, g̃) without boundary. An easy numerical investigation on a concrete semi-ellipsoidic
membrane with clamped boundary tests the sharpness of the method.
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1. Introduction

The dynamics of a three dimensional elastic body is described by the well-known

Navier-Stokes equations equipped with mixed Dirichlet-Neumann conditions on its

boundary; this combination arises from the classical Signorini problem for elastic

bodies. It is well known that a general description of the motion is well far from

a complete and exhaustive description due to the high complexity of the problem.

The construction in total safety of a civil or mechanical structure forces to give

a suitable approximation of the problem, solved usually via a Finite Element Pro-

gram; moreover, the knowledge of the proper frequencies of vibration is necessary to

avoid any eventual resonance phenomenon, this is the reason why an easy determi-

nation of the same would be desirable in the design phase.

In this paper we furnish some estimate of the vibration frequencies of a linear

elastic membrane using a geometric approach viewing the structural element as
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a 2-dimensional Riemannian manifold. In the last years several authors got estimates,

from above and from below, of the eigenvalues of the Lapace Beltrami operator act-

ing on a Sobolev space of functions having as the support a compact Riemannian

manifold with empty boundary; for the sake of simplicity we shall write acting on

a Riemannian manifold. In this paper we adapt these results to a vibrating linear

elastic membrane. We recall here that the equations of motion of a linear elastic

membrane form a system of hyperbolic PDE whose spatial part is strongly elliptic

and positive definite; it admits a discrete sequence of nonnegative eigenvalues; this

spatial part is the Laplace-Beltrami operator acting on a 2-dimensional Riemannian

manifold. The standard technique of separation of variables puts in correspondence

the eigenvalues of this operator with the free vibration frequencies. To reach the

goal of this paper

1. we reduce the motion of the membrane M to that of its middle surface de-

picted as a two dimensional Riemannian manifold with nonempty boundary

(M,∂M, g),

2. we use the standard technique of the “double” of a Riemannian manifold to

view the model of the elastic membrane as part of a compact 2-dimensional

Riemannian manifold (M♯M, g♯g) with empty boundary,

3. we arrange the estimates of the eigenvalues of the Laplace Beltrami operator

for a closed compact manifold to the vibrating membrane.

2. Dynamics of an elastic membrane

In this part, we summarize the principal and necessary concepts about the dy-

namics of a thin elastic membrane, necessary for the next developments, referring to

the specific literature for a wide and exhaustive treatment (Antman [1]; Carrol and

Naghdi [2]; Ericksen and Truesdell [4]; Naghdi [8]; Simo and Fox [10], [11]).

A membrane is a thin three-dimensional body with three peculiar characteristics:

1. it has curved shape in the space,

2. one dimension, in the following named the thickness, is smaller than the other

two;

3. moreover, the resultant stress at a point m of the membrane is everywhere

parallel to the tangent plane at m.

As a three dimensional body, each configuration of the membrane is the set

M ⊂ R
3 defined as M = S × ξn, S being the regular middle surface, n the unit

normal field to S and ξ ∈ [h−, h+], h+ − h− = h the thickness. The motion of

a membrane is drawn by that of its middle surface and by the variation of the thick-

ness; the first one is naturally described by its deformation in the ambient space,
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the description of motion along the thickness can be very complicated but, because

of the previous assumptions 1, 2 and 3 and technical reasons allow to neglect it if

h 6 1
20D, D being the minimal dimension between the other two. For the purposes

of this paper two further assumptions are necessary:

4. the motion of the membrane is small, i.e., two different configurations of the

membrane are “close” to each other, this assumption allows to interchange the

two configurations and assume that the balance is achieved in the undeformed

one;

5. the relation between stress and strain is linear.

According to the previous assumptions, we refer the motion to the undeformed

configuration, taken as reference configuration, S0. Let Ω ⊂ R
2 be a a simply

connected closed domain of R2, the parametrization of this configuration is the C2

map:

ϕ0 : Ω → R
3.

Setting zi, i = 1, 2, 3, as the coordinates in R
3 and taking xα, α = 1, 2, as the

coordinates of a point p ∈ Ω, the parametrization of the surface in the reference

configuration S0, is given by the functions

zi = ϕi
0(x

α).

The motion of the membrane is thus given by the map u : S0 → R
3, i.e.

ui = ui(zj).

The deformation is described by the Lagrange tensor of small deformations:

(1) εαβ =
1

2

3∑

i=1

( ϕi
0

∂xα
∂ui

∂xβ
+
∂ϕi

0

∂xβ
∂ui

∂xα

)
.

R em a r k 2.1. By definition, the Lagrange strain tensor is a symmetric tensor,

it is thus invariant under the swap α ↔ β.

We assume that the equilibrium equations are the classical Cauchy equations of

a continuum body:

(2)

{
div σ +B = ̺

∂2u

∂t2
, P ∈ (S0 \ ∂S0),

σn = f , P ∈ S0,

where
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⊲ σ is the Cauchy stress tensor,

⊲ B is the external volume forces,

⊲ ̺ is the mass density,

⊲ n is the unit normal point outward the boundary,

⊲ f is the surface contact forces.

In the sequel, we impose on the membrane to be constrained along all its boundary

to impede it each kind of motion (Dirichlet conditions for the problem (2)):

(3) u|P∈∂S = 0.

We consider linear elastic isotropic bodies, for this kind of materials the relation

between the Cauchy stress tensor σ and the Lagrange strain tensor ε is expressed by

the Hook Law

(4) σ = [A(ν, g)E] · ε,

where A, the elastic tensor, depends on the material via the Poisson coefficient ν

and on the membrane configuration via the metric tensor g of the undeformed con-

figuration S0, defined from the isometric immersion S0 ⊂ R
3 as

gαβ =
∑

k

∂ϕk
0

∂xα
∂ϕk

0

∂xβ
;

E is the Young modulus. The components of the elastic tensor are explicitly given

by the expression (see [10])

(5) Aαβγδ = νgαβgγδ +
1− ν

2
(gαγgβδ + gαδgβγ),

where gαβ are the components of the inverse of the metric tensor of the undeformed

configuration of the membrane. The assumptions (1) and (4) testify that the material

is hyperelastic, i.e. there exists a positive definite stored energy, the Potential Elastic

Energy Ψ; as a consequence it follows that the elastic tensor is positive definite.

R em a r k 2.2. The elastic tensor A enjoys having three particular symmetries:

1. it is invariant under the interchange of the indices α and β, since the Lagrange

strain tensor is symmetric, see Note 2.1;

2. it is invariant under the interchange of the indices γ and δ, since the Cauchy

stress tensor is symmetric;

3. it is invariant under the interchange of the couples of indices (α, β) and (γ, δ),

since the material is hyperelastic; this property follows from the Schwartz The-

orem applied to the Potential Elastic Energy functional Ψ.
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We assume at first instance that the external forces are zero. The use of the

constitutive law (4) yields the dynamical equations of motion as functions of the

displacement u = (u1, u2, u3)
T only:

{[
A− ∂2

∂t2

]
(u) = 0, P ∈ (S0 \ ∂S0),

u = 0, P ∈ ∂S0,

where A : H2,2
0 (Ω,R3) → L2

¯̺(Ω,R
3) is defined as

(6) Ai =
1

̄ ¯̺

∑

α

∂

∂xα

(
̄Eh

2(1− ν2)

∑

β,γ,δ

Aαβγδ 1

2

∂ϕi
0

∂xβ

(∑

k

∂ϕk
0

∂xγ
∂uk

∂xδ
+
∂ϕk

0

∂xδ
∂uk

∂xγ

))
,

where H2,2
0 (Ω,R3) is the Sobolev space of the functions satisfying the boundary

conditions (3) equipped with the usual norm and L2
¯̺(Ω,R

3) is the Lebesgue space

equipped with the scalar product (weighed mass scalar product)

〈〈u,v〉〉L2
¯̺
=

∫

Ω

¯̺〈u(x),v(x)〉dµ(Ω).

In (6) we have

⊲ ̄ = ‖∂x1ϕ0 ∧ ∂x2ϕ0‖ the local element of area,
⊲ ¯̺ = ̄−1

∫ h+

h− ̺̄dξ the surface mass density.

The assumption of hyperelasticity is equivalent to the symmetry of the operator A
in L2

¯̺(Ω,R
3), see e.g. the definition of the elastic tensor expressed by relation (5) and

in Remark 2.2. The main existence theorem for linear elastodynamics is as follows:

Theorem 2.3. Let the material be hyperelastic and let A be its elasticity tensor.

Let the symmetric operator be A : H2,2
0 (Ω) → L2

¯̺(Ω). Then A is strongly elliptic.

P r o o f. See [7], p. 346. �

The elasticity of the material implies that there are not dissipative phenomena

inside the body, hence the work done by the external forces and internal stress in

a consistent field of displacement and the corresponding strain resultant is always

positive, i.e. 〈〈u,A(v)〉〉L2
¯̺
> 0. This inequality expresses that the linear operator A

is positive definite. We conclude with the following

Proposition 2.4. The linear operator A : H2,2
0 (Ω,R3) → L2

¯̺(ω) is symmetric,

positive definite and strongly elliptic. It admits a nondecreasing discrete set of

positive eigenvalues λN .
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Moreover, we recall here that the linear operator A acts as div grad on the vector
field u : S0 → R

3, i.e., it is the well-known Laplacian-Beltrami operator ∆ (or, more

briefly, the Laplacian).

If the membrane has constant thickness h and if the material is homogeneous

the elastic constants are independent of x and t, and they can be shifted out from

the differential operator. Using the standard techniques of the variables separation:

u(x, t) = X(x)T (t), we get the eigenvalues-eigenfunctions problem

∆X(x) + λX(x) = 0,(7a)

2̺(1− ν2)

Eh

∂2T (t)

∂t2
+ λT (t) = 0.(7b)

Equation (7a), accompanied with the boundary condition (3), expresses the usual

problem of the spectrum of a manifold S0 with Dirichlet data on the boundary; the

equation (7b) is the classical one-dimensional oscillator equation. Searching the so-

lutions of (7b) in the form T (t) = T0e
iωt (T0 is the initial amplitude, ω the oscillation

frequency and i the imaginary unit) the relation between the Nth frequency ωN and

the Nth eigenvalue λN of the operator ∆ is given by

ωN =

√
Eh

2̺(1− ν2)
λN .

3. Estimation of free frequencies

In the last years several authors got some estimates, from above and from below,

of the spectrum of the Laplace Beltrami operator acting on a compact n dimensional

Riemannian manifold without boundary. The proposed model of vibrating membrane

is that of a 2-dimensional compact Riemannian manifold with nonempty boundary.

Gluing two isometric copies of one Riemannian manifold with boundary (M,∂M, g)

along their common boundary we get a doubled Riemannian manifold (M♯M, g̃)

which is compact and with empty boundary. It is easy to prove (see Appendix

and [9]) that the spectrum of the doubled manifold splits in two components, the

first one relative to the Dirichlet spectrum of each copy on (M,∂M, g), the other

one relative to the Neumann spectrum. If any assumption on the curvature of the

manifolds is done, the estimates depending on the topology, the diameter or the

volume of the manifold (M,∂M, g) are available, since the new metric in the doubled

manifold (M♯M, g̃) is the C0-limit of C∞-metrics (M♯M, g♯g), and the diameter and

the volume go to the limit (see Lemma 5.3 in the Appendix at the end of this paper).

On the contrary, for other estimates it is necessary to fix a lower bound of the Ricci
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curvature of the boundaryless manifold, but in the doubled manifold the curvature

can reach negative values and can still be high in a neighborhood of the “equator”

(the line of junction of the two copies of (M,∂M, g)). The following example explains

the problem:

E x am p l e 3.1. The equator is in general a discontinuity line for the curvature of

the doubled manifold. To get a suitable regularity it is necessary to smooth the metric

in a suitable neighborhood of this line. If we paste in the common boundary two

copies of a membrane having the shape of a “trumpet bell”, in a neighborhood of the

equator we get a regularized surface of junction with positive Gaussian curvature. On

the contrary, pasting two isometric copies of membrane shaped as “Russian dome”,

in the neighborhood of the equator the Gaussian curvature of the surface is negative

and its value depends on the attack angle between the two copies, which is the reason

why the Gaussian curvature can assume negative values still high.

Definition 3.2. A Riemannian manifold (M,∂M, g) with nonempty boundary

is said to have convex boundary if the second fundamental form of the boundary

II∂M is negative definite with respect to the inward normal N .

Definition 3.3. Let m ∈ M be a point of the manifold and let Dm(r) be the

geodesic disk of radius r centered at m. If there exists a value im such that for

r > im the disk has auto-intersections, then im is the injectivity radius of M at m;

running m over all M , the min
m∈M

im is the injectivity radius of M .

R em a r k 3.4. We emphasize here that the boundary of a compact 2-dimensional

manifold is a 1-dimensional manifold, i.e. a closed curve, thus the injectivity radius

is the diameter and it makes no sense to talk about the Second Fundamental Form,

since it reduces to the curvature function k : ∂M → R
+ ∪ {0}. Let P ∈ ∂M be any

point of the membrane belonging to the boundary and let N and n, respectively, be

the normal to the surface and the normal to the boundary (seen as a line isometrically

embedded in R
3). We say that the boundary is convex if 〈N,n〉 < 0. The inverse of

the radius of the osculating circle at this point is the curvature of the boundary at this

point. The convexity of the boundary is reflected in the fact that the osculating circle

and the normal N lie on the opposite sides. The assumption “sectional curvature of

the boundary > −k2” becomes simply fulfilled at every point of the osculating circle;
we take the minimum of this value as reference value k. For the same reason in this

case the bound η of the second fundamental form coincides with the same value k.

R em a r k 3.5. We recall here that for manifolds of dimension 2, the Gaussian

curvature K yields the whole Riemann Curvature Tensor R, reduced to the single

term R1212 = scal = 2K, where scal is the scalar curvature, and the Ricci curvature

tensor becomes Ric = 2K · g.
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The estimates for which it is necessary to fix a lower bound of curvature of the

boundaryless manifold are not available, in the first instance, without any adaptation

of the metric. We have to get a limit metric obeying the following conditions:

1. if the boundary is convex, it is enough to have uniform control from below of

sectional curvature of each copy of (M,∂M, g); the assumption

Ric > −(n− 1)δ2g

remains indeed still true in the whole doubled manifold M♯M thanks to Theo-

rem 5.7 (see Appendix at the end to this paper and [9]);

2. if the boundary is not convex, we have to get a metric g̃ which is at the same

time

(a) close enough to the metric g♯g in such a way that both spectra are of the

same order and

(b) far enough from it in such a way that the sectional curvature is bounded.

In Theorem 5.8 a lower and an upper bound of this new metric are shown.

In what follows, we denote by M(h,E, ν, ̺) an elastic membrane of thickness h,

Young modulus E, Poisson coefficient ν, and density ̺. Moreover, in the estimates

we will use all the corrections due to the regularization of the metric.

Estimates from below are available only for the first eigenvalue assuming that

the n-dimensional compact Riemannian manifold (M, g) without boundary has di-

ameter D and Ricci curvature limited from below: Ric > (n−1)kg and k > 0. These

estimates are given by the Lichnerowicz formula (see [5], p. 210)

λ1(M, g) > nk

and the Li-Yau formula (see [6], p. 189)

λ1(M, g) >
π
2

2D2
.

The direct use of the Lichnerowicz formula leads to

Lemma 3.6. Let M(h,E, ν, ̺) be an elastic membrane such that its Gaussian

curvature K is greater than zero. Then

(8) ω1(M) >

√
EhK

2̺(1− ν2)
.
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In a similar way, using the Li-Yau formula and the regularized metric of the

doubled manifold (see formula (15)) we get

Lemma 3.7. LetM(h,E, ν, ̺) be an elastic membrane of diameter D and Gaus-

sian curvatureK greater than zero, whose boundary has diameter a and upper bound

of the curvature k. Then

(9) ω1(M) >
π

2D
′

√
Eh

2̺(1− ν2)
,

where D
′
= D if the boundary is convex and D

′
=

(
cosh 1

4ka + sinh 1
4ka

)
D if the

boundary is not convex.

Estimates from above depend in general on the topology via the genus γ of the

surface (roughly speaking each surface can be deformed continuously and with no

lacerations to a sphere with γ handles, this number is the genus γ of the surface), the

volume, the diameter, the curvature of the undeformed configuration of the mem-

brane, moreover, some estimate depends also on the curvature and the injectivity

radius of the boundary, because of the regularization of the metric.

Lemma 3.8. The upper bound of the first vibration frequency of a linear elastic

membrane M(h,E, ν, ̺) with nonempty and connected boundary, of genus γ and

area A is given by

(10) ω1(M) = min[ωD
1 (M), ωN

1 (M)] 6

√
Ehπ(2γ + 1)

4̺(1− ν2)A
.

P r o o f. If (M, g) is a 2-dimensional compact Riemannian manifold of genus γ

and with empty boundary, the Yang-Yau Theorem ensures that λ1(M, g) 6

8π(γ + 1)/A (see [12]). We proved in [9] that, if (M, g, ∂M) is a 2-dimensional

compact Riemannian manifold of genus γ and with nonempty boundary ∂M , then

λN1 (M, g) ·Volg(M, g) 6 4π(2γ+1) or λD1 (M, g) ·Volg(M, g) 6 4π(2γ+1). Moreover,

setting Volg(M, g) = A(M), A(M) = 2A(M), we get the estimate (10). �

Lemma 3.9. The upper bound of the Nth vibration frequency of an elastic mem-

braneM(h,E, ν, ̺) of diameter D is given by

(11) ωN (M) 6
N

D

√
3Eh

̺(1− ν2)
.
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P r o o f. Let (M,∂M, g) be a compact Riemannian manifold with nonempty

boundary and (M♯M, gM♯M ) its double, it is clear that diamM♯M > diamM ; Corol-

lary 2.2 of Cheng, [3], ensures that, if D is the diameter of a compact n-dimensional

boundaryless Riemannian manifold, its Nth eigenvalue is raised by N2n(n+ 1)/D2,

in the case of the elastic membrane we have that diamM♯M > D, n = 2, which

yields (11). �

Lemma 3.10. The upper bound of the Nth vibration frequency of an elastic

membraneM(h,E, ν, ̺) of diameter D and the Gaussian curvature K whose bound-

ary has diameter a and upper bound of the curvature k, is given by

(12) ωN(M) 6

√
Eh

2̺(1− ν2)

(K
2

+
16N2

π
2

D′2

)
,

where D′ = D if the boundary is convex or D′ =
(
sinh 1

4ka/ sinh
1
2ka

)
D if the

boundary is not convex.

P r o o f. Convex boundary: As in the previous estimation, we consider the

boundaryless doubled manifold M♯M with sectional curvature equal to 1
2K and

diameter dM♯M such that dM♯M > dM whereM is the middle surface of the shellM
embedded isometrically in the ambient space R3. Corollary 2.3 in Cheng [3] gives,

when n = 2(m+ 1), m = 0, 1, 2, . . .

λN (M) 6
(2m+ 1)2

4

K

2
+

4N2(1 + 2m)2π
2

d2
,

and when n = 2m+ 3, m = 1, 2, . . .

λN (M) 6
(2m+ 2)2

4

K

2
+

4N2(1 + π
2)(1 + 2m2)2

d2
.

Keeping m = 0, we get the estimation for the Nth eigenvalue

λN (M♯M) 6
K

2
+

16N2
π
2

D2

and hence directly (12).

Nonconvex boundary: The proof is still valid but the diameter has to be corrected

by the factor depending on the curvature and the injectivity radius of the boundary,

conformably with relation (15) of Theorem 5.8 in Appendix. �
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The next estimate is usable for compact Riemannian manifolds with convex bound-

ary and such that the diameter of the doubled manifold is the same as the each copy

from which the manifold is obtained. It is impossible to bound in a easy way the

functions of D bounding the frequencies.

Lemma 3.11. LetM(h,E, ν, ̺) be an elastic membrane with convex boundary,

whose diameter, the Gaussian curvature and volume are respectively D, K and A

and such that its Ricci curvature is greater than 1
2Kg. There exists a critical number

N0 = 2πD/A such that

1. if N 6 N0 then

(13) ωN (M) 6
4N

D
cosh

D
√
K/2

4N
·
√

Eh

2̺(1− ν2)
,

2. if N > N0 then

(14) ωN(M) 6
8N

D

√
(N + 1)π

KA
sinh

D
√
K/2

N
cosh

D
√
K/2

4N
·
√

Eh

2̺(1− ν2)
.

P r o o f. The previous estimates follow directly from the theorem of Chen, see [5],

p. 209, remembering that the area of the unit 2-ball is π. �

4. A numerical investigation

To test the accuracy of the above estimate we proceeded to a numerical simula-

tion via a Finite Element Program on a half ellipsoid of rotation membrane, whose

geometric and mechanical characteristics are reported in the following Table 1 and

Table 2.

Vertical semi-axes 5.00 m

Horizontal semi-axes 6.82 m

Diameter 21.42 m

Thickness 0.15 m

Minimal Gaussian curvature 0.0012 m−2

Maximal Gaussian curvature 0.0040 m−2

Area 241.90 m2

Table 1. Geometrical characteristics of the membrane.
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̺ 2.35 KNs2m−4

E 3 102 600 KNm−2

ν 0.15

Table 2. Mechanical characteristics of the membrane.

In Table 3 we ordered the estimated and calculated frequencies. On the first

sight we emphasize that all estimates depending on the Gaussian curvature are less

accurate (both from above and from below) than the other ones; this depends on

the particular shape of Chen estimates and not on the model proposed. For the first

nonzero eigenvalue of the canonical unit sphere (R2, can) the direct calculation gets

λ1 = 2, on the contrary the estimations (12) and (13) give back values at least ten

times larger than the explicitly calculated value. The Cheng’s estimates have, for

the moment, a strong theoretical importance only. We conclude that with a good

approximation the proposed method is accurate enough.

Calculated
Estimate (8) (9) via F.E.P. (11) (13) (10) (12)

Frequency (Hz) 20.14 23.34 36.20 37.59 59.94 102.57 186.88

Table 3. First free frequency.

5. Appendix

We sketch here the main ideas and results of the method of the doubled manifold,

referring to [9] for all technical details, in particular how to gain a C∞-metric with

a uniform control from below of the curvature.

5.1. Definition of the doubled manifold (M♯M, g♯g) and general proper-

ties of the spectrum. Let (M,∂M, g) be a Riemannian manifold with compact

and differentiable boundary ∂M . From the disjoint union M1 ∐M2 of two copies

of the manifold M and the canonical maps ψ1 and ψ2 of M on M1 and M2 we get

the double M♯M of (M,∂M) as the quotient manifold of M1 ∐M2 via the following

equivalence relation: ψ1(x) ∼ ψ2(x) if and only if x ∈ ∂M . In other words, we

define the doubled manifold as (M × {1,−1})/∼, where the equivalence relation ∼
is defined as

(x, i) ∼ (y, j) if and only if (x = y and i = j) or (x = y ∈ ∂M and any i, j).

The two boundaries that in this way are identified yield an (n − 1)-hyper-surface

named “the equator” ofM♯M . The manifoldM♯M can be equipped with a structure

of a C∞ manifold in the following way:
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Let p : (M × {1,−1})→M♯M be the canonical surjection,

U ⊂ p(∂M × {−1}) = p(∂M × {1})

an open neighborhood in M♯M and N the g-unitary inward normal field of ∂M , the

local chart Φ is defined as

Φ(t, x) =

{
p(expx[t ·N(x)], 1) if t > 0,

p(expx[−t ·N(x)],−1) if t < 0.

If ε 6 injM (injM is the injectivity radius of M), the exponential normal map is

a diffoeomorphism of ]0, ε[ × ∂M on its image in M and the changes of charts are

C∞-maps.

Let j : M → M × {1} be the isometric immersion of M in M × {1} and let
Σ: M♯M → M♯M be the symmetry with respect to the equator swapping the two

copies of M in M♯M : Σ(M × {1}) = (M × {−1}). The map j induces on M × {1}
and on M × {−1} the metrics g1 = j∗(g) and the metric g−1 = Σ∗(g1), respectively.

The passage to the quotient with respect to the equivalence relation ∼ induces the
metric g♯g on M♯M .

Fact 5.1. The metric g♯g as defined above onM♯M is C0 but not C1. Moreover

it is a C0-limit of C∞-metrics gk defined on M♯M .

Let (M, g) be a closed C∞ Riemannian manifold of dimension n. We write the

metric g and the Laplace operator in a local system of coordinates (x1, x2, . . . , xn),

respectively as g =
∑
i,j

gij dx
i ⊗ dxj and ∆ =

√
det g−1 · ∂

∂xi (
√
det g · gij · ∂

∂xj ); it

is well known that the Laplacian is a self-adjoint elliptic operator having a discrete

sequence of positive eigenvalues going to infinity:

0 6 λ0 < λ1 6 λ2 6 . . . 6 λi 6 . . .

Moreover, each eigenspace E(λi) has finite dimension, the direct sum of them is

dense in C∞(M) and the Hilbert space L2(M, dvg) (dvg is the Riemannian measure

on M) has a Hilbertian base of eigenfunctions.

Lemma 5.2. For C0-metrics on (M♯M, g♯g) the spectrum of the Laplacian coin-

cides with the critical values of the functional

u 7→ R(u) =

∫
M♯M

|du|2(g♯g) dv(g♯g)∫
(M♯M)

u2 dv(g♯g)
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defined onH0 = H1(M, g)\{0}. The critical points are calculated using the min-max

principle or the max-min principle, i.e.

λi(M♯M, g♯g) = inf
Ei+1

max
u∈E\{0}

∫
M♯M

|du|2g♯g dvg♯g∫
(M♯M)

u2 dvg♯g

= sup
Ei

inf
u∈E⊥

i
\{0}

∫
M♯M

|du|2g♯g dvg♯g∫
(M♯M)

u2 dv(g♯g)
,

where Ei ⊂ H0 is any vectorial subspace of dimension i in H0.

P r o o f. See [5], par 2. �

Lemma 5.3. Let {gk}k∈N be a sequence of C
∞-metrics converging in the C0-

topology to a C0-limit metric on M♯M , then:

(i) diam(M♯M, g♯g) = lim
k→∞

diam(M♯M, gk),

(ii) Vol(M♯M, g♯g) = lim
k→∞

Vol(M♯M, gk),

(iii) λi(M♯M, g♯g) = lim
k→∞

λi(M♯M, gk).

P r o o f. See [9]. �

Definition 5.4. A function u ∈ C∞(M,∂M, g) solves

the Dirichlet problem when

{
∆u = 0,

u|∂M = 0,

and the Neumann problem when






∆u = 0,

∂u

∂N

∣∣∣
∂M

= 0,

where N is the inward unit normal to the boundary ∂M .

Lemma 5.5. Let (M,∂M, g) be a Riemannian manifold with nonempty boundary

and (M♯M, g♯g) its double. Then

(i) the spectrum of (M♯M, g♯g) is the union of the Dirichlet and the Neumann

spectra of (M,∂M):

{λi(M♯M, g♯g) ; i ∈ N} = {λDi (M)i ; i ∈ N \ {0}} ∪ {λNi (M)i ; i ∈ N},

where each eigenvalue has to be counted with its own multiplicity,
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(ii) there exists a Hilbertian base of eigenfunctions such that the restriction to each

copy of M is an eigenfunction of the Dirichlet or Neumann problem.

E x am p l e (classic) 5.6. The sphere (S1, can) is the double of the Riemannian

manifold with boundary [0, π].

⊲ The Dirichlet spectrum of [0, π] is ΣD = {k2 ; k ∈ N \ {0}}, the multiplicity of
each eigenvalue is 1 and the eigenspace associated to k2 is given by

E
[0,π]
k2 = Span(sin kt),

⊲ the Neumann spectrum of [0, π] is ΣN = {k2 ; k ∈ N}, the multiplicity of each
eigenvalue is 1 and the eigenspace associated to k2 is given by

E
[0,π]
k2 = Span(cos kt),

⊲ the spectrum of (S1, can) is thus ΣS
1

= {k2 ; k ∈ N}, the zero-eigenvalue has
multiplicity 1 and each strictly positive eigenvalue has multiplicity equal to 2;

counting each eigenvalue with its multiplicity, for k > 1 we get

ES
1

k2 = Span(sin kt, cos kt),

or equally

ΣS
1

= ΣD ∪ ΣN .

5.2. Regularization of the metric. The following theorems give the relevant

conditions on the limit metric in the case of a manifold with convex boundary (The-

orem 5.7) or nonconvex boundary (Theorem 5.8). The deduction of them is complex

and lies beyond the goal of this paper, we refer to [9] to the complete argumentation.

Theorem 5.7. Let (M,∂M, g) be a Riemannian manifold with nonempty convex

boundary. Then there exist metrics gk ∈ C∞(M♯M) converging to g in the C0-

topology such that, taking the minimum of the sectional curvature Sec on all the

2-dimensional tangent planes to M , we have min(Secgk) > min(Sec).

If the boundary is not convex it is necessary to “sweeten” the metric in a suitable

neighborhood of the equator. To get a C∞-metric g̃ with a control from below of the

sectional curvature it is necessary to regularize, in a suitable neighborhood of the

equator, the C0-metric g♯g obtained by gluing the two copies of M with the strong

condition that the new metric is isometric to the metric of each part of the doubled
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manifold. To make so we “twist” the metric g♯g in the direction of the normal N to

the equator, pointing inward to each copy of M , in such a way as to maintain the

lengths and control from below the sectional curvature. Roughly speaking, we inter-

pose between the two copies of M a thin cylinder with a “smoothed and isometric”

junction between each of the parts. What we have just said is summarized in the

following theorem whose proof is given in [9]:

Theorem 5.8. Let (M,∂M, g) be an n-dimensional Riemannian manifold with

nonempty boundary and let k, a and η be three real numbers limiting respectively

the sectional curvature of (M,∂M, g), the injectivity radius of the boundary ∂M ,

and its second fundamental form h, i.e.,

Secg > −k2, inj∂M > a, h∂M 6 η.

Then there exists on (M,∂M) a metric g̃ such that g̃♯g̃ is C∞ on M♯M and such

that

(15)

(
sinh(14ka)

sinh(12ka)

)2

· g 6 g̃

6

[
cosh

(ka
4

)
+ sup

(
1,
η

k

)
· sinh

(ka
4

)]2n−2

·
(
sinh(12ka)

sinh(14ka)

)2n−4

· g

and

Secg̃ > − 4k2

tanh2(14ka)
.
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