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Abstract. Many real-life count data are frequently characterized by overdispersion, excess
zeros and autocorrelation. Zero-inflated count time series models can provide a powerful
procedure to model this type of data. In this paper, we introduce a new stationary first-order
integer-valued autoregressive process with random coefficient and zero-inflated geometric
marginal distribution, named ZIGINARRC(1) process, which contains some sub-models as
special cases. Several properties of the process are established. Estimators of the model
parameters are obtained and their performance is checked by a small Monte Carlo simula-
tion. Also, the behavior of the inflation parameter of the model is justified. We investigate
an application of the process using a real count climate data set with excessive zeros for
the number of tornados deaths and illustrate the best performance of the proposed process
as compared with a set of competitive INAR(1) models via some goodness-of-fit statistics.
Consequently, forecasting for the data is discussed with estimation of the transition prob-
ability and expected run length at state zero. Moreover, for the considered data, a test of
the random coefficient for the proposed process is investigated.

Keywords: randomized binomial thinning; geometric minima; estimation; likelihood ratio
test; mixture distribution; realization with random size
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1. Introduction

Integer-valued time series are encountered in several life situations, e.g., the num-

ber of days with storm, the number of road accidents, the number of foggy days and

so on. The most common integer-valued time series models are constructed via the

binomial thinning operator ◦, which was first introduced by [22] in the form

α ◦X = SX =

X∑

i=1

Yi, α ∈ (0, 1),
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where S0 = Y0 = 0, X is a non-negative integer-valued random variable and {Yi}
is a sequence of independent identically distributed (i.i.d.) random variables with

Bernoulli(α) distribution and is independent of X. The first-order non-negative in-

teger value autoregressive (INAR(1)) process was first introduced in [15] and [2]

based on the operator α◦. Let Xt be a non-negative integer-valued random variable

observed at time t, then the INAR(1) process is defined as

(1.1) Xt = α ◦Xt−1 + εt,

where Xt can follow a certain marginal distribution, the innovation (or white noise)

{εt} is a sequence of i.i.d. random variables with some discrete distributions and also
{εt} is independent of the Bernoulli counting series {Y (t)

i } and Xt−l, for l > 1. The

coefficient α may be explained as the proportion of observations counted at time t−1

that still remains at time t. Moreover, operator α◦ mimics the scalar multiplication
used in Gaussian time series and reduces the random sum, SX , to a single integer

value (i.e. thinning), which leads to integer-valued time series models.

Modeling of INAR(1) time series based on (1.1) was first introduced using the

Poisson marginal distribution and then using the geometric marginal distribution

[4], negative binomial marginal distribution [4], generalized Poisson marginal dis-

tribution [5] and zero truncated Poisson distribution [6]. Other models of INAR

time series are introduced via the negative binomial thinning operator (see [3], [19],

[20]). An overdispersed INAR(1) model with innovations following a finite mixture

of Poisson distribution of order k, k > 1, is introduced in [17]. Jazi et al. [12] worked

on an overdispersed INAR(1) model with geometric innovations. Random coefficient

INAR(1) processes, in which the autoregressive parameter itself is a random variable,

are considered by a few authors such as [9], [27], [25]. Further, [11], [14] introduced

INAR(1) models with zero-inflated Poisson and zero-inflated generalized power se-

ries innovations, respectively, and [7] introduced a zero-modified geometric INAR(1)

model based on negative binomial thinning operator for modeling count series with

inflation or deflation of zeros. Recently, [21] introduced a general family of INAR(1)

models with compound Poisson innovations. [8] constructed an INAR(1) model with

power series innovations and [13] presented a new model based on the Pegram and

thinning operators.

In many real count data, we may observe that the number of zeros has a large

proportion, which is called zero inflation. An example of zero inflation is the hydro-

logic data in arid and semiarid regions, like monthly precipitation in dry seasons,

annual peak flow discharges, etc. Such data can be analyzed by zero-inflated sta-

tistical models, e.g. Poisson and negative binomial distributions. Zero-inflation is

common in many fields, e.g. manufacturing defects, medical consultations, hydrol-

ogy, road safety, ecology and econometrics. Ignoring zero inflation in the analysis
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can have two consequences: firstly, the estimated parameters and standard errors

may be biased, and secondly, the excessive number of zeros can cause overdispersion

([28]).

Zero-inflated models are extensively investigated in regression contexts (see,

e.g., [18]) and have received limited attention in time series contexts, although count

data with many zeros may exhibit strong autocorrelation and can often be modeled

by the INAR(1) model. Moreover, most of the introduced integer-valued time series

models can analyze only the non-negative integer values without excess zeros. There-

fore, there is a need to introduce other integer valued time series models besides the

current ones. In this paper, the zero-inflated geometric marginal distribution is used

directly to model the observed INAR(1) time series {Xt} with the operator ◦ de-
fined by (1.1), and the distribution of the innovations of the INAR(1) is determined.

Therefore, this approach is different from the one used in [11], [14], as the latter

specify the INAR(1) model by assuming a certain distribution for the innovations.

Further, our approach defines an INAR(1) model with a random coefficient, which is

different from the model of [7] because of the nature of the autoregressive parameter

of the INAR(1) model, α. To show this let Xt be the number of patients in inpatient

wards in the t-th month, hence Xt obeys an INAR process and represents the sum

of the number of surviving patients from the previous month (denoted by α ◦Xt−1)

and the newly admitted patients in the current month (εt). In this example, the

survival rate α may be affected by several environmental factors such as the state

of health of patients, the quality of health care, nature of disease, etc., hence it

could vary randomly over time and be denoted by αt. Hence, Xt could potentially

be modeled as the sum of αt ◦ Xt−1 and εt. This situation and the issue of excess

zeros were the motivations to our model.

Definition 1.1. A random variable X is said to be a zero-inflated geometric

(ZIG) distribution with parameters µ and p, denoted as ZIG(p, µ/(1 + µ)), if its

probability mass function (pmf) is defined as

P (X = x) =

{
p, x = 0,

(1− p)
µx

(1 + µ)x+1
, x = 0, 1, . . . ,

where 0 6 p < 1, µ > 0.

R em a r k 1.1. (i) The probability generating function (pgf) of X is ϕX(s) =

(1 + µp(1− s))/(1 + µ(1− s)).

(ii) The mean and the variance ofX are µX = (1−p)µ, σ2
X = (1−p)µ((1+p)µ+1),

respectively, and hence the ZIG(p, µ/(1 + µ)) is overdispersed.
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(iii) The coefficient of variation of X is

C.VZIG =

√
(1− p)µ(1 + (1 + p)µ)

(1− p)µ
.

Since the coefficient of variation of the negative binomial (r, µ/(1 + µ)) is C.VNB =√
rµ(1 + µ)/rµ, we conclude that C.VZIG > C.VNB.

By virtue of (ii), overdispersion represents another motivation of the proposed

model besides its use in modeling and analysis of the non-negative integer-valued

time series with excess zeros.

The rest of the paper is organized as follows. In Section 2, we construct the zero-

inflated geometric INAR(1) process and obtain the pmf of innovations of the process.

Various properties of the process are established in Section 3, including the auto-

correlation function, joint probability generating function, k-step ahead conditional

expectation and variance, k = 1, 2, . . ., the one-step transition probabilities, extreme

order statistics and survival function of the run length with its expectation. Also,

estimators of the model parameters are obtained by the conditional least squares

and maximum likelihood estimation methods. The performance of the estimators

of both methods is checked by a small Monte Carlo simulation, as well as the be-

havior of the inflation parameter of the model. In Section 4, we give an application

of the process to real count climate data with excessive zeros for the number of

tornado deaths and illustrate the best performance of the proposed process as com-

pared with some competitive INAR(1) models via the Akaike information criterion,

Bayesian information criterion, Hannan-Quinn information criterion and consistent

Akaike information criterion. Based on the best model selection, forecasting for the

tornado data is discussed with estimation of the transition probability and expected

run length at state zero. Moreover, for the tornado deaths data, a test of random

coefficient for the proposed process is investigated. The concluding remarks are given

in Section 5.

2. The ZIGINARRC(1) model

In this section, we propose a randomized binomial thinning operator and then

introduce a zero-inflated geometric INAR(1) process with random coefficient that

admits non-negative integer values with excess zeros based on such an operator. The

pmf of the innovation term of the process is obtained.

2.1. Properties of the randomized binomial thinning operator.

In this section, we define the randomized binomial thinning operator and justify

some of its properties.
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Definition 2.1. Given a non-negative integer-valued random variable X and

a binary random variable αt independent of X , such that P (αt = 0) = β = 1 −
P (αt = α) for any given real numbers α, β ∈ (0, 1), the (standard) binomial thinning

operation α ◦ X is hereby extended to a randomized binomial thinning operation,

defined and denoted by the random variable

αt ◦X =

{
α ◦X, w.p. 1− β,

0, w.p. β.

Based on this definition, we note that the binomial thinning operator with random

coefficient is specified by binary random variable αt, that is, ‘αt◦’ is either equal to
the ‘standard’ binomial thinning operator ‘α◦’ (w.p. 1−β) or equal to 0 (w.p. β).

Moreover, the probability generating function (pgf) of αt ◦X is expressed as follows
in terms of the parameters α, β and the pgf of X :

ϕαt◦X(s) = E(sαt◦X) = β + (1 − β)E(sα◦X)

= β + (1− β)E(E(sα◦X | X))

= β + (1− β)ϕX (1− α+ αs).

Now, we give some properties of the operator αt◦ as follows.

Property 2.1. If X ∼ ZIG(p, µ/(1 + µ)), then

αt ◦X ∼ ZIG(β + p(1 − β), αµ/(1 + αµ)).

See Appendix A for details.

Property 2.2. If X ∼ ZIG(p, µ/(1 + µ)), then

p(αt ◦X = 0) =
1 + αµ(p+ β(1 − p))

1 + αµ
>

1 + αµp

1 + αµ
= p(α ◦X = 0).

See Appendix B for details. Property 2.2 justifies the role of β as inflation param-

eter for the probability of 0.

Property 2.3. Given non-negative integer-valued random variables X and Y ,

having an arbitrary discrete distribution, and a binary random variable αt defined

by Definition 2.1, such that X, Y, αt are mutually independent, then the following

equality of distributions holds:

αt ◦ (X + Y )
d
= αt ◦X + αt ◦ Y.

See Appendix C for details.
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Property 2.4. Given a non-negative integer-valued random variable X , having

an arbitrary discrete distribution, and binary random variables αt1 and αt2 with

P (αti = 0) = βi = 1− P (αti = αi), αi, βi ∈ (0, 1), where i = 1, 2, such that X , αt1 ,

αt2 are mutually independent, then the following equality of distributions holds:

αt1 ◦ (αt2 ◦X)
d
= (αt1αt2) ◦X.

See Appendix D for details.

2.2. Formulation of the model. In this subsection, we introduce a new

strictly stationary integer-valued autoregressive process {Xt} of the first order
with ZIG(p, µ/(1 + µ)) marginals based on the randomized binomial thinning.

The model is constructed as follows. Consider an i.i.d. sequence of binary thinning

coefficients {αt} and another i.i.d. sequence of non-negative integer-valued innova-
tions {εt}. Moreover, the sequences {αt} and {εt} are assumed to be mutually
independent, with each thinning coefficient, αt, following the binary distribution

P (αt = 0) = β = 1 − P (αt = α), with α, β ∈ (0, 1) constrained by the condition

p/(β + p(1− β)) < α < 1. Note that the condition on α is required to get a proper

probability mass function of {εt} as it will be shown later by Proposition 2.1. Hence,
the process {Xt} is defined as

(2.1) Xt = αt ◦Xt−1 + εt;

also note the independence of each εt of the past of the solution {Xs; s < t} and the
independence of εt of the corresponding pair (αt, Xt−1). We will refer to this model as

a zero-inflated geometric INAR(1) with random coefficient (ZIGINARRC(1)). Note

that the ZIGINARRC(1) process and ZTPINAR(1) process defined by [6] are similar

in their general form but the ZTPINAR(1) takes positive integer values while the

ZIGINARRC(1) takes non-negative integer values with excess zeros.

Note that the definition of αt ◦Xt−1 implies inflation of probabilities at 0 for the

model (2.1), since exploiting the fact that (α◦Xt−1 | Xt−1) ∼ Bin(Xt−1, α), we have

P (αt ◦Xt−1 = 0) = (1+αµ(p+ β(1− p)))/(1 +αµ), as pointed out in Property 2.2.

Based on the properties of the randomized binomial thinning operator and iterat-

ing (2.1), we obtain

Xt =

(k−1∏

i=0

αt−i

)
◦Xt−k +

k−1∑

i=1

(i−1∏

l=0

αt−l

)
◦ εt−i + εt.
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Therefore,

E

[
Xt −

k−1∑

i=1

(i−1∏

l=0

αt−l

)
◦ εt−i − εt

]2
= E

[(k−1∏

i=0

αt−i

)
◦Xt−k

]2

= (1− β)kE[(αk ◦Xt−k)
2];

conditioning on Xt−k and using the fact that (α
k ◦Xt−k | Xt−k) ∼ Bin(Xt−k, α

k),

we get

E

[
Xt −

k−1∑

i=1

(i−1∏

l=0

αt−l

)
◦ εt−i − εt

]2
= (1− β)kE[αk(1− αk)Xt−k + α2kX2

t−k]

= (1− β)kαk(1− αk)µX + (1− β)kα2k(µ2
X + σ2

X) → 0 as k → ∞,

where µX and σ2
X are, respectively, the mean and variance of the stationary solu-

tion {Xt}. Hence,

(2.2) Xt
d
=

∞∑

i=1

(i−1∏

l=0

αt−l

)
◦ εt−i + εt.

As the expectation of the infinite sum in (2.2) exists, it converges with probability

one.

Using Theorem 2.7 of [16] and the expression (2.2) for ZIGINARRC(1) process, we

have the following theorem.

Theorem 2.1. The ZIGINARRC(1) process (2.1) has a unique, strictly stationary

solution given by (2.2).

Based on the solution of the model (2.1) and the specification of the processes

{αt} and {εt} mentioned above, another representation of the model (2.1) in terms
of the standard (instead of randomized) thinning operation can be given as

(2.3) Xt =

{
εt, w.p. β,

α ◦Xt−1 + εt, w.p. 1− β,
t > 1, 0 < β < 1.

From equation (2.1) and the fact that εt is stochastically independent of the pair

(αt, Xt−1) for each t, the pgf of the innovation {εt} is obtained as

(2.4) ϕεt(s) = ϕXt
(s)/ϕαt◦Xt−1(s)

=
(1 + µp− µps)(1 + αµ− αµs)

(1 + µ− µs)(1 + αµ(β + p(1− β))− αµ(β + p(1− β))s)
,
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where ϕX(·) is the pgf of {Xt}. The degree of the numerator and the denominator
of (2.4) with respect to s is two. Hence, we first divide the fraction as

ϕε(s) =
p

β + p(1− β)

+
s[ p

β+p(1−β) − p(1− α)− α]µ+ (1 + µp+ αµ− αµp− p(1+µ)
β+p(1−β))

(1 + µ− µs)(1 + αµ(β + p(1− β))− αµ(β + p(1− β))s)
.

Now, the degree of the numerator of the second part is one and we can decompose

it. So, ϕε(s) can be put in the form

ϕε(s) = A+B
1

1 + µ− µs
+ C

1

1 + αµ(β + p(1− β)) − αµ(β + p(1− β))s
,

where

A =
p

β + p(1− β)
, B =

(1− p)(1 − α)

1− α[β + p(1− β)]

and

C =
(1− p)(1 − β)[α(β + p(1− β))− p]

(1− α[β + p(1− β)])(β + p(1− β))
.

It can be shown that A + B + C = 1, lim
s→∞

ϕε(s) = A, ϕε(1) = 1, and ϕε(0) < 1.

Further, the next proposition proves that the coefficients of the series expansion

of ϕε(s), say g(x), are non-negative and having the sum one, which implies that

ϕε(s) is a proper pgf.

Proposition 2.1. The mixture

g(x) =
p

β + p(1− β)
I(x) +

(1 − p)(1− α)

1− α[β + p(1− β)]

1

1 + µ

( µ

1 + µ

)x

+
(1− p)(1− β)[α(β + p(1 − β))− p]

(1− α[β + p(1− β)])(β + p(1− β))

× 1

1 + αµ(β + p(1− β))

[ αµ(β + p(1− β))

1 + αµ(β + p(1− β))

]x

is a pmf for p/(β + p(1− β)) < α < 1, where

I(x) =

{
1, x = 0,

0, x 6= 0.

86



P r o o f. From the definition of A,B and C, we find that A > 0, B > 0 and C > 0

for α > p/(β + p(1− β)), then g(x) > 0. Since A+B + C = 1, we have

∞∑

x=1

g(x) = 1.

Therefore, g(x) is a pmf. �

In Proposition 2.1, the constraint is imposed by the desired marginal law

ZIG(p, µ/(1 + µ)) of the stationary solution {Xt} to guarantee the existence of
a proper probability mass function of the marginal law of the i.i.d. innovations {εt}.
From Proposition 2.1, the innovation process {εt} has a mixture distribution

of a degenerate distribution at 0, Geometric(µ/(1 + µ)) and Geometric((αµ(β +

p(1− β)))/(1 + αµ(β + p(1− β)))), with mixing portions A, B, and C, respectively.

The mean and variance of {εt} are

µε = (1− (1 − β)α)(1 − p)µ,

and

σ2
ε = (1− p)µ[(1− (1 − β)α2)((1 + p)µ+ 1)− (1 − β)α(1 − α)],

respectively.

R em a r k 2.1. If p = 0, then the ZIGINARRC(1) process defined by (2.3) is

reduced to an INAR(1) model with Geometric(µ/(1 + µ)) marginal, which is a sub-

model of the process and will be denoted by GINARRC(1).

3. Probabilistic properties of the process and estimation

In this section we investigate some statistical and conditional properties of the

ZIGINARRC(1) process, including the autocorrelations, spectral density, one-step

transition probabilities, multi-step conditional mean and variance, extreme order

statistics, expected run length Ti, survival function of Ti and the pgf of Ti. Also,

estimation of the process parameters is investigated.

3.1. Statistical properties. The autocovariance function of the ZIGINARRC(1)

process, {Xt}, is obtained as

Cov(Xt, Xt−k) = (1− p)µ((1 + p)µ+ 1)(1− β)kαk,

see Appendix E for details.
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The autocorrelation function is ̺k = Corr(Xt, Xt−k) = (1− β)kαk. Consequently,

the spectral density function

fxx(ω) =
1

2π

∞∑

k=−∞

Cov(Xt, Xt−k)e
−iωk

of the ZIGINARRC(1) process is

fxx(ω) =
(1 − p)µ((1 + p)µ+ 1)(1− (α(1 − β))2)

2π(1 + (α(1 − β))2 − 2α(1− β) cosω)
, ω ∈ (−π, π].

Moreover, the joint pgf of the process is given by

ϕXt,Xt−1(s1, s2) = ϕεt(s1)
[
β
1 + µp(1− s2)

1 + µ(1 − s2)
+ (1 − β)

1 + µp(1− s2(1− α+ αs1))

1 + µ(1− s2(1− α+ αs1))

]
,

where ϕεt(s) is given by (2.4), and the proof of the above expression is outlined in

Appendix F. Because of this, the process is not time reversible, and hence, the joint

distribution of (Xt, Xt−1) is not equal to joint distribution of (Xt−1, Xt).

3.2. Conditional properties. The ZIGINARRC(1) process is a stationary dis-

crete time Markov chain with the one-step transition probabilities from state i to

state j:

(3.1) Pij = p(Xt = j | Xt−1 = i) = βp(εt = j)

+ (1 − β)

min(i,j−1)∑

k=0

(
i

k

)
αk(1− α)i−kp(εt = j − k),

where p(εt = j) is the pmf of {εt} defined by Proposition 2.1 and i, j = 0, 1, . . . Due

to this, the transition probabilities satisfy Pij > 0, and hence the process {Xt} is
an irreducible and aperiodic Markov chain. Thus, it is either positive recurrent or

lim
n→∞

Pn
ij = 0.

Also, for the ZIGINARRC(1) process we get

P00 =
p

p+ β − pβ
+

(1− p)(1− α)

1− α(p+ β − pβ)

1

1 + µ

+
(1− p)(1− β)(αβ(1 − p)− p(1− α))

(1− α(p+ β − pβ))(p+ β − pβ)

1

1 + αµ(β + p(1− β))
,

see Appendix G for the details.
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Conditional expectation is one of the most common techniques for forecasting time

series data, so it is obtained in the next proposition together with the conditional

variance.

Proposition 3.1. For the ZIGINARRC(1) process, the k step-ahead conditional

expectation and variance are

(3.2) E(Xt+k | Xt = x) = (1− β)kαkx+
1− (1− β)kαk

1− (1− β)α
µε,

and

Var(Xt+k | Xt) =

k−1∑

j=0

(1− β)j [αj(1 − αj)µε + α2jσ2
ε ] + (1− β)kαk(1− αk)σ2

X ,

respectively. Here µε and σ2
ε are the unconditional mean and the unconditional

variance of the innovation {εt}, respectively.

P r o o f. Using the properties of the binomial thinning operator, the proof of the

first part follows easily by induction. For the second part, we find that

Var(Xt+k | Xt) = Var(εt+k) + (1 − β)Var(α ◦Xt+k−1 | Xt) = . . .

=

k−1∑

j=0

(1− β)j Var(αj ◦ εt+k−j) + (1− β)k Var(αk ◦Xt | Xt)

=

k−1∑

j=0

(1− β)j [αj(1 − αj)µε + α2jσ2
ε ] + (1− β)kαk(1− αk)σ2

X ,

hence the required result is obtained. �

Corollary 3.1. From equation (3.2) we get

lim
k→∞

E(Xt+k | Xt = x) = µX ,

which is the unconditional mean of the process as expected, since the process is

ergodic.

Corollary 3.2. Using equation (3.2), we find that

lim
k→∞

Var(Xt+k | Xt) = (1− p)µ(1 + µ(1 + p)) = σ2
X ,

which is the unconditional variance of the process.
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3.3. Distributional properties of length of run of zeros. A run is defined

as a succession of similar events preceded and succeeded by different events and the

number of elements in a run is referred to as its length. [10] obtained the distributions

of the run length of state i for a stationary discrete process. Using the run length,

we can evaluate the expected time it would spend in state i at a stress after entering

the process at state i from another state j. For a fixed state i ∈ {0, 1, . . .}, let
Ti = inf{t > 1, Xt 6= i} − 1 be the run length of state i, starting at time epoch 1.

Proposition 3.2. For the ZIGINARRC(1) process, we have:

(i) The pmf of Ti at t = 0 is

(3.3) P (Ti = 0) = 1−
(
pI(i) +

(1 − p)µi

(1 + µ)i+1

)
.

(ii) At t ∈ {1, 2, . . .}, the pmf of Ti is

(3.4) P (Ti = t) =
(
pI(i) +

(1− p)µi

(1 + µ)i+1

)
(1 − Pii)P

t−1
ii .

(iii) The survival function of Ti is

(3.5) P (Ti > t) =





1, t = 0,
(
pI(i) +

(1− p)µi

(1 + µ)i+1

)
P t−1
ii , t = 1, 2, . . .

(iv) The expected run length of the state i is

(3.6) E(Ti) =
pI(i) + (1− p)µi/(1 + µ)i+1

1− Pii

.

(v) The pgf of Ti is

(3.7) ϕTi
(s) = 1−

(
pI(i) +

(1 − p)µi

(1 + µ)i+1

)
+

s(1− Pii)(pI(i) + (1− p)µi/(1 + µ)i+1)

1− sPii

,

where Pii is obtained by (3.1).

P r o o f. The proofs of (i) and (ii) are obtained directly by noting that P (Ti =

0) = P{X1 6= i}, P (Ti = t) = P{X1 = i, X2 = i, . . . , Xt = i, Xt+1 6= i} and using
Markovian property of the process. (iii) is obtained by the identity

P (Ti > t) = P

{ ∞⋃

k=0

(X1 = i, X2 = i, . . . , Xt+k = i, Xt+k+1 6= i)

}
.

Statements (iv) and (v) are obtained by definition of the expectation and pgf. �
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R em a r k 3.1. Equations (3.4), (3.5) yield
∞∑
t=0

P (Ti = t) = 1.

3.4. Estimation and simulation comparison. Various features of the model

depend on its parameters, so estimation of the model parameters is essential. In this

section, we describe the estimation of the unknown parameters of the ZIGINARRC(1)

process, based on a realizationX1, . . . , Xn of this process, and conduct a small Monte

Carlo simulations in terms of their mean and standard deviations to gain an idea

on the estimation methods and also the behavior of the inflation parameter of the

model.

3.4.1. Estimation. Let γ = α(1− β) and τ = (1− p)µ. Then, using by virtue of

(3.2), the conditional least squares (CLS) estimators of the parameters γ and τ are

obtained by minimizing the function

(3.8) Sn(γ, τ) =

n∑

t=2

(Xt − γXt−1 − (1− γ)τ)2,

and are given by

γ̂cls =

(n− 1)
n∑

t=2
(Xt−1Xt)−

n∑
t=2

Xt

n∑
t=2

Xt−1

(n− 1)
n∑

t=2
X2

t−1 −
( n∑
t=2

Xt−1

)2 ,

τ̂cls =
1

(n− 1)(1− γ̂cls)

( n∑

t=2

Xt − γ̂cls

n∑

t=2

Xt−1

)
.

The estimators p̂, α̂, β̂, µ̂ are obtained by numerical solution of (3.8).

Now, we get the asymptotic properties of the estimators γ̂cls and τ̂cls. All the

conditions of Theorem 3.1 in [23] are satisfied. Thus, it follows that the conditional

least squares estimators γ̂cls and τ̂cls are strongly consistent estimators. Also, making

use of Theorem 3.2 in [23] implies

√
n

(
γ̂cls − γ

τ̂cls − τ

)
d→ N(0,J),

where N(0,J) denotes the bivariate normal distribution with mean zero vector and

covariance matrix

J =

[ var(ε) var(Xt)+γ(1−α)[E(X3
t
)+E3(Xt)−2E(X2

t
)E(Xt)]

(var(Xt))2
γ(1−α)
1−γ

γ(1−α)
1−γ

τ((1+p)µ+1)(1−(1−β)α2)
(1−γ)2

]
,

with

E(X3
t ) = (1 − p)µ[1 + 6µ2 + 6µ].
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The maximum likelihood estimators (MLEs) of the unknown parameters p, α, β and

µ are obtained by maximization of the log-likelihood function

(3.9) l(θ) = logL(X1, . . . , Xn; p, α, β, µ)

= log
[
pI(X1) +

(1− p)µX1

(1 + µ)X1+1

]
+

n∑

l=2

log p(Xl | Xl−1; p, α, β, µ),

where p(Xl | Xl−1; p, α, β, µ) is given by (3.1) and θ ≡ (p, α, β, µ). The MLEs can

be easily computed by using the function nlm from statistical package R, taking the

CLS estimators as initial values of the function nlm.

Based on MLEs, θ̂, we provide some well-known measures of goodness-of-fit statis-

tics to check the adequacy of a time series model (model selection) as compared with

a finite set of models. These statistics are the Akaike information criterion (AIC),

Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC),

consistent Akaike information criterion (CAIC). The smaller values of the statistics

are, the better the fit. In Section 4 these statistics are used.

3.4.2. Simulation comparison. Here, we assess the performance of the ML

estimators with respect to sample size n. Obviously, the normal equations do not

have an explicit solution and the MLEs must be numerically calculated. We provide

an algorithm to estimate the model parameters.

Algorithm:

Step 1. Generate t = 1000 samples from the ZIGINARRC(1) process.

Step 2. Compute the ML estimators using the function “nlm” from statistical

software R.

Step 3. For n = 50, 100, 500, 1000, 5000, 10000 repeat step 1 to 2.

Step 4. Compute the mean value of the estimates, their standard errors and the

asymptotic standard deviations.

The performance of the CLS and ML estimates is checked through a small Monte

Carlo simulation using different sample sizes (n = 50, 100, 500, 1000, 5000, 10000),

where 1000 samples are simulated from the ZIGINARRC(1) process. Based on this

simulation, Figure 1 displays some sample paths of ZIGINARRC(1) process with

different choices of the inflation parameter p, where p = 0.1, 0.3, 0.5, 0.8 with fixed

values α = 0.9, β = 0.7, µ = 1. It can be noted that for larger values of p, the sample

paths tend to be smaller values and frequently return zeros. Also, the number of

zeros increases by increasing the values of p.

Table 1 gives the mean and standard deviation (in brackets) for the ML and

CLS estimators for different values of the parameters p, α, β and µ with different
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Figure 1. Sample paths of ZIGINAR(1) process for p = 0.1, 0.3, 0.5, 0.8 with fixed values to
α = 0.9, β = 0.7, µ = 1.

sample sizes. Based on this table, we found that the estimates obtained from the two

estimation methods are convergent in their values. Also, increasing the sample size

implies smaller standard deviation and the MLEs converge faster to the true values

of the parameters. Moreover, we can conclude that the MLEs have the smallest

standard deviations and hence the MLEs provide the best performance, which was

expected, as the CLS estimates are not solved directly.

On the other hand, the asymptotic behavior of the MLEs is studied via simulation

too. We simulated samples of size 1000 and estimated the parameters α, p, β, µ. This

procedure was repeated 500 times. Figure 2 shows the Q-Q plots for all parameters

(p = 0.3, α = 0.7, β = 0.5, µ = 2.5). Also, the K-S test was performed, and we

found that the p-values of the estimated parameters α, p, β and µ are 0.7319, 0.5855,

0.6566, 0.9794, respectively. As the Q-Q plots represented by straight line and the

p-values are significant, we conclude that the MLEs are asymptotically normal.
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(p,α, β, µ) = (0.1, 0.5, 0.7, 0.5)

p̂ML p̂CLS α̂ML α̂CLS β̂ML β̂CLS µ̂ML µ̂CLS

50 0.0979752 0.1048887 0.4939831 0.4894182 0.7128314 0.716774 0.49598213 0.4938558
(0.0164383) (0.02044416) (0.0624852) (0.09883159) (0.1323461) (0.1556039) (0.0294339) (0.03481835)

100 0.0987902 0.09779116 0.4972097 0.4926184 0.710575 0.7131973 0.4972911 0.5054949
(0.0043922) (0.02012676) (0.048421) (0.06861304) (0.1129023) (0.1165385) (0.0207813) (0.0303127)

500 0.0999054 0.1000696 0.4992737 0.4961113 0.7010677 0.7044796 0.4998507 0.5021612
(0.0017532) (0.00730943) (0.0075823) (0.02620362) (0.0064889) (0.0771452) (0.0064081) (0.0271989)

1000 0.09998526 0.1000208 0.5000372 0.4992143 0.6999735 0.70020523 0.5000314 0.49982314
(0.0002863) (0.00169942) (0.0013775) (0.00782502) (0.0009248) (0.00521815) (0.0032271) (0.0081962)

5000 0.0999931 0.10000548 0.5000063 0.499868787 0.70000324 0.70003159 0.499999832 0.4999919
(0.00006724) (0.0007286) (0.0004552) (0.000793) (0.00005014) (0.0008299) (0.00018427) (0.00071629)

10000 0.1000037 0.0999892 0.50000011 0.4999691 0.69999982 0.70001641 0.50000094 0.49999892
(0.00001247) (0.0001195) (0.0000729) (0.0001851) (0.0000023) (0.00010633) (0.00004368) (0.00008525)

(p,α, β, µ) = (0.3, 0.7, 0.5, 2.5)

p̂ML p̂CLS α̂ML α̂CLS β̂ML β̂CLS µ̂ML µ̂CLS

50 0.2972049 0.3050916 0.6902085 0.6837624 0.4992157 0.5119355 2.502221 2.492566
(0.0582048) (0.06682771) (0.0732794) (0.0951907) (0.01387967) (0.06300845) (0.0548825) (0.07650927)

100 0.2992074 0.3028493 0.6960248 0.6918238 0.5005822 0.5083244 2.498963 2.510992
(0.0194723) (0.0420851) (0.0313975) (0.0867492) (0.01320152) (0.0605254) (0.0547093) (0.06146961)

500 0.2998213 0.2991872 0.7041359 0.6940831 0.5001227 0.504889 2.5007152 2.4909765
(0.0024892) (0.0069118) (0.0079307) (0.0413913) (0.01112545) (0.0263371) (0.04128757) (0.05959829)

1000 0.2999895 0.3000649 0.6991842 0.70289301 0.4999602 0.5008471 2.5002069 2.499668
(0.0006401) (0.0010641) (0.0034319) (0.0082461) (0.0007804) (0.01523114) (0.005417) (0.01961732)

5000 0.2999995 0.2999923 0.6999607 0.7009923 0.5000049 0.5000502 2.5000638 2.50008214
(0.0001184) (0.0004292) (0.0002287) (0.0009746) (0.0000455) (0.001943) (0.0007259) (0.0025017)

10000 0.2999999 0.3000003 0.70000206 0.6999581 0.5000011 0.5000862 2.5000103 2.5000563
(0.0000263) (0.0001074) (0.0000627) (0.0001493) (0.0000073) (0.000382) (0.0002816) (0.00053872)

(p,α, β, µ) = (0.4, 0.8, 0.6, 1.33)

p̂ML p̂CLS α̂ML α̂CLS β̂ML β̂CLS µ̂ML µ̂CLS

50 0.3979273 0.3976135 0.8084732 0.7949524 0.6058391 0.6060093 1.3308501 1.331173
(0.0404739) (0.04945894) (0.0330429) (0.03964038) (0.0572902) (0.0773563) (0.0170805) (0.02247761)

100 0.3998743 0.3996208 0.79994003 0.7968134 0.5998024 0.60420485 1.3303911 1.3307295
(0.0284379) (0.03738236) (0.0086328) (0.0102717) (0.0118632) (0.0206231) (0.0160328) (0.02015414)

500 0.3999218 0.40037512 0.7999891 0.79979542 0.6003787 0.60148419 1.3300382 1.33008255
(0.0052873) (0.00825819) (0.0013047) (0.00710528) (0.0056028) (0.0062197) (0.00672903) (0.00811545)

1000 0.3999858 0.40008104 0.8000221 0.79994388 0.6000972 0.6005732 1.3300108 1.330028271
(0.0032966) (0.0056607) (0.0006421) (0.0010524) (0.0008233) (0.0018121) (0.0008623) (0.00251135)

5000 0.4000012 0.4000215 0.79999932 0.79999898 0.59999713 0.60001276 1.33000471 1.33000629
(0.0001192) (0.0007411) (0.000362) (0.0008074) (0.0004304) (0.0007329) (0.0004249) (0.0006217)

10000 0.4000005 0.4000072 0.80000015 0.7999989 0.5999999 0.6000072 1.33000029 1.33000108
(0.0000382) (0.0002299) (0.0000518) (0.0002385) (0.0000725) (0.0005825) (0.0001071) (0.0002513)

Table 1. Some simulation results for the estimates of some true values of the parameters p,
α, β, µ with their standard errors in brackets.

4. A climate application

In this section, we investigate an application for the ZIGINARRC(1) process using

a real count climate data series with excessive zeros. The series represents the num-

ber of tornado deaths recorded monthly and obtained from the National Oceanic

and Atmospheric Administration (NOAA), United States, Storm Prediction Cen-

ter (http://www.spc.noaa.gov/climo/online/monthly/newm.html#latestmts),

from 2008 to 2014.
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Figure 2. Normal Q-Q plots.

Now, we illustrate how the number of tornado deaths can be modeled by an INAR

model with random coefficient. Let Xt be the number of tornado deaths in the t-th

month, hence Xt acts as an INAR process and represents the sum of the number of

tornado deaths from the previous month denoted by α◦Xt−1 and the newly admitted

deaths in the current month εt, noting that the rate α may be affected by several

environmental factors, like the strength and direction of tornado, the population

density in the place of tornado, etc., that is α varies randomly over time and then it

can be denoted by αt, therefore Xt could modeled as sum of αt ◦Xt−1 and εt.

4.1. Data analysis and model selection. The sample paths, autocorrelation

functions (ACFs), partial autocorrelation functions (PACFs) and Pareto charts of

the series are displayed in Figures 3 and 4. Figure 3 suggests that the first-order

autoregressive model is appropriate for the data series. Pareto chart shows that

the zeros have the greatest frequency among the other values for the data series

and hence the zero-inflated INAR model is more appropriate for the data. Also, the

Augmented Dickey-Fuller Test for stationarity has p-value = 0.019 that demonstrates
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Figure 3. The sample paths, ACFs and PACFs of the tornados data.
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Figure 4. The Pareto chart of the tornados data.
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the stationarity of the tornado data. Also, we expect some positive correlation in

the data series because climate parameters are changing gradually over time and

this expectation is confirmed by noting the value of the sample autocorrelation of

the data series at Table 2.

X ≡ Sample mean, S2
x ≡ Sample variance, ˆ̺≡ Sample autocorrelation

X S2
x Sample C.V ˆ̺ C.VZIG C.VNB LRT p-value

10.89286 1959.109 4.064448 0.3489932 4.852401 2.550726 59.06 1.532108e−14

Table 2. Some measures of the tornado data.

To identify a significant empirical overdispersion towards the data, we test H0 :

{Xt} is equidispersed versus H1 : {Xt} is overdispersed, with significance level β =

0.05. We will reject H0 on significance level β if the observed value of the index

dispersion, Îx, exceeds the critical value 1+ z1−β

√
2(1 + α2)/n(1− α2), where Îx =

S2
x/x̄ and z1−β denotes the (1−β)-quantile of the N(0, 1) distribution. Alternatively,

we can check if the p-value 1−Φ
(√

n(1− α2)/2(1 + α2)(Îx−1)
)
falls bellow β, noting

that we can replace α by ˆ̺x(1), see [21].

For tornado data we have mean of 10.89286 and variance of 1959.109. So Îx =

179.85 and the critical value is 1.286679 and the p-value is 0. The observed value

of the index of dispersion, Îx, exceeds the critical value completely, hence the data

series does not stem from an equidispersed INAR(1) process. This conclusion is

supported again by comparing the p-value of the data to the considered significance

level.

On the other hand, testing zero-inflation for the data set is equivalent to test-

ing H0 : p = 0 against H1 : p 6= 0, and for this purpose, we use the likelihood ratio

test (LRT) statistic −2{logL0(α, β, µ)− logL1(p, α, β, µ)}, where L0(·) and L1(·) are
the likelihood values of the GINARRC(1) and the ZIGINARRC(1) models, respec-

tively. Note that the LRT statistic follows the chi-square distribution (asymptoti-

cally) with 1 degree of freedom which equals to the number of additional parameters

in the model with extra parameters. The LRT statistic and its corresponding p-value

of the data set are shown in Table 2. We note that the LRT statistic is greater than

the critical value of the test χ2
(1,0.05) = 3.841459 for the data set, hence the statistic

indicates zero-inflation in the data and therefore the ZIGINARRC(1) model would

fit the data better.

As we can see from Table 2, the coefficient of variation (C.V ) of the ZIG distribu-

tion is greater than the C.V of the negative binomial (NB) distribution for the data,

which adapts (iii) of Remark 1.1. Hence, the ZIG distribution offers more flexibility

for modeling the data than the NB distribution.
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Based on the results above, the ZIGINARRC(1) appears to be more appropriate

than the geometric and negative binomial INAR(1) models for the tornado data set.

For selecting the best model for the data series among a finite set of INAR(1) mod-

els, we compared the ZIGINARRC(1) model to some competitive INAR(1) models

with geometric and negative binomial marginals which are GINAR(1) ([4]), NBI-

INAR(1) ([1]), NBRCINAR(1) ([24]), NGINAR(1) ([19]), ZMGINAR(1) ([7]) and

GINARRC(1) (Remark 2.1). For each INAR model, we obtained the maximum like-

lihood estimates, the four goodness-of-fit statistics (AIC, BIC, HQIC and CAIC)

and the root mean squares of the differences of observations and predicted values

(RMS). The obtained results, for the data series, are shown in Table 3. As it can be

seen from this table, the values of the four goodness-of-fit statistics are the small-

est for the ZIGINARRC(1) model and also the RMS values are the smallest for

the ZIGINARRC(1) model among other models. Therefore, we conclude that the

ZIGINARRC(1) model presents the best model among the other INAR models for

fitting the tornado data.

Finally the hypothesis H0 : σ2
α := Var(αt) = 0 against H1 : σ2

α := Var(αt) > 0,

which is equivalent to H0 : αt = α, is checked for the ZIGINARRC(1) model as

follows. Let Rt = Xt − E(Xt | Xt−1) and Zt = (X2
t−1, Xt−1, 1)

′. Then by [26] we

find that
√
n(σ̂2

α − σ2
α)

d→ N(0, T̃ ′Γ−1ωΓ−1T̃ ),

where T̃ = (1, 0, 0)′, Γ = E(ZtZ
′

t), ω = E(ZtZ
′

t(R
2
t−Z ′

tl)
2), l = (σ2

α, α(1−α)−σ2
α, σ

2
ε )

and σ2
α = β(1 − β). As the p-value = 1 − Φ

(√
nβ(1 − β)/T̃ ′Γ−1ωΓ−1T̃

)
≃ 0, the

hypothesis of constant coefficient αt for the ZIGINARRC(1) model is rejected.

4.2. Forecasting. Forecasting is an integral part of time series analysis, as it is

a planning tool that helps decision makers to foresee the future uncertainty based on

the behavior of the past and current observations. As in Subsection 3.2, conditional

expectation is one of the most common procedures for forecasting the mean value of

time series data. Based on (3.2), the forecast for the value of X at time t+1 that is

made at time t equals the one-step ahead conditional mean (predictor of the mean)

and is given by

X̂t+1 = E(Xt+1 | Xt) = (1− β)αXt + (1− p)(1− (1− β)α)µ.

In practice, the parameters p, α, β, and µ are replaced by their corresponding MLEs

p̂, α̂, β̂ and µ̂. Therefore

(4.1) X̂t+1 = (1 − β̂)α̂Xt + (1− p̂)(1 − (1− β̂)α̂)µ̂,
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where t = 1, 2, . . . , n, noting that X̂1 = E(Xt) = (1 − p̂)µ̂ and n is the size of the

realization of a data set.

To check the adequacy and predictive ability of the selected model ZIGINARRC(1),

the actual data series and their predicted values based on (4.1) are plotted and

displayed in Figure 5, where p̂, α̂, β̂ and µ̂ of the data series are given in Tables 3.

The predicted values are close to the original data series, which indicates that the

ZIGINARRC(1) model can provide a better forecasting for the data series.
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Figure 5. Actual tornados data and its predicted value using ZIGINAR(1).

4.3. Estimation of P00 and E(T0). We showed that the ZIGINARRC(1) process

is the best model for the tornado data, so it is of interest to estimate transition

probability P00 and the expected run length at state 0, E(T0), of this process. The

estimations of P00 and E(T0) are summarized in Table 4 and done by replacing the

parameters p, α, β, and µ of their formulas with the corresponding MLEs of the

tornado data in Table 3.

The probability P̂00 indicates that 50.27% of tornado data are zeros, and the

corresponding average run length is 0.93078.
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Model MLE AIC BIC HQIC CAIC RMS

GINAR(1) p̂ = 0.9370294 (0.0944031) 554.80 559.66 556.75 554.94 43.26

α̂ = 0.0818242 (0.01893175)

NGINAR(1) p̂ = 6.1340857 (0.08569405) 610.83 615.69 612.78 610.97 44.87

α̂ = −0.0217589 (0.01987791)

NBRCINAR(1) n̂ = 0.16901623 (0.03357513) 479.86 487.15 482.79 480.16 43.24

p̂ = 0.01640751 (0.00610436)

ˆ̺ = 0.05513365 (0.07460729)

NBIINAR(1) n̂ = 0.16226302 (0.02907992) 475.65 482.94 478.58 475.95 41.79

p̂ = 0.01928195 (0.00650967)

ˆ̺ = 0.22505260 (0.1818972)

ZMGINAR(1) π̂ = 0.44146 (0.006259023) 556.17 563.46 559.1 556.47 44.65

α̂ = 0.01583 (0.009439554)

µ̂ = 6.14212 (2.635587e-05)

GINARRC(1) α̂ = 0.4835057 (0.03027246) 518.27 525.56 521.21 518.57 41.97

β̂ = 0.1432110 (0.05264126)

µ̂ = 15.3530698 (1.786727)

ZIGINARRC(1) p̂ = 0.4312814 (0.06568031) 461.20 470.93 465.11 461.71 41.19

α̂ = 0.4918816 (0.02940932)

β̂ = 0.8440253 (0.09410729)

µ̂ = 17.0005565 (1.817263)

Table 3. Estimated parameters with standard errors in brackets and some goodness-of-fit
statistics for tornado data series.

P̂00 Ê(T0)

0.5027057 0.9307887

Table 4. Estimation of P00 and E(T0) for the tornado data.

5. Concluding remarks

A new stationary first-order integer-valued autoregressive model with random co-

efficient and zero-inflated geometric marginal distribution, named ZIGINARRC(1), is

introduced, with some sub-models as special cases. Various statistical properties of

the model are obtained, for example, the autocorrelation function, spectral density,

joint probability generating function, multi-step ahead conditional expectation and

variance, the one-step transition probabilities and the survival function of the run

length with its expectation. Estimation of the model parameters is assessed by two

methods and performance of the estimates of both methods is checked, as well as the
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behavior of the inflation parameter of the model. The ZIGINARRC(1) model is com-

pared to some competitive INAR(1) models with geometric and negative binomial

marginal distribution, and its merit among those models validated using a real cli-

mate data set. We conclude that the introduced model can deal with integer-valued

time series models with excess zeros and the autoregressive parameter varying with

time.

The results for this study can be extended to INAR models with orders higher

than one.

Appendices

A. Proof of Property 1

The pgf of αt ◦X is obtained as

ϕαt◦X(s) = E(sαt◦X)

= β + (1 − β)E(sα◦X)

= β + (1 − β)E(E(sα◦X | X))

= β + (1 − β)ϕX(1− α+ αs)

= (1 + αµ(β + p(1− β))(1 − s))/(1 + αµ(1− s)).

B. Proof of Property 2

p(αt ◦X = 0) = β + (1− β)p(α ◦X = 0) = β + (1− β)

∞∑

i=0

(1− α)ip(X = i)

= β + (1− β)E((1 − α)X) = β + (1− β)ϕX(1 − α)

=
1 + αµ(p+ β(1 − p))

1 + αµ
,

p(α ◦X = 0) =
1 + αµp

1 + αµ
<

1 + αµ(p+ β(1− p))

1 + αµ
= p(αt ◦X = 0).

C. Proof of Property 3

We aim at proving that

αt ◦ (X + Y )
d
= αt ◦X + αt ◦ Y.

The pgf of the right-hand side is

ϕαt◦X+αt◦Y (s) = E(sαt◦X+αt◦Y ) = E(E(sαt◦X+αt◦Y | αt))

= β + (1− β)E(sα◦X+α◦Y )

= β + (1− β)E(sα◦X )E(sα◦Y ) = β + (1− β)ϕα◦X(s)ϕα◦Y (s)

= β + (1− β)E(1 − α+ αs)X+Y .
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Due to X + Y = Z, the pgf of the left hand side is

ϕαt◦(X+Y )(s) = ϕαt◦Z(s) = E(sαt◦Z) = β + (1− β)E(sα◦Z )

= β + (1− β)E(1 − α+ αs)Z .

By the equality of two pgfs we complete the proof.

D. Proof of Property 4

We aim at proving that

αt1 ◦ (αt2 ◦X)
d
= (αt1αt2) ◦X.

We know αti =

{
0 βi,

αi 1− βi,
i = 1, 2, now consider γ = αt1αt2 , hence

γ =

{
0 1− (1− β1)(1 − β2),

α1α2 (1− β1)(1 − β2).

The pgf of the right-hand side is given by

ϕ(αt1αt2 )◦X
(s) = ϕγ◦X(s) = E(sγ◦X)

= β1 + β2 − β1β2 + (1− β1)(1 − β2)E(s(α1α2)◦X )

= β1 + β2 − β1β2 + (1− β1)(1 − β2)ϕX(1− α1α2 + α1α2s),

while the pgf for the left-hand side is

ϕαt1◦(αt2◦X)(s) = E(sαt1◦(αt2◦X)) = E[E(sαt1◦(αt2◦X)) | αt1 ]

= β1 + (1− β1)E(sα1◦(αt2◦X)) = β1 + (1− β1)E[E(sα1◦(αt2◦X) | αt2)]

= β1 + (1− β1)[β2 + (1− β2)E(sα1◦(α2◦X))]

= β1 + β2 − β1β2 + (1− β1)(1− β2)E(sα1◦(α2◦X))

and we know that for the standard binomial thinning operator we have

α1 ◦ (α2 ◦X)
d
= (α1α2) ◦X,

hence the proof is completed.
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E. Autocovariance function

The autocovariance function of the ZIGINARRC(1) process, {Xt}, is obtained as

Cov(Xt, Xt−k) = β Cov(εt, Xt−k) + (1− β)Cov(α ◦Xt−1 + εt, Xt−k)

= (1− β)Cov(α ◦Xt−1, Xt−k) = (1− β)αCov(Xt−1, Xt−k)

...

= (1− β)kαk Cov(Xt−k, Xt−k) = (1− β)kαk(1− p)µ((1 + p)µ+ 1).

F. Joint probability generating function

The joint pgf of the process is obtained as follows:

ϕXt,Xt−1(s1, s2) = βϕεt,Xt−1(s1, s2) + (1− β)ϕα◦Xt−1+εt,Xt−1(s1, s2)

= ϕεt(s1)[βϕXt−1 (s2) + (1 − β)ϕα◦Xt−1,Xt−1(s1, s2)]

= ϕεt(s1)[βϕXt−1 (s2) + (1 − β)ϕXt−1 (s2(1 − α+ αs1))]

= ϕεt(s1)
[
β
1 + µp(1− s2)

1 + µ(1 − s2)
+ (1 − β)

1 + µp(1− s2(1− α+ αs1))

1 + µ(1− s2(1− α+ αs1))

]
.

G. Transition probability

The transition probability from state 0 to state 0 is obtained as

P00 = p(Xt = 0 | Xt−1 = 0) = p(εt = 0)

=
p

p+ β − pβ
+

(1− p)(1− α)

1− α(p+ β − pβ)

1

1 + µ

+
(1− p)(1− β)(αβ(1 − p)− p(1− α))

(1− α(p+ β − pβ))(p+ β − pβ)

1

1 + αµ(β + p(1− β))
.
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