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Abstract. Let G be a connected graph with vertex set V (G) = {v1, v2, . . . , vn}. The dis-
tance matrix D(G) = (dij)n×n is the matrix indexed by the vertices of G, where dij denotes
the distance between the vertices vi and vj . Suppose that λ1(D) > λ2(D) > . . . > λn(D)
are the distance spectrum of G. The graph G is said to be determined by its D-spectrum
if with respect to the distance matrix D(G), any graph having the same spectrum as G is
isomorphic to G. We give the distance characteristic polynomial of some graphs with small
diameter, and also prove that these graphs are determined by their D-spectra.

Keywords: distance spectrum; distance characteristic polynomial; D-spectrum deter-
mined by its D-spectrum
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1. Introduction

All graphs considered here are simple, undirected and connected. Let G be a graph

with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). Two vertices u and v

are called adjacent if they are connected by an edge, denoted by u ∼ v. Let NG(v)

denote the neighbor set of v in G. The degree of a vertex v, written by dG(v) or d(v),

is the number of edges incident with v. Let X and Y be subsets of vertices of G. The

induced subgraph G[X ] is the subgraph of G whose vertex set is X and whose edge

set consists of all edges of G which have both ends in X . We denote by E[X,Y ] the

set of edges of G with one end in X and the other end in Y , and denote by e[X,Y ]

their number. The distance between vertices u and v of a graph G is denoted by
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dG(u, v). The diameter of G, denoted by diam(G), is the maximum distance between

any pair of vertices of G. The complete product G1 ▽G2 of graphs G1 and G2 is the

graph obtained from G1 ∪ G2 by joining every vertex of G1 to every vertex of G2.

Denote by Kn, Cn, Pn and Sn the complete graph, the cycle, the path and the star,

respectively, each on n vertices. Let Kc
n denote the complement of Kn.

The distance matrix D(G) = (dij)n×n of a connected graph G is the matrix

indexed by the vertices of G, where dij denotes the distance between the vertices

vi and vj . Let λ1(D) > λ2(D) > . . . > λn(D) be the spectrum of D(G), that is,

the distance spectrum of G. The polynomial PD(λ) = det(λI − D(G)) is defined

as the distance characteristic polynomial of a graph G. Two graphs are said to

be D-cospectral if they have the same distance spectrum. A graph G is said to be

determined by its D-spectrum if there is no other non-isomorphic graphD-cospectral

to G.

Which graphs are determined by their spectrum seems to be a difficult and in-

teresting problem in spectral graph theory. This question was raised by Günthard

and Primas in [3]. For surveys of this question see [10], [11]. Up to now, only a few

families of graphs were shown to be determined by their spectra, most of which were

restricted to the adjacency, Laplacian or signless Laplacian spectra. In particular,

there are much fewer results on which graphs are determined by their D-spectra.

In [7], Lin et al. proved that the complete graph Kn, the complete bipartite graph

Kn1,n2
and the complete split graph Ka ▽ Kc

b are determined by their D-spectra,

and the authors proposed a conjecture that the complete k-partite graphKn1,n2,...,nk

is determined by its D-spectrum. Recently, Jin and Zhang in [4] have confirmed

the conjecture. Lin, Zhai and Gong in [8] characterized all connected graphs with

λn−1(D(G)) = −1, and showed that these graphs are determined by their D-spectra.

Moreover, in their paper, they also proved that the graphs with λn−2(D(G)) > −1

are determined by their distance spectra. In [6], Lin showed that connected graphs

with λn(D(G)) > −1 −
√
2 are determined by their distance spectra. Cioabă et al.

in [1] affirmed that the famous friendship graph F k
n , k 6= 16, is determined by its

adjacency spectrum. Lu, Huang and Huang in [5] showed that all graphs with ex-

actly two distance eigenvalues (counting multiplicity) different from −1 and −3 are

determined by their D-spectra, and particularly, F k
n is determined by its distance

spectrum.

Next, we introduce a class of graphs Kn1,n2,...,nk
n , as shown in Figure 1.

⊲ Kn1,n2,...,nk
n : = (Kn1

∪Kn2
∪ . . . ∪Knk

)▽ {v}, where k > 2.

In this paper, we first show that three special classes of graphs in Kn1,n2,...,nk
n ,

that is, Kh
n = Kh−1,1,...,1

n , 4 6 h 6 n − 1, Ks,t
n , s > 4 and t > 4, and Kn1,n2,...,nk

n ,

1 6 ni 6 2, are determined by their D-spectra. Clearly, the friendship graph F k
n

belongs to the third class.
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Figure 1. Graph K
n1,n2,...,nk
n .

Secondly, we prove that Ks+t
n , s > 2, t > 2 (see Figure 2), is also determined by

its D-spectrum.

Kh
.

.

.

K
h
n

Ks Kt

K
s+t
n

Ks Kt

K
s,t
n F

k
n

. . .

Figure 2. Graphs Kh
n , K

s+t
n , Ks,t

n and F k
n .

⊲ Ks+t
n : the graph obtained by adding one edge joining a vertex of Ks to a vertex

of Kt.

2. Preliminaries

In this section, we give some useful lemmas and results. The following lemma is

the well-known Cauchy interlacing theorem.

Lemma 2.1 ([2]). Let A be a Hermitian matrix of order n with eigenvalues

λ1(A) > λ2(A) > . . . > λn(A), and B a principal submatrix of A of order m with

eigenvalues µ1(B) > µ2(B) > . . . > µm(B). Then λn−m+i(A) 6 µi(B) 6 λi(A) for

i = 1, 2, . . . ,m.

Applying Lemma 2.1 to the distance matrix D of a graph, we have

Lemma 2.2. Let G be a graph of order n with distance spectrum λ1(G) >

λ2(G) > . . . > λn(G), and H an induced subgraph of G on m vertices with the

distance spectrum µ1(H) > µ2(H) > . . . > µm(H). If D(H) is a principal subma-

trix of D(G), then λn−m+i(G) 6 µi(H) 6 λi(G) for i = 1, 2, . . . ,m.
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Lemma 2.3 ([7]). Let G be a connected graph and D the distance matrix of G.

Then λn(D) = −2 with multiplicity n − k if and only if G is a complete k-partite

graph for all k, 2 6 k 6 n− 1.

Lemma 2.4 ([12]). Let G be a graph with order n and d(G) = 2. If G′ has the

same distance spectrum as G, then

⊲ |E(G)| = |E(G′)| when d(G′) = 2;

⊲ |E(G)| < |E(G′)| when d(G′) > 3.

Theorem 2.5. Let 4 6 h 6 n − 1. The distance characteristic polynomial of

Kh
n is

PD(λ) = (λ + 1)h−2(λ + 2)n−h−1[λ3 + (h+ 4− 2n)λ2

+ (5− 2h− 2nh+ 2h2 − n)λ− nh+ h2 − 2h+ 2].

Let λ1 > λ2 > . . . > λn be the distance spectrum of K
h
n . Then

⊲ λ1 > 0, −1 < λ2 < −1/2 and λ3 = −1;

⊲ λn−1 ∈ {−1,−2} and λn < −2.

P r o o f. It is clear that the diameter of Kh
n is 2, and the distance matrix of K

h
n is

D =

























0 . . . 1 1 2 . . . 2
...
. . .

...
...
...
. . .

...

1 . . . 0 1 2 . . . 2

1 . . . 1 0 1 . . . 1

2 . . . 2 1 0 . . . 2
...
. . .

...
...
...
. . .

...

2 . . . 2 1 2 . . . 0

























.
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det(λI −D) =
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...
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. . .
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∣
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∣
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∣

∣
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=
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λ− (h− 2) −1 . . . −1 −1 −2− 2(n− h− 1) −2 . . . −2

0 λ+ 1 . . . 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...
. . .

...

0 0 . . . λ+ 1 0 0 0 . . . 0

−1− (h− 2) −1 . . . −1 λ −1− (n− h− 1) −1 . . . −1

−2− 2(h− 2) −2 . . . −2 −1 λ− 2(n− h− 1) −2 . . . −2

0 0 . . . 0 0 0 λ+ 2 . . . 0
...

...
. . .

...
...

...
...
. . .

...

0 0 . . . 0 0 0 0 . . . λ+ 2

∣
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= (λ + 1)h−2(λ + 2)n−h−1
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λ− (h− 2) −1 −2− 2(n− h− 1)

−1− (h− 2) λ −1− (n− h− 1)

−2− 2(h− 2) −1 λ− 2(n− h− 1)

∣

∣

∣

∣

∣

∣

= (λ + 1)h−2(λ + 2)n−h−1[λ3 + (h+ 4− 2n)λ2 + (5− 2h− 2nh+ 2h2 − n)λ

− nh+ h2 − 2h+ 2].

In the following, we will prove the remaining part of Theorem 2.5. Consider the

cubic function on x

f(x) = x3 + (h+ 4− 2n)x2 + (5− 2h− 2nh+ 2h2 − n)x− nh+ h2 − 2h+ 2.

From a simple calculation, we have























f(0) = −nh+ h2 − 2h+ 2 = −h(n− h)− (2h− 2) < 0,

f(− 1
2 ) =

3
8 − 3

4h < 0,

f(−1) = h− n+ nh− h2 = (n− h)(h− 1) > 0,

f(−2) = 6h− 6n+ 3nh− 3h2 = (n− h)(3h− 6) > 0.

Note that f(x) → ∞, x → ∞, and f(0) < 0, so there is at least one root in (0,∞).

Since f(−1/2) < 0 and f(−1) > 0, there is at least one root in (−1,−1/2). By

f(x) → −∞, x → −∞, and f(−2) > 0, there is at least one root in (−∞,−2). Thus

there is exactly one root in each of the three intervals. �

Using a similar method to compute the distance characteristic polynomials ofKs+t
n

and Ks,t
n , we have the following two results.

Theorem 2.6. Let s > 2, t > 2 and n = s+ t. Then the distance characteristic

polynomial of Ks+t
n is

PD(λ) = (λ + 1)n−4[λ4 + (−s− t+ 4)λ3 + (2t+ 2s− 8st+ 4)λ2

+ (6s+ 6t− 14st)λ− 5st+ 2s+ 2t].
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Let λ1 > λ2 > . . . > λn denote the distance spectrum of K
s+t
n . Then

⊲ λ1 > 0, −1 < λ2 < −1/2 and λ3 = −1;

⊲ −2 < λn−1 < −1 and λn < −2.

P r o o f. The distance matrix of Ks+t
n is

D =





























0 . . . 1 1 2 3 . . . 3
...
. . .

...
...
...
...
. . .

...

1 . . . 0 1 2 3 . . . 3

1 . . . 1 0 1 2 . . . 2

2 . . . 2 1 0 1 . . . 1

3 . . . 3 2 1 0 . . . 1
...
. . .

...
...
...
...
. . .

...

3 . . . 3 2 1 1 . . . 0





























.

Similarly to the proof of Theorem 2.5, by a simple calculation, we have

det(λI −D) = (λ+ 1)n−4

∣

∣

∣

∣

∣

∣

∣

∣

λ− (s− 2) −1 −2 −3− 3(t− 2)

−1− (s− 2) λ −1 −2− 2(t− 2)

−2− 2(s− 2) −1 λ −1− (t− 2)

−3− 3(s− 2) −2 −1 λ− (t− 2)

∣

∣

∣

∣

∣

∣

∣

∣

= (λ+ 1)n−4[λ4 + (−s− t+ 4)λ3 + (2t+ 2s− 8st+ 4)λ2

+ (6s+ 6t− 14st)λ− 5st+ 2s+ 2t].

Consider the quartic function on x

f(x) = x4 +(−s− t+4)x3 +(2t+2s− 8st+4)x2 +(6s+6t− 14st)x− 5st+2s+2t.

Note that (s− 1)(t− 1) = st− s− t+ 1 > 0, hence st+ 1 > s+ t. Then we obtain

that






















f(0) = −5st+ 2s+ 2t < 2(st+ 1)− 5st = 2− 3st < 0,

f(− 1
2 ) =

9
16 − 3

8s− 3
8 t < 0,

f(−1) = 1− s− t+ st > 0,

f(−2) = 6s+ 6t− 9st < 6(st+ 1)− 9st = 6− 3st < 0.

Note that f(x) → ∞, x → ∞, and f(0) < 0, so there is at least one root in (0,∞).

Since f(−1/2) < 0 and f(−1) > 0, there is at least one root in (−1,−1/2). Since

f(−1) > 0 and f(−2) < 0, then there is at least one root in (−2,−1). By f(x) → ∞,
x → −∞, and f(−2) < 0, there is at least one root in (−∞,−2). Thus there is

exactly one root in each of the three intervals. The proof is completed. �
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Theorem 2.7. Let s > 4, t > 4 and n = s+t−1. Then the distance characteristic

polynomial of Ks,t
n is

PD(λ) = (λ+ 1)n−3[λ3 + (−s− t+ 4)λ2 + (2 + s+ t− 3st)λ+ s+ t− 2st].

Let λ1 > λ2 > . . . > λn denote the distance spectrum of K
s,t
n . Then

⊲ λ1 > 0, −1 < λ2 < −2/3 and λ3 = −1;

⊲ λn−1 = −1 and λn < −2.

P r o o f. The distance matrix of Ks,t
n is

D =

























0 . . . 1 1 2 . . . 2
...
. . .

...
...
...
. . .

...

1 . . . 0 1 2 . . . 2

1 . . . 1 0 1 . . . 1

2 . . . 2 1 0 . . . 1
...
. . .

...
...
...
. . .

...

2 . . . 2 1 1 . . . 0

























.

Similarly to the proof of Theorem 2.5, we have

det(λI −D) = (λ+ 1)n−3

∣

∣

∣

∣

∣

∣

λ− (s− 2) −1 −2− 2(t− 2)

−1− (s− 2) λ −1− (t− 2)

−2− 2(s− 2) −1 λ− (t− 2)

∣

∣

∣

∣

∣

∣

= (λ+ 1)n−3[λ3 + (−s− t+ 4)λ2 + (2 + s+ t− 3st)λ+ s+ t− 2st].

Consider the cubic function on x

f(x) = x3 + (−s− t+ 4)x2 + (2 + s+ t− 3st)x+ s+ t− 2st.

Note that (s − 1)(t − 1) = st − s − t + 1 > 0, hence st + 1 > s + t. By a simple

calculation, we have











f(0) = s+ t− 2st < 1− st < 0,

f(− 2
3 ) =

4
27 − 1

9s− 1
9 t < 0,

f(−1) = 1− s− t+ st > 0.

Note that f(x) → ∞, x → ∞ and f(0) < 0, so there is at least one root in (0,∞).

Since f(−2/3) < 0 and f(−1) > 0, there is at least one root in (−1,−2/3). Since

f(−1) > 0 and f(x) → −∞, x → −∞, there is at least one root in (−∞,−1). Thus
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there is exactly one root in each of the three intervals. This means that λ1 > 0,

−1 < λ2 < −2/3, λ3 = λn−1 = −1 and λn < −1.

Obviously, the diameter of Ks,t
n is 2, and P3 is an induced subgraph of K

s,t
n .

Moreover, D(P3) is a principal submatrix of D(Ks,t
n ). It is easy to calculate that

λ3(P3) = −2, then by Lemma 2.2, λn(K
s,t
n ) 6 λ3(P3) = −2. Furthermore, Ks,t

n is

not a complete k-partite graph, hence by Lemma 2.3, we have λn < −2. �

By Theorems 2.5, 2.6 and 2.7, we obtain the following corollary.

Corollary 2.8. No two non-isomorphic graphs of Kh
n , Ks+t

n and Ks,t
n are

D-cospectral.

P r o o f. From the distance characteristic polynomials of Kh
n , K

s+t
n and Ks,t

n for

any two non-isomorphic graphs belonging to the same type, the result is obvious.

It is clear that Ks+t
n and Ks,t

n have distinct distance spectra, since −1 is the

distance eigenvalue of Ks+t
n with multiplicity n− 4, and it is the distance eigenvalue

of Ks,t
n with multiplicity n− 3.

Now we only need to prove that Kh
n has a distance spectrum distinct from Ks+t

n

and Ks,t
n .

Suppose that Kh
n and Ks+t

n are D-cospectral. Note that −1 is the distance eigen-

value of Ks+t
n with multiplicity n− 4, then −1 is also the distance eigenvalue of Kh

n

with multiplicity n− 4. On the other hand, notice that −2 is not the distance eigen-

value of Ks+t
n , then it follows that −2 is not the distance eigenvalue of Kh

n either,

thus n = h + 1. Then −1 is the distance eigenvalue of Kh
n with multiplicity n − 3,

a contradiction.

Assume that Kh
n and Ks,t

n are D-cospectral. Note that −2 is not the distance

eigenvalue of Ks,t
n , then it follows that −2 is not the distance eigenvalue of Kh

n

either, so n = h+ 1. So we have

{

PD(Kh
n)(λ) = (λ+ 1)n−3[λ3 + (−n+ 3)λ2 + (−5n+ 9)λ− 3n+ 5],

PD(Ks,t
n )(λ) = (λ+ 1)n−3[λ3 + (−s− t+ 4)λ2 + (2 + s+ t− 3st)λ+ s+ t− 2st].

Note that they have the same distance characteristic polynomial, hence

{

−3n+ 5 = s+ t− 2st,

n = s+ t− 1.

Solving the two equations we get t = 2 or t = n− 1, a contradiction. �
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3. Main results

In this section, our first task is to show that Kh
n , K

s+t
n and Ks,t

n are determined

by their D-spectra. First, we give some useful graphs and their distance spectra.

P4

P5

C4 C5 H1 H2

H3 H4 H5 H6 H7

H8 H9 H10 H12

H13 B1 B2 B3

H11

Figure 3. Graphs P4, P5, C4, C5, H1–H13 and B1–B3.

λ1 λ2 λ3 λ4 λ5 λ6

P4 5.1623 −0.5858 −1.1623 −3.4142

P5 8.2882 −0.5578 −0.7639 −1.7304 −5.2361

C4 4.0000 0.0000 −2.0000 −2.0000

C5 6.0000 −0.3820 −0.3820 −2.6180 −2.6180

H1 5.2926 −0.3820 −0.7217 −1.5709 −2.6180

H2 6.2162 −0.4521 −1.0000 −1.1971 −3.5669

H3 6.6375 −0.5858 −0.8365 −1.8010 −3.4142

H4 5.7596 −0.5580 −0.7667 −2.0000 −2.4348

H5 9.3154 −0.5023 −1.0000 −1.0865 −2.3224 −4.4042

H6 9.6702 −0.4727 −1.0566 −2.0000 −2.0000 −4.1409

H7 10.0000 −0.4348 −1.0000 −2.0000 −2.0000 −4.5616

H8 9.6088 −0.4931 −1.0000 −1.0924 −2.0000 −5.0233

H9 4.4495 −0.4495 −1.0000 −1.0000 −2.0000

H10 5.3723 −0.3723 −1.0000 −2.0000 −2.0000

H11 6.1425 −0.4913 −1.0000 −1.0000 −1.0000 −2.6512

H12 6.4641 −0.4641 −1.0000 −1.0000 −1.0000 −3.0000

H13 7.8526 −0.6303 −1.0000 −1.0000 −2.2223 −3.0000

B1 7.4593 −0.5120 −1.0846 −2.0000 −3.8627

B2 3.5616 −0.5616 −1.0000 −2.0000

B3 4.9018 −0.5122 −1.0000 −1.0000 −2.3896
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Next, we first show that Kh
n is determined by its D-spectrum. Let G be a graph

D-cospectral to Kh
n . We call H a forbidden subgraph of G if G contains no H as an

induced subgraph.

Lemma 3.1. If G and Kh
n are D-cospectral, then C4, C5 and Hi, i ∈ {1, 4, 9, 10,

11, 12, 13}, are forbidden subgraphs of G.

P r o o f. Let G and Kh
n have the same distance spectrum. Suppose that H is an

induced subgraph of G and H ∈ {C4, C5, Hi, i ∈ {1, 4, 9, 10, 11, 12, 13}}. Note that
diam(H) = 2, obviously D(H) is a principal submatrix of D(G). Let |V (H)| = m,

then by Lemma 2.2, λ2(G) > λ2(H), λ3(G) > λ3(H) and λm−1(H) > λn−1(G).

By Theorem 2.5, we know that −1 < λ2(G) < −1/2, λ3(G) = −1 and λn−1(G) ∈
{−1,−2}.Hence we have λ2(H) < −1/2, λ3(H) 6 −1 and λm−1(H) > −2. However,

λ2 > −1/2 for C4, C5 and Hi, i ∈ {1, 9, 10, 11, 12}; λ3 > −1 for H4 and λm−1 < −2

for H13, a contradiction. �

v1 v2 v3 v4 v5

P5

v1 v2 v3 v4

v5

H2

v1 v2 v3 v4

v5

H3

v1 v2 v3 v4

v5v6

H5

Figure 4. The labeled graphs of P5, H2, H3 and H5.

For any S ⊆ V (G), let DG(S) denote the principal submatrix of D(G) obtained

by S.

Lemma 3.2. If G and Kh
n are D-cospectral, then P5 and Hi, i ∈ {2, 3, 5, 6, 7, 8},

are forbidden subgraphs of G.

P r o o f. For P5: Suppose that P5 is an induced subgraph of G, then dG(v1, v5) ∈
{2, 3, 4}. If dG(v1, v5) = 4, then DG({v1, v2, v3, v4, v5}) = D(P5) is a principal sub-

matrix of D(G). By Lemma 2.2, we have λ3(G) > λ3(P5) = −0.7639 > −1, a contra-

diction. If dG(v1, v5) ∈ {2, 3}, let dG(v1, v4) = a, dG(v1, v5) = b and dG(v2, v5) = c,

then a, b, c ∈ {2, 3}. We get the principal submatrix of D(G)

DG({v1, v2, v3, v4, v5}) =















0 1 2 a b

1 0 1 2 c

2 1 0 1 2

a 2 1 0 1

b c 2 1 0















.
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By a simple calculation, we have

(a, b, c) (3, 3, 3) (3, 2, 2) (3, 2, 3) (3, 3, 2) (2, 3, 3) (2, 3, 2) (2, 2, 2) (2, 2, 3)
λ2 −0.4348 −0.3260 0 −0.3713 −0.3713 −0.1646 −0.2909 −0.3260

By Lemma 2.2 we have λ2(G) > λ2(DG({v1, v2, v3, v4, v5})) > −1/2. Note that

λ2(G) < −1/2, a contradiction. Hence P5 is a forbidden subgraph of G.

For H2: Assume that H2 is an induced subgraph of G, then dG(v1, v4) ∈ {2, 3}.
If dG(v1, v4) = 3, then D(H2) is a principal submatrix of D(G). By Lemma 2.2, we

have λ2(G) > λ2(H2) = −0.4521 > −1/2, a contradiction. If dG(v1, v4) = 2, it is

easy to calculate that λ2(DG({v1, v2, v3, v4, v5})) = −0.2284 > −1/2. By Lemma 2.2

and Theorem 2.5, we also get a contradiction. Therefore H2 is a forbidden subgraph

of G.

For H3: Suppose that H3 is an induced subgraph of G, then dG(v1, v4) ∈ {2, 3}.
If dG(v1, v4) = 3, then D(H3) is a principal submatrix of D(G). By Lemma 2.2,

we have λ3(G) > λ3(H3) = −0.8365 > −1, a contradiction. If dG(v1, v4) = 2, it is

easy to check that λ2(DG({v1, v2, v3, v4, v5})) = −0.3820 > −1/2. By Lemma 2.2

and Theorem 2.5, we also obtain a contradiction. Hence H3 is a forbidden subgraph

of G.

For H5: Assume that H5 is an induced subgraph of G. If dG(v1, v4) = dG(v4, v5) =

dG(v4, v6) = 3, then D(H5) is a principal submatrix of D(G). By Lemma 2.2, we

have λn−1(G) 6 λ5(H5) = −2.3224 < −2, a contradiction. Otherwise, there exists

at least one equal to 2 among dG(v1, v4), dG(v4, v5) and dG(v4, v6). Without loss

of generality, we may assume that dG(v1, v4) = 2. Note that H5 is an induced

subgraph of G, hence there exists a vertex v ∈ V (G) \ {v1, v2, v3, v4, v5} such that
vv1, vv4 ∈ E(G). Then G[vv1v2v3v4] = C5, G[vv1v2v3v4] = H1, G[vv2v3v4] = C4

or G[vv1v2v3] = C4. By Lemma 3.1, C4, C5 and H1 are forbidden subgraphs of G,

a contradiction. Hence H5 is a forbidden subgraph of G.

For H6, H7 and H8: Suppose that they are induced subgraphs of G, respectively.

If D(H6), D(H7) and D(H8) are principal submatrices of D(G), respectively. By

Lemma 2.2, λ2(G) > λ2(Hi) > −1/2 where i ∈ {6, 7, 8}, a contradiction. Otherwise,
similarly to the discussion for H5, we can also obtain the same contradictions. Thus

H6, H7 and H8 are forbidden subgraphs of G. �

Theorem 3.3. The graph Kh
n is determined by its D-spectrum.

P r o o f. Let G be a graph D-cospectral to Kh
n . By Lemma 3.2, P5 is a forbidden

graph of G, thus diam(G) 6 3. By λn(G) < −2, we have diam(G) > 2.

Case 1 : diam(G) = 3.

If |V (G)| = 4, then G = P4, and it is easy to check that G is not D-cospectral

to K3
4 , a contradiction. Next we assume that |V (G)| > 5. Note that diam(G) = 3,
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then there exists a diameter-path P = uũṽv with length 3 in G. Let X = {u, ũ, ṽ, v},
hence G[X ] = P4. Denote by Vi, i = 0, 1, 2, 3, 4, the vertex subset of V \X whose
each vertex is adjacent to i vertices of X . Clearly V \X =

4
⋃

i=0

Vi.

Claim 1 : V4 = ∅.
Suppose not, then there exists a vertex v4 ∈ V4 such that G[v4uũṽv] = H1,

a contradiction. Hence Claim 1 holds.

Claim 2 : V3 = ∅.
Suppose not, then there exists a vertex v3 ∈ V3 such that v3 is adjacent to {u, ũ, ṽ},

{ũ, ṽ, v}, {u, ũ, v} or {u, ṽ, v}. Then G contains an induced subgraph H2 or C4,

a contradiction.

Let V u
2 = {v2 ∈ V2 : v2u, v2ũ ∈ E(G)} and V v

2 = {v2 ∈ V2 : v2v, v2ṽ ∈ E(G)}.
Claim 3 : V2 = V u

2 ∪ V v
2 , G[V u

2 ](G[V v
2 ]) = K|V u

2
|(K|V v

2
|) and E[V u

2 , V v
2 ] = ∅.

For any v2 ∈ V2, it is impossible that v2 is adjacent to u and v since dG(u, v) = 3.

If v2 is adjacent to u and ṽ (or ũ and v), then G[v2uũṽ] = C4 (or G[v2ũṽv] = C4),

by Lemma 3.1, a contradiction. If v2 is adjacent to ũ and ṽ, then G[v2uũṽv] = H3,

a contradiction. Thus V2 = V u
2 ∪V v

2 . For any v2, v
⋆
2 ∈ V u

2 , we then have v2v
⋆
2 ∈ E(G).

Otherwise G[v2v
⋆
2uũṽ] = H4, a contradiction. This means that G[V u

2 ] = K|V u
2
|.

Similarly, G[V v
2 ] = K|V v

2
|. If v2v

⋆
2 ∈ E(G) for any v2 ∈ V u

2 and v⋆2 ∈ V v
2 , then

G[v2v
⋆
2 ũṽ] = C4, a contradiction. Hence E[V u

2 , V v
2 ] = ∅.

Claim 4 : |V1| 6 1.

Let v1 ∈ V1. Obviously, v1 can only be adjacent to ũ or ṽ, otherwise G[v1uũṽv] =

P5, a contradiction. Now we assume that |V1| > 2. Let v1, v
⋆
1 ∈ V1. If they are

adjacent to the same vertex of X , then G[v1v
⋆
1uũṽv] = H5 or H6, a contradiction.

Otherwise, G[v1v
⋆
1uũṽv] = H7 or G[v1v

⋆
1 ũṽ] = C4, a contradiction. Hence Claim 4 is

completed.

Claim 5 : Only one set of V1 and V2 is nonempty.

Suppose not, then there exist two vertices v1 ∈ V1 and v2 ∈ V2. Without loss of

generality, we may assume that v2 is adjacent to u and ũ. If v1 is adjacent to ũ, then

G[v1v2uũṽv] = H5 or G[v1v2uũṽ] = H4, a contradiction. If v1 is adjacent to ṽ, then

G[v1v2uũṽv] = H8 or G[v1v2ũṽ] = C4, a contradiction. Thus Claim 5 holds.

Claim 6 : V0 = ∅.
Suppose not, then there exists a vertex v0 ∈ V0 such that v0v

⋆ ∈ E(G), where

v⋆ ∈ V1 ∪ V2. Then G[v0v
⋆ũṽv] = P5 or G[v0v

⋆uũṽ] = P5, a contradiction.

By Claims 1–6, we have V = V1 ∪ V2 ∪X . If |V1| = 1, then by Claim 5, V2 = ∅.
This means that G ∼= B1. It is easy to check that B1 has D-spectrum distinct from

Kh
5 , a contradiction. So we have V1 = ∅, then V2 6= ∅, and thus G ∼= Ks+t

n . By
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Corollary 2.8, Ks+t
n has D-spectrum distinct from Kh

n , a contradiction. It follows

that there is no graph G with diameter 3 D-cospectral to Kh
n .

Case 2 : diam(G) = 2.

There exists a diameter-path P = xyz with length 2 in G. Let X = {x, y, z}, then
G[X ] = P3. Obviously, V \ X 6= ∅ since n > 4. Denote by Vi, i = 0, 1, 2, 3 the

vertex subset of V \ X whose each vertex is adjacent to i vertices of X . Clearly

V \X =
3
⋃

i=0

Vi.

Claim 7 : |V3| 6 1.

Suppose not, then there exist two vertices v3, v
⋆
3 ∈ V3. If v3v

⋆
3 ∈ E(G), then

G[v3v
⋆
3xyz] = H9, a contradiction. Otherwise v3v

⋆
3 6∈ E(G), then G[v3v

⋆
3xz] = C4,

a contradiction. Therefore Claim 7 holds.

Let Vxy = {v2 ∈ V2 : v2x, v2y ∈ E(G)}, Vyz = {v2 ∈ V2 : v2y, v2z ∈ E(G)}.
Claim 8 : V2 = Vxy ∪ Vyz , G[Vxy ](G[Vyz ]) = K|Vxy|(K|Vyz |), and E[Vxy, Vyz ] = ∅.
For any v2 ∈ V2, it is impossible that v2 is adjacent to x and z since G[v2xyz] = C4.

Hence V2 = Vxy ∪ Vyz. For any v2, v
⋆
2 ∈ Vxy, we then have v2v

⋆
2 ∈ E(G). Otherwise

G[v2v
⋆
2xyz] = H4, a contradiction. This means that G[Vxy ] = K|Vxy|. Similarly,

G[Vyz ] = K|Vyz |. If E[Vxy, Vyz ] 6= ∅, then there exist two vertices v2 ∈ Vxy and

v⋆2 ∈ Vyz such that v2v
⋆
2 ∈ E(G), and thus G[v2v

⋆
2xyz] = H1, a contradiction. Hence

E[Vxy, Vyz] = ∅.
Claim 9 : If v1 ∈ V1, then v1 must be adjacent to y.

Suppose not, then v1 is adjacent to x or z. Without loss of generality, we may

assume that v1x ∈ E(G). Note that diam(G) = 2, then there exists a vertex u ∈ V \X
such that uv1, uz ∈ E(G), and thus u ∈

3
⋃

i=1

Vi. If u ∈ V1, then G[uv1xyz] = C5,

a contradiction. If u ∈ V2, then by Claim 8, u is adjacent to y and z, and then

G[uv1xy] = C4, a contradiction. If u ∈ V3, then G[uv1xyz] = H1, a contradiction.

Thus Claim 9 holds.

Claim 10 : V0 = ∅.
Suppose not, then there exists a vertex v0 ∈ V0 such that v0 is adjacent to some

vertices of V1 ∪ V2 ∪ V3. If v0 is adjacent to only one vertex u of V1 ∪ V2 ∪ V3, then

u ∈ V3 since diam(G) = 2, and thus G[v0uxyz] = H4, a contradiction. So v0 must be

adjacent to at least two vertices of V1 ∪V2 ∪V3; we always find an induced subgraph

C4 of G in each case, a contradiction. Therefore Claim 10 is obtained.

By Claim 10, ∅ 6= V \X =
3
⋃

i=1

Vi. Next we distinguish the following four subcases.

Subcase 2.1 : V3 6= ∅.
By Claim 7, |V3| = 1. Note that H4 and H10 are forbidden subgraphs of G,

then V1 = ∅. Let V3 = {v3}. Obviously, v2v3 ∈ E(G) for each v2 ∈ V2. Otherwise
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G[v2v3xyz] = H1, a contradiction. If |V2| 6 2, i.e., there exist two vertices v2, v
⋆
2 ∈

V2, then G[v2v
⋆
2v3xyz] = H11 or H12, a contradiction. So we have |V2| 6 1. If

V2 = ∅, then G ∼= B2, and it is easy to check that B2 has distance spectrum distinct

from K3
4 , a contradiction. If |V2| = 1, then G ∼= B3. Clearly, B3 is not D-cospectral

to Kh
5 , a contradiction.

Subcase 2.2 : V3 = ∅, V2 6= ∅ and V1 = ∅.
By Claim 8, G ∼= Kn−1

n or G ∼= Ks,t
n . By Corollary 2.8, K

s,t
n and K

h
n have distinct

distance spectra, a contradiction. Hence G ∼= Kn−1
n .

Subcase 2.3 : V3 = ∅, V2 6= ∅ and V1 6= ∅.
For any v1 ∈ V1, we claim that d(v1) = 1. In fact, if d(v1) > 2, then there exists

a vertex v2 ∈ V2 such that v1v2 ∈ E(G), and then G[v1v2xyz] = H4, a contradiction.

Furthermore, we claim that only one set of Vxy and Vyz is nonempty. Otherwise, let

v2 ∈ Vxy and v⋆2 ∈ Vyz, then G[v2v
⋆
2xyz] = H13, a contradiction. Hence G ∼= Kh

n .

Subcase 2.4 : V3 = ∅, V2 = ∅ and V1 6= ∅.
Let V ⋆

1 = {v ∈ V1 : d(v) > 2}. If V ⋆
1 = ∅, then G ∼= K1,n−1. Note that

λn(K1,n−1) = −2, thenK1,n−1 is notD-cospectral toK
h
n , a contradiction. If V

⋆
1 6= ∅,

we claim that G[V ⋆
1 ] = K|V ⋆

1
|. If not, there exist u, v ∈ V ⋆

1 such that uv 6∈ E(G).

If there exists a vertex w ∈ V ⋆
1 such that wu,wv ∈ E(G), then G[wuvxy] = H4,

a contradiction. Otherwise, there exist two distinct vertices w1 ∈ V ⋆
1 and w2 ∈ V ⋆

1

such that w1u ∈ E(G) and w2v ∈ E(G), then w1w2 ∈ E(G) since H13 is a forbidden

subgraph of G. Thus G[w1w2uvy] = H1, a contradiction. Hence G[V ⋆
1 ] = K|V ⋆

1
|,

which means that G ∼= Kh
n . �

Theorem 3.4. The graph Ks+t
n is determined by its D-spectrum.

P r o o f. Let G be a graph D-cospectral to Ks+t
n . From Theorem 2.6, we know

that −1 < λ2(G) < −1/2, λ3(G) = −1 and −2 < λn−1(G) < −1. Similarly to

the proof of Lemmas 3.1 and 3.2, we also get P5, C4, C5 and Hi, i = 1, 2, . . . , 13,

are forbidden subgraphs of G. Note that P5 is a forbidden subgraph of G and

λn(G) < −2, hence 2 6 diam(G) 6 3. By the above forbidden subgraphs, similarly

to the proof of Theorem 3.3, we have:

⊲ If diam(G) = 3, then G ∼= B1 or G ∼= Ks+t
n .

⊲ If diam(G) = 2, then G ∼= B2, G ∼= B3, G ∼= Kh
n or G

∼= Ks,t
n .

From D-spectra of Bi, i = 1, 2, 3, and Corollary 2.8, then we must have G ∼= Ks+t
n .

Thus the theorem follows. �

Theorem 3.5. The graph Ks,t
n is determined by its D-spectrum.

P r o o f. Let G be a graph D-cospectral to Ks,t
n . By Theorem 2.7, then −1 <

λ2(G) < −2/3 < −1/2, λ3(G) = λn−1(G) = −1. Hence we can still use P5, C4, C5
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and Hi, i = 1, 2, . . . , 13, as the forbidden subgraphs of G. Note that P5 is a forbidden

subgraph of G and λn(G) < −2, hence 2 6 diam(G) 6 3. Similarly to the proof of

Theorem 3.3, then:

⊲ If diam(G) = 3, then G ∼= B1 or G ∼= Ks+t
n .

⊲ If diam(G) = 2, then G ∼= B2, G ∼= B3, G ∼= Kh
n or G

∼= Ks,t
n .

By D-spectra of Bi, i = 1, 2, 3, and Corollary 2.8, then G ∼= Ks,t
n . Thus Ks,t

n is

determined by its D-spectrum. �

In [9], Liu et al. give the distance characteristic polynomial of Kn1,n2,...,nk
n :

PD(λ) = (λ+ 1)n−k−1

(

λ−
k

∑

i=1

ni(2λ+ 1)

λ+ ni + 1

) k
∏

i=1

(λ+ ni + 1).

Next, we will show that Kn1,n2,...,nk
n , 1 6 ni 6 2, is determined by its D-spectrum.

Theorem 3.6. Kn1,n2,...,nk
n , 1 6 ni 6 2, is determined by its D-spectrum.

P r o o f. Let G := Kn1,n2,...,nk
n , where 1 6 ni 6 2. Let t1 and t2 be two

nonnegative integers with t1 + t2 = k. Suppose that n1 = . . . = nt1 = 1 and

nt1+1 = . . . = nt1+t2 = 2. Clearly, if t1 = 0, then G is the friendship graph F k
n . If

t2 = 0, then G is a star. Recall that the star is determined by its D-spectrum. So

we assume that t2 > 1. Note that the distance characteristic polynomial of G is

PD(λ) = (λ+ 1)n−t1−t2−1(λ+ 2)t1−1(λ+ 3)t2−1(λ3 + (5 − 4t2 − 2t1)λ
2

+ (6 − 10t2 − 7t1)λ− 3t1 − 4t2).

Consider the cubic function

f(λ) = λ3 + (5− 4t2 − 2t1)λ
2 + (6− 10t2 − 7t1)λ− 3t1 − 4t2.

By calculation, we have



































f(0) = −3t1 − 4t2 < 0,

f(− 1
2 ) = − 15

8 ,

f(−1) = 2t1 + 2t2 − 2 > 0,

f(−2) = 3t1 > 0,

f(−3) = −10t2 < 0.

Then the three roots of f(λ) = 0 belong to the intervals (0,∞), [−1,−1/2) and

(−3,−2], respectively. Consequently, we have −1 6 λ2(G) < −1/2, λ3(G) = −1 and

λn(G) = −3.
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Suppose that G′ is D-cospectral to G, that is −1 6 λ2(G
′) < −1/2, λ3(G

′) = −1

and λn(G
′) = −3. In the following, we only need to show that G′ ∼= G. It is easy

to see that G′ cannot contain P4 as an induced subgraph, otherwise we would have

λn(G
′) 6 λ4(P4) = −3.4142, which contradicts λn(G

′) = −3. Thus the diameter of

G′ is 2. Let P = xyz be a diameter path of G′.

Claim 1 : dG′(y) = n− 1. If there exists a vertex v ∈ V (G′) such that vy /∈ E(G′),

then dG′(v, y) = 2, and thus

DG′({x, y, z, v}) =





1 0 1 2

2 1 0 b

a 2 b 0



 .

Then a, b ∈ {1, 2}, and by a simple calculation we have

(a, b) (1, 1) (1, 2) (2, 1) (2, 2)
λ2 0.0000 −0.3820 −0.3820 −0.6519

By Lemma 2.2, only the case a = 2, b = 2 satisfies λ2(G
′) < −1/2. Thus there exists

a vertex w such that the subgraph of G′ induced by vertices v, w, x, y, z is T1, T2

or T3 (see Figure 5). We get a principal submatrix of D(G′) for each case:

D1 =















0 1 2 2 2

1 0 1 1 2

2 1 0 2 2

2 1 2 0 1

2 2 2 1 0















, D2 =















0 1 2 1 2

1 0 1 1 2

2 1 0 2 2

1 1 2 0 1

2 2 2 1 0















, D3 =















0 1 2 1 2

1 0 1 1 2

2 1 0 1 2

1 1 1 0 1

2 2 2 1 0















.

x y z

v

w

T1

x y z

v

w

T2

x y z

v

w

T3

Figure 5. Graphs T1, T2, T3.

A simple calculation gives λ2(D1) = −0.2248, λ2(D2) = −0.3820 and λ3(D3) =

−0.7667. For each case, the Cauchy interlacing theorem implies λ2(G
′) > λ2(D1) =

−0.2248, λ2(G
′) > λ2(D2) = −0.3820 and λ3(G

′) > λ3(D3) = −0.7667, a contradic-

tion. Thus Claim 1 holds.

Claim 2 : G′−y is the disjoint union of some cliques. According to Lemma 2.4, we

obtain G′ has n−1+t2 edges. It follows from Claim 1 that G
′−y has t2 edges. Since
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t2 6 ⌊(n − 1)/2⌋, there are at least two connected components in G′ − y. Suppose

that there is a component which is not a clique. Then we can see that H4 is an

induced subgraph of G′. Therefore λ3(G
′) > λ3(H4) = −0.7667, a contradiction.

Thus Claim 2 holds.

Combining Claims 1 and 2, we have G′ ∼= K1∨ (Kn′

1
∪Kn′

2
∪ . . .∪Kn′

t
). According

to the distance characteristic polynomial of G and G′, we have t = k and n′
i = ni,

i.e. G′ ∼= G, as desired. �

The following result follows from Theorem 3.6 immediately.

Corollary 3.7 ([5]). The friendship graph F k
n is determined by its D-spectrum.

Acknowledgment. The authors would like to thank the anonymous referees very
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script.
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