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Abstract. Let (L,∧,∨) be a finite lattice with a least element 0. AG(L) is an annihilating-
ideal graph of L in which the vertex set is the set of all nontrivial ideals of L, and two distinct
vertices I and J are adjacent if and only if I ∧ J = 0. We completely characterize all finite
lattices L whose line graph associated to an annihilating-ideal graph, denoted by L(AG(L)),
is a planar or projective graph.
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1. Introduction

In the last twenty years, the study of algebraic structures, using the properties of

graph theory, tends to an exciting research topic. Associating a graph to an algebraic

structure has been the interest of many researchers. For example see [2], [4], and [13].

The notion of an annihilating-ideal graph AG(R) of a commutative ring R was intro-

duced by Behboodi and Rakeei in [5] and [6]. However, they let all annihilating-ideals

of R be vertices of the graph AG(R), and two distinct vertices I and J be adjacent

if and only if IJ = 0. In [1], Khashyarmanesh et al. introduced and studied the

annihilating-ideal graph of a lattice L, denoted by AG(L). Graf AG(L) is a graph

whose vertex set is the set of all nontrivial ideals of L and two distinct vertices I and

J are joined by an edge if and only if I ∧ J = 0.

First we review some definitions and notation from lattice theory.

Recall that a lattice is an algebra L = (L,∧,∨) satisfying the following conditions:

for all a, b, c ∈ L:

(1) a ∧ a = a, a ∨ a = a,

(2) a ∧ b = b ∧ a, a ∨ b = b ∨ a,
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(3) (a ∧ b) ∧ c = a ∧ (b ∧ c), a ∨ (b ∨ c) = (a ∨ b) ∨ c, and

(4) a ∨ (a ∧ b) = a ∧ (a ∨ b) = a.

There is an equivalent definition for a lattice (see for example [15], Theorem 2.1).

To do this, for a lattice L, one can define an order on L as follows: For any a, b ∈ L,

we set a 6 b if and only if a ∧ b = a. Then (L,6) is an ordered set in which every

pair of elements has a greatest lower bound (g.l.b.) and a least upper bound (l.u.b.).

Conversely, let P be an ordered set such that, for every pair a, b ∈ P , g.l.b.(a, b) and

l.u.b.(a, b) belong to P . For each a and b in P , we define a ∧ b := g.l.b.(a, b) and

a ∨ b := l.u.b.(a, b). Then (P,∧,∨) is a lattice. A lattice L is said to be bounded if

there are elements 0 and 1 in L such that 0∧a = 0 and a∨1 = 1 for all a ∈ L. Clearly,

every finite lattice is bounded. Let (L,∧,∨) be a lattice with a least element 0 and

let I be a nonempty subset of L. I is called an ideal of L, denoted by I E L, if and

only if the following conditions are satisfied:

(1) For all a, b ∈ I, a ∨ b ∈ I.

(2) If 0 6 a 6 b and b ∈ I, then a ∈ I.

For two distinct ideals I and J of a lattice L, we put I∧J := {x∧y : x ∈ I, y ∈ J}.

In a lattice (L,∧,∨) with a least element 0, an element a is called an atom if a 6= 0

and, for an element x in L, the relation 0 6 x 6 a implies that either x = 0 or x = a.

We denote the set of all atoms of L by A(L). For terminology in lattice theory we

refer to [10].

Now, we recall some definitions and notation on graphs. We use the standard

terminology of graphs following [7]. Let G be a simple graph with vertex set V (G)

and edge set E(G). In a graph G, for two distinct vertices a and b in G, the notation

a − b means that a and b are adjacent. Also, the degree of a vertex a, denoted by

deg(a), is the number of edges incident to a, and an isolated vertex is a vertex with

zero degree. A graph with no edges (but at least one vertex) is called an empty

graph. The graph with no vertices and no edges is the null graph. For a positive

integer r, an r-partite graph is one whose vertex set can be partitioned into r subsets

so that no edge has both ends in any one of the subsets. A complete r-partite graph

is one in which each vertex is joined to every vertex that is not in the same subset.

For notation, we let Kn represent the complete graph on n vertices, and Km,n the

complete bipartite graph with part sizes m and n. A complete bipartite graph K1,n

is called star (see [7] and [12]). A graph G is said to be contracted to a graph H

if there exists a sequence of elementary contractions which transforms G into H ,

where an elementary contraction consists of deletion of a vertex or an edge or the

identification of two adjacent vertices. A subdivision of a graph is any graph that

can be obtained from the original graph by replacing edges by paths. The line graph
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of a graph G is the graph L(G) with the edges of G as its vertices, and two edges

of G are adjacent in L(G) if and only if they are incident in G.

Recall that a simple graph is said to be planar if it can be drawn in the plane or

on the surface of a sphere so that its edges intersect only at their ends. A remark-

able characterization of the planar graphs was given by Kuratowski in 1930 (cf. [7],

page 153). In 1962, Sedláček characterized the planarity of a line graph L(G) by

using the planarity of G and its vertex degrees. In the sequel, we give the following

theorem from [18] which will be used later.

Theorem 1.1 ([18], Lemma 2.6). A nonempty graph G has a planar line graph

L(G) if and only if

(i) G is planar,

(ii) △(G) 6 4, and

(iii) if deg(v) = 4, then v is a cut vertex in the graph G.

By a surface, we mean a connected compact 2-dimensional real manifold without

boundary, that is a connected topological space such that each point has a neighbor-

hood homeomorphic to an open disc. It is well-known that every compact surface is

homeomorphic to a sphere, or to a connected sum of g tori (Sg), or to a connected

sum of k projective planes (Nk) (see [14], Theorem 5.1). This number k is called the

crosscap number of the surface. The projective plane can be thought of as a sphere

with one crosscap. This means that the crosscap number of the projective plane is 1.

A //❴❴❴❴❴❴

B

����✤
✤

✤

✤

✤

✤

B

OOOO✤
✤

✤

✤

✤

✤

A
oo❴ ❴ ❴ ❴ ❴ ❴

The canonical representation of a projective plane.

A graph G is embeddable in a surface S if the vertices of G are assigned to distinct

points in S so that every edge of G is a simple arc in S connecting the two vertices

which are joined in G. A projective graph is a graph that can be embedded in

a projective plane. The least number k that G can be embedded in Nk is called the

crosscap number of G. We denote the crosscap number of a graph G by γ(G). One

easy observation is that γ(H) 6 γ(G) for any subgraph H of G. If G cannot be

embedded in S, then G has at least two edges intersecting at a point which is not

a vertex of G. We say a graph G is irreducible for a surface S if G does not embed

21



in S, but any proper subgraph of G embeds in S. The set of 103 irreducible graphs

for the projective plane has been found by Glover, Huneke and Wang in [11], and

Archdeacon in [3] proved that this list is complete. This list also has been checked

by Myrvold and Roth in [17]. Hence a graph embeds in the projective plane if and

only if it contains no subdivision of 103 graphs in [11]. Also, a complete graph

Kn is projective if n = 5 or 6, and the only projective complete bipartite graphs

are K3,3 and K3,4 (see [8] or [16]). Note that a planar graph is not considered as

a projective graph. For more detailes on the notions concerning embedding of graphs

following [19].

In this paper, we assume that L is a finite lattice and A(L) = {a1, a2, . . . , an} is the

set of all atoms of L. We denote the line graph associated with AG(L) by L(AG(L))

and we denote wI,J for the vertices I, J ∈ AG(L), where I and J are adjacent vertices

in AG(L). In the second section of this work, we completely characterize all finite

lattices L such that the line graphs associated with their annihilating-ideal graphs

AG(L), are planar or projective.

2. On the planarity and projectivity of L(AG(L))

In this section, we explore the planarity and projectivity of the line graph asso-

ciated with the graph AG(L), which is denoted by L(AG(L)). If |A(L)| = 1, then

AG(L) is an empty graph, and hence L(AG(L)) is a null graph. We begin this section

with the following notation, which is needed in the rest of the paper.

Notation. Let i1, i2, . . . , in be integers with 1 6 i1 < i2 < . . . < ik 6 n. The

notation Ui1i2...ik stands for the set

{I E L : {ai1 , ai2 , . . . , aik} ⊆ I and aj /∈ I for j ∈ {1, . . . , n} \ {i1, . . . , ik}}.

Note that no two distinct elements in Ui1i2...ik are adjacent in AG(L). Also, if the

index sets {i1, i2, . . . , ik} and {j1, j2, . . . , jk′} of Ui1i2...ik and Uj1j2...jk′
, respectively,

are distinct, then one can easily check that Ui1i2...ik ∩ Uj1j2...jk′
= ∅. Moreover,

V (AG(L)) =
⋃

Ui1i2...ik for all 1 6 i1 < i2 < . . . < ik 6 n. Suppose that L has n

atoms. We denote the ideal {0, ai} ∈ Ui, where ai is an atom and Ui is an ideal, with

1 6 i 6 n, by ui. Note that U12...n consist of isolated vertices. Clearly, the isolated

points do not affect planarity and projectivity. Hence, we ignore the set of isolated

vertices from the vertex-set of L(AG(L)), and so we do not show these points in our

figures.

Now, we state the following lemma.
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Lemma 2.1. If L(AG(L)) is planar or projective, then the size of A(L) is at most

four.

P r o o f. Assume on the contrary that |A(L)| > 5. Then the graphAG(L) contains

a copy of K5 with vertices u1 ∈ U1, u2 ∈ U2, u3 ∈ U3, u4 ∈ U4 and u5 ∈ U5. So

the contraction of the graph L(AG(L)) contains a subdivision of K3,3 (see Figure 1).

Therefore it is not a planar graph, which is a contradiction.

wu1,u3
wu1,u4

wu1,u5

wu4,u5
wu1,u2

wu3,u5

wu2,u3

wu2,u4
wu3,u4

Figure 1.

Also, the contraction of the graph L(AG(L)) contains a copy of E20, one of the

graphs listed in [11] (see Figure 2). Therefore L(AG(L)) is not a projective graph,

which is again a contradiction. �

wu1,u3

wu3,u4
wu2,u3

wu2,u4
− wu1,u4

wu1,u5

wu1,u2

wu2,u5

wu3,u5
wu4,u5

Figure 2.

By Lemma 2.1, it is sufficient for us to investigate the planarity and projectivity

of the graph L(AG(L)) in the cases in which the size of A(L) is 2, 3, or 4.

First we state necessary and sufficient conditions for the planarity and projectivity

of the graph L(AG(L)), when |A(L)| = 2.

Theorem 2.1. Suppose that |A(L)| = 2. Then L(AG(L)) is a planar graph if

and only if
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
6 5.

P r o o f. First, assume that L(AG(L)) is planar and assume on the contrary that
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
> 6. By [1], Theorem 2.6, we know that as |A(L)| = 2, the graph AG(L)

is a complete bipartite graph. If AG(L) is a star graph, then the graph L(AG(L))

contains a subgraph isomorphic to K5, which is not planar. Otherwise, AG(L) is
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not a star graph. Then it contains a subgraph isomorphic to K2,4 or K3,3. In these

two cases, L(AG(L)) contains a subdivision of K3,3. Hence L(AG(L)) is not planar,

which is a contradiction.

Conversely, suppose that
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
6 5. If

∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 2, then L(AG(L)) is isomor-

phic to L(K2), which is an empty graph with one vertex. Also, if
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 3, then

L(AG(L)) ∼= L(K1,2) ∼= K2. In addition, if
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 4, then AG(L) is isomorphic

to K1,3 or K2,2. Hence L(AG(L)) is isomorphic to K3 or K2,2, respectively. Fi-

nally, assume that
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 5. If AG(L) is a star graph, then L(AG(L)) ∼= K4.

Otherwise, the graph AG(L) is isomorphic to K2,3 with vertices u1, I1, I
′

1
∈ U1 and

u2, I2 ∈ U2. In this case, the graph L(AG(L)) is pictured in Figure 3.

wI1,I2wu1,I2

wI1,u2
wu1,u2

wI′

1
,u2

wI′

1
,I2

Figure 3.

In all of the above situations, L(AG(L)) is a planar graph. �

Theorem 2.2. Suppose that |A(L)| = 2. Then L(AG(L)) is a projective graph

if and only if one of the following conditions holds:

(i)
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣

= 6 and |Ui| = 1 for some unique i ∈ {1, 2} or |Ui| = |Uj | = 3 for

i, j ∈ {1, 2}.

(ii)
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣

= 7 and |Ui| = 1 for some unique i ∈ {1, 2}.

P r o o f. First, assume that the graph L(AG(L)) is projective and on the contrary,
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣

6 5. Then, by Theorem 2.1, the graph L(AG(L)) is planar, which is not

projective. Now, assume that
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 6 and AG(L) ∼= K2,4. By [9], Example 2.14,

γ(L(K2,4)) = 2, and so the graph L(AG(L)) is not projective. Hence, if
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 6,

then the statement (i) holds. Now, suppose that
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 7. If AG(L) is not a star

graph, then it is isomorphic to K2,5 or K3,4. By [9], Corollary 2.11, γ(L(K2,5)) = 2

and, by [9], Example 2.14, γ(L(K3,4)) = 2. So if
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 7, then the statement (ii)

24



holds. Finally, we may assume that
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
> 8. If AG(L) is a star graph, then

the graph L(AG(L)) contains a subgraph isomorphic to K7, which is not projective.

Otherwise, AG(L) is not a star graph. Then it contains a subgraph isomorphic

to K2,6, K3,5 or K4,4. In these cases, AG(L) contains a copy of K2,4. Clearly,

γ(L(AG(L))) > γ(L(K2,4)), and we have γ(L(K2,4)) = 2. It means that the graph

L(AG(L)) is not projective. Therefore, if L(AG(L)) is projective, then one of the

conditions (i) or (ii) holds.

Conversely, suppose that
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 6, and the graph AG(L) is a star graph. Then

L(AG(L)) ∼= K5, and so it is a projective graph. Now, suppose that AG(L) ∼= K3,3.

By [9], Example 2.12, γ(L(K3,3)) = 1, and so the graph L(AG(L)) is projective.

Finally, suppose that
∣

∣

∣

2
⋃

j=1

Uj

∣

∣

∣
= 7, and the graph AG(L) is a star graph. Then

L(AG(L)) ∼= K6, and so it is a projective graph. �

Now, we investigate the planarity of L(AG(L)), when |A(L)| = 3. Let
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
> 5.

It is easy to see that AG(L) contains a subgraph isomorphic to a complete 3-partite

graph K3,1,1 or K2,2,1. Therefore the graph L(AG(L)) contains a subdivision of K3,3

or a subdivision of K5, respectively. Hence it is not planar, and so we have the

following lemma.

Lemma 2.2. If L(AG(L)) is planar, then
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
6 4.

Theorem 2.3. Suppose that |A(L)| = 3. Then L(AG(L)) is a planar graph if

and only if one of the following conditions holds:

(i)
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣

= 3 and |Uij | 6 2 for 1 6 i, j 6 3.

(ii)
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 4 and |Uij | 6 1 for 1 6 i, j 6 3.

P r o o f. First, assume that one of the conditions (i) or (ii) holds. Suppose that
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 3 and |U12| = |U13| = |U23| = 2. The graph AG(L) with vertices u1 ∈ U1,

u2 ∈ U2, u3 ∈ U3, I12, I
′

12
∈ U12, I13, I

′

13
∈ U13 and I23, I

′

23
∈ U23 is pictured

in Figure 4.
I
′

23I23 u1

u2

I13

I
′

13

I12

I
′

12

u3

Figure 4.
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Hence the graph L(AG(L)) pictured in Figure 5 is planar.

wu1,u2

wu2,u3 wu1,u3
wu3,I

′

12

wu3,I12

wu2,I
′

13

wu2,I13

wu1,I
′

23

wu1,I23

Figure 5.

Now, suppose that
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 4, |U1| = 2 and |U12| = |U13| = |U23| = 1. The

graph AG(L) with vertices u1, I1 ∈ U1, u2 ∈ U2, u3 ∈ U3, I12 ∈ U12, I13 ∈ U13 and

I23 ∈ U23 is pictured in Figure 6 and L(AG(L)), which is a planar graph is pictured

in Figure 7.

I12

u3

u1

u2

I1I13

I23

Figure 6.

wu3,I1 wu1,u3

wu3,I12

wu2,u3

wu2,I13

wu2,I1 wu1,u2

wI1,I23 wu1,I23

Figure 7.

Conversely, suppose that L(AG(L)) is a planar graph. By Lemma 2.2,
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
6 4.

Hence we have the following cases.

Case 1.

∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 3. If U12, U13 or U23 has at least three elements, then there

exists at least a vertex of degree 5 in the graph AG(L). Hence the graph L(AG(L))

contains a subgraph isomorphic to K5, and so it is not planar, which is a contradic-

tion.
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Case 2.

∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 4. Without loss of generality, we may assume that |U1| = 2. If

U12 or U13 has at least two elements, then there exists at least a vertex of degree 5 in

the graph AG(L). Hence the graph L(AG(L)) contains a copy of K5, and so it is not

planar, which is a contradiction. In addition, if U23 has at least two elements, then

the contraction of AG(L) contains a subgraph isomorphic to K2,4. Therefore AG(L)

has a vertex of degree 4 which is not a cut vertex. By Theorem 1.1, L(AG(L)) is not

a planar graph, which is a contradiction. �

Now, we investigate the projectivity of L(AG(L)), when |A(L)| = 3.

Suppose that
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
> 6. Then the graph AG(L) contains a subgraph isomorphic

to K4,1,1, K3,2,1 or K2,2,2. If AG(L) contains a subgraph isomorphic to K4,1,1, then

one can easily find a copy of A1, one of the listed graphs in [11], in the graph

L(AG(L)), which is not projective. Also, if AG(L) contains a subgraph isomorphic

to K3,2,1, then one can easily find a copy of E20, one of the graphs listed in [11],

in the contraction of L(AG(L)), which is not projective. Now, if AG(L) contains

a subgraph isomorphic to K2,2,2, then the contraction of L(AG(L)) contains a copy

of E3, one of the listed graphs in [11], which is not projective. Therefore L(AG(L))

is not a projective graph.

As a consequence of the above discussion, we state the following lemma.

Lemma 2.3. If L(AG(L)) is projective, then
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣

6 5.

Theorem 2.4. Suppose that |A(L)| = 3. Then L(AG(L)) is a projective graph

if and only if one of the following conditions holds:

(i)
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 3, there exist unique i and j, with 1 6 i, j 6 3, such that 3 6 |Uij | 6 4

and |Ukk′ | 6 2 for k ∈ {i, j} and {k′} = {1, 2, 3} \ {i, j}.

(ii)
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 4, there exists a unique i, with 1 6 i 6 3, such that |Ui| = 2, and for

{j, k} = {1, 2, 3} \ {i}, if 2 6 |Uij | 6 3, then |Uik| 6 1 and |Ujk| 6 1.

(iii)
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 5,

(a) there exists a unique i, with 1 6 i 6 3, such that |Ui| = 3, and for all

1 6 j, k 6 3, Ujk = ∅;

(b) there exists a unique i, with 1 6 i 6 3, such that |Ui| = 1, and for

{j, k} = {1, 2, 3} \ {i}, |Ujk| 6 1 and Uij = Uik = ∅.
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P r o o f. First we assume that L(AG(L)) is a projective graph. By Lemma 2.3,
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
6 5. Hence we have the following cases.

Case 1.

∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 3. In this case, if |Uij | 6 2 for all i, j ∈ {1, 2, 3}, then by

Theorem 2.3, the graph L(AG(L)) is planar, which is not projective. Also, without

loss of generality we may assume that |U12|, |U13| ∈ {3, 4}. Then one can easily check

that the graph L(AG(L)) contains a copy of A1, one of the graphs listed in [11], which

is not projective. In addition, if we assume that U12, U13 or U23 has at least five

elements, then the graph L(AG(L)) contains a subgraph isomorphic to K7, which

is not projective. Therefore, for the projectivity of L(AG(L)), it is necessary that

there exist unique i and j, with 1 6 i, j 6 3, such that 3 6 |Uij | 6 4 and |Ukk′ | 6 2

for k ∈ {i, j} and {k′} = {1, 2, 3} \ {i, j}.

Case 2.

∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 4. In this case, if |Uij | 6 1 for all i, j ∈ {1, 2, 3}, then, by

Theorem 2.3, the graph L(AG(L)) is planar, which is not projective. Now, suppose

that there exists a unique Ui, with 1 6 i 6 3, say U1, such that |U1| = 2. If |U23| > 2,

then AG(L) contains a copy of K2,4. Clearly, γ(L(AG(L))) > γ(L(K2,4)), and we

have γ(L(K2,4)) = 2. This implies that the graph L(AG(L)) is not projective. Now,

we may assume that U23 = ∅. If U12 or U13 has at least four elements, then the graph

L(AG(L)) contains a subgraph isomorphic to K7, which is not projective. Also, if

|U12| = |U13| = 2, then the graph L(AG(L)) contains a copy of A1, one of the graphs

listed in [11], which is not projective. Therefore, for the projectivity of L(AG(L)),

it is necessary that 2 6 |Uij | 6 3, |Uik| 6 1 and |Ujk| 6 1, for {j, k} = {1, 2, 3} \ {i},

when |Ui| = 2.

Case 3.

∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 5. Suppose that |U1| = 3. If U12 or U13 has at least one element,

then the graph L(AG(L)) contains a copy of D17, one of the graphs listed in [11],

which is not projective. Also, if U23 has at least one element, then the contraction

of L(AG(L)) contains a copy of E20, one of the graphs listed in [11], which is not

a projective graph. Therefore, for the projectivity of L(AG(L)), it is necessary that

U12 = U13 = U23 = ∅, when |U1| = 3. On the other hand, suppose that there exists

a unique Ui, with 1 6 i 6 3, say U1, such that |U1| = 1. If U12 or U13 has at least

one element, then the contraction of L(AG(L)) contains a copy of E20, one of the

listed graphs in [11], which is not a projective graph. Also, if |U23| > 2, then the

contraction of L(AG(L)) contains a copy of D17, one of the graphs listed in [11],

which is not a projective graph. Therefore, for the projectivity of L(AG(L)), it is

necessary that U12 = U13 = ∅ and |U23| 6 1, when |U1| = 1.
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Conversely, if one of the statements (i), (ii) or (iii) holds, then we will show that

L(AG(L)) is a projective graph.

First suppose that
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 3. If |U12| = |U13| = 2 and |U23| = 4, then the graph

AG(L) is pictured in Figure 8, which is planar and the graph L(AG(L)) is pictured

in Figure 9, which is projective. We have u1 ∈ U1, u2 ∈ U2, u3 ∈ U3, I12, I
′

12
∈ U12,

I13, I
′

13
∈ U13 and I23, I

′

23
, I ′′

23
, I ′′′

23
∈ U23.

I
′

12I12
u3

u2

I13

I
′

13

I23

I
′

23u1
I
′′

23

I
′′′

23

Figure 8.

wu1,u2

wu1,u3

wu2,u3
wu2,I13

wu2,I
′

13

wu3,I12

wu3,I
′

12

wu1,I23

wu1,I
′

23

wu1,I
′′

23

wu1,I
′′′

23

Figure 9.

Now, suppose that
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 4 and |U1| = 2. If |U12| = 3 and |U13| = |U23| = 1,

then the graph AG(L) with vertices u1, I1 ∈ U1, u2 ∈ U2, u3 ∈ U3, I12, I
′

12
, I ′′

12
∈ U12,

I13 ∈ U13 and I23 ∈ U23 is planar and the graph L(AG(L)) is projective (see Fig-

ure 10).

wu1,u2

wu1,u3

wI1,u2

wI1,u3

wu2,u3

wu2,I13

wu2,I
′

13

wu2,I
′′

13

wu3,I12

Figure 10.
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Finally, suppose that
∣

∣

∣

3
⋃

j=1

Uj

∣

∣

∣
= 5 and consider the following cases.

Case 1. There exists a unique Ui, with 1 6 i 6 3, say U1, such that |U1| = 3,

and also U12 = U13 = U23 = ∅. Then the graph AG(L) with vertices u1, I1, I
′

1 ∈ U1,

u2 ∈ U2 and u3 ∈ U3 is planar. As observed, in Figure 11, the graph L(AG(L)) is

projective.

wu1,u3

wu1,u2

wu1,u2

wI1,u3

wI1,u3
wI′

1
,u3

wI′

1
,u3

wI′

1
,u2

wu2,u3

wI1,u2

Figure 11.

Case 2. There exists a unique Ui, with 1 6 i 6 3, say U1, such that |U1| = 1,

also U12 = U13 = ∅ and |U23| = 1. Then the graph AG(L) with vertices u1 ∈ U1,

u2, I2 ∈ U2, u3, I3 ∈ U3 and I23 ∈ U23 is planar, and so L(AG(L)) is pictured in

Figure 12, which is a projective graph. �

wu1,u2

wu1,u3
wu1,I3

wu1,I2

wu1,I23
wu2,u3

wu2,I3

wu2,I3 wI2,u3

wI2,u3

wI2,I3

Figure 12.

In the following, we study the planarity and projectivity of L(AG(L)), when

|A(L)| = 4.
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Lemma 2.4. If L(AG(L)) is planar or projective, then
∣

∣

∣

4
⋃

j=1

Uj

∣

∣

∣
= 4.

P r o o f. Suppose on the contrary that
∣

∣

∣

4
⋃

j=1

Uj

∣

∣

∣

> 5. Then the graph AG(L) has

a vertex of degree 4 which is not a cut vertex. Hence, by Theorem 1.1, L(AG(L))

is not a planar graph, which is a contradiction. Also, on the contrary, consider

that
∣

∣

∣

4
⋃

j=1

Uj

∣

∣

∣
= 5 and |U1| = 2. Then L(AG(L)) contains a subgraph isomorphic

to E20, one of the graphs listed in [11], which is not a projective graph. It is again

a contradiction. �

Theorem 2.5. Suppose that |A(L)| = 4. Then L(AG(L)) is a planar graph if

and only if Uij = ∅ and |Uijk| 6 1 for all i, j, k ∈ {1, 2, 3, 4}.

P r o o f. First, assume that the graph L(AG(L)) is planar. By Lemma 2.4, we

have
∣

∣

∣

4
⋃

j=1

Uj

∣

∣

∣
= 4. If there exists at least one element in Uij for i, j ∈ {1, 2, 3, 4},

then one can easily check that the graph L(AG(L)) contains a subdivision of K3,3,

which is not planar. Also, if one of the sets Uijk has at least two elements for

i, j, k ∈ {1, 2, 3, 4}, then the graph AG(L) has a vertex of degree 5. Hence the graph

L(AG(L)) contains a copy of K5, which is impossible.

Conversely, suppose that U12 = U13 = U23 = ∅ and |U123| = |U124| = |U134| =

|U234| = 1. The graph AG(L) with vertices u1 ∈ U1, u2 ∈ U2, u3 ∈ U3, u4 ∈ U4,

I123 ∈ U123, I124 ∈ U124, I134 ∈ U134 and I234 ∈ U234 is pictured in Figure 13.

I123

u4

u1

u2

I234

I124
I134

u3

Figure 13.

Hence L(AG(L)) is pictured in Figure 14, which is a planar graph. Therefore, in

the case that Uij = ∅ and |Uijk| 6 1 for all i, j, k ∈ {1, 2, 3, 4}, we have L(AG(L)) is

planar. �

In the sequel, suppose that
∣

∣

∣

4
⋃

j=1

Uj

∣

∣

∣

= 4. We have the following situations.

(i) There exist i, j ∈ {1, 2, 3, 4} such that |Uij | > 2. Then L(AG(L)) contains

a copy of A1, one of the listed graphs in [11], which is not a projective graph.
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Figure 14.

(ii) There exist i, i′, j, j′ ∈ {1, 2, 3, 4} with i 6= i′, j 6= j′, such that |Uij | =

|Ui′j′ | = 1. Then the contraction L(AG(L)) contains a copy of D17, one of

the graphs listed in [11], which is not a projective graph.

(iii) There exist i, i′, j ∈ {1, 2, 3, 4} with i 6= i′, j such that |Uij | = |Ui′j | = 1. Then

L(AG(L)) contains a copy of D17, one of the graphs listed in [11], which is not

a projective graph.

(iv) For all 1 6 i, j, k 6 4, |Uijk| 6 1 and Uij = ∅. Then, by Theorem 2.5, the graph

L(AG(L)) is planar, which is not projective.

(v) There exist i, j, k, with 1 6 i, j, k 6 4 such that |Uijk| > 4. Then L(AG(L))

contains a copy of K7, which is not projective.

(vi) There exist unique i, i′, j, k ∈ {1, 2, 3, 4}with i 6= i′, j, k such that 2 6 |Uijk| 6 3

and |Ui′ij | = |Ui′ik| = |Ui′jk| = 1. Then the graph AG(L), with vertices

u1 ∈ U1, u2 ∈ U2, u3 ∈ U3, u4 ∈ U4, I123, I
′

123, I
′′

123 ∈ U123, I124 ∈ U124,

I134 ∈ U134 and I234 ∈ U234 is planar. Therefore the graph L(AG(L)), which is

pictured in Figure 15, is projective.
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wu1,u4 wu1,u3

wu2,u4

wu2,u4

wu2,u3

wu3,u4 wu4,I123

wu4,I123

wu4,I
′

123

wu2,I134

wu4,I
′′

123

wu1,I234

wu4,I
′′

123

wu3,I124

Figure 15.
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(vii) There exist i, i′, j, k ∈ {1, 2, 3, 4} with i 6= i′, j, k such that |Sijk| = |Si′jk| = 2.

Then L(Γ2(L)) contains a copy of A1, one of the listed graphs in [11], which is

not a projective graph.

(viii) There exist i, j, j′, k, k′ ∈ {1, 2, 3, 4} with i, j 6= j′, k 6= k′ such that |Uij | = 1

and |Uij′k′ | = 2. Then the contraction of L(AG(L)) contains a copy of B1, one

of the listed graphs in [11], which is not a projective graph.

(ix) There exist i, j, k, with 1 6 i, j, k 6 4, |Uij | = |Uijk| = 1. Then L(AG(L))

contains a copy of E19, one of the graphs listed in [11], which is not a projective

graph.

(x) There exist unique i, i′, j, j′ with {i′, j′} = {1, 2, 3, 4} \ {i, j} such that |Uij | =

|Uii′j′ | = |Uji′j′ | = 1. Then the graph AG(L), with vertices u1 ∈ U1, u2 ∈ U2,

u3 ∈ U3, u4 ∈ U4, I12 ∈ U12, I134 ∈ U134 and I234 ∈ U234 is planar. Therefore

the graph L(AG(L)), which is pictured in Figure 16, is projective.

wu3,u4
wu2,u4

wu1,u4

wu2,u3

wu2,u3

wu1,u3

wu1,u3

wu1,u2

wu4,I12

wu3,I12

wu3,I12

wu2,I134

wu1,I234

Figure 16.

As a consequence of the above discussion and Lemma 2.4, we state the necessary

and sufficient conditions for the projectivity of the graph L(AG(L)), when the size

of A(L) is equal to 4.

Theorem 2.6. Suppose that |A(L)| = 4. Then L(AG(L)) is a projective graph

if and only if
∣

∣

∣

4
⋃

j=1

Uj

∣

∣

∣
= 4 and one of the following conditions holds:

(i) There exist unique i 6= i′, j, k with 1 6 i, i′, j, k 6 4 such that 2 6 |Uijk| 6 3

and |Ui′ij | = |Ui′ik| = |Ui′jk| = 1.

(ii) There exist unique i, i′, j, j′ with {i′, j′} = {1, 2, 3, 4} \ {i, j} such that |Uij | =

|Uii′j′ | = |Uji′j′ | = 1.
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