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Abstract. Suppose that A1, A2, A3, A4 are nonzero real numbers, not all negative, § > 0,
V is a well-spaced set, and the ratio A1 /A2 is algebraic and irrational. Denote by E(V, N, §)
the number of v € V with v < N such that the inequality

IMpT + A2pd + Asps + Maph — o] <v 0

has no solution in primes p1, p2, p3, p4a. We show that
E(V7 ]\/v7 6) < N1+26—1/72+6

for any ¢ > 0.

Keywords: Davenport-Heilbronn method; prime varaible; exceptional set; Diophantine
inequality

MSC 2010: 11D75, 11P32, 11P55

1. INTRODUCTION

Let A1, A2, A3, A4, A5 be nonzero real numbers, not all negative. Suppose that
A1/Ag is irrational. Recently, Yang and Li in [14] considered the inequality
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and proved that the inequality (1.1) has infinite solutions with prime p and integers
x1, T2, T3, x4. In [4], Ge and Li replaced the integer variables by prime variables
and proved that for any real number 7, the inequality

) —1/720+e

(1.2) [Aip1 + Aoph + Aapi + Aapi + Asp3 + 1| < (112]?2(517;

has infinite solutions with primes p1, p2, p3, ps, p5. In this paper, we drop the linear
prime variable in (1.2) and consider the exceptional set for the inequality

(1.3) IA1p? + Xoph + Asp§ + Aaph — v| < v

First, we recall a definition in [5]. We call a set of positive real numbers V a well-
spaced set if there is a ¢ > 0 such that

uveEV, u#tv = |lu—vl>ec
In order to get the full strength of the results quoted here one must also assume that
HveV: 0<v< N} > N'e,

Let A1, A2, A3 be nonzero real numbers, not all negative, let V be a well-spaced
set, and let § > 0. We introduce the notation F;(V, X,d) to denote the number of
v € V with v < X such that the inequality

IAp? + Aops + A3p3 —v| <070

has no solution in primes p;, pa, ps. Harman in [5] showed that if A; /A3 is irrational
and algebraic, then one has

El(V,X, 5) < X7/8+26+6,

for any € > 0. He also proved that 7/8 can be replaced by 6/7 using his sieve method.
Recently, under similar conditions, Mu and Lii in [9] proved that for any £ > 0

E2 (]}7)(7 5) < )(67/72-‘,—2(5-}-67

where F5(V, X, 0) is the number of v € V with v < X such that the inequality

IA1pT + Aop3 + Aspi + Aapi —v| <v°

has no solution in primes p1, p2, p3, P4.
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In this paper, we consider the inequality (1.3). Denote by E(V, N,d) the set of
v € V with v < N such that the inequality (1.3) has no solution in primes p1, pa,
ps3, pa. Let E(V,N,0) = |E(V, N,§)|. Using some ingredients from [5] and [8], we
establish the following results.

Theorem 1.1. Suppose that A1, A2, A3, Ay are nonzero real numbers, not all
negative, § > 0, V is a well-spaced set, the ratio \1/As Is algebraic and irrational.
Then

(1.4) E(V,N, () « N1+20-1/T2+e
for any € > 0.

Theorem 1.2. Let A1, A2, A3, Ay be nonzero real numbers, not all negative.
Suppose that A\1/)\y is irrational. Let V be a well-spaced set. Let § > 0. Then there
is a sequence N; — oo such that

1426—1/72+
(1.5) E(V,Nj,0) < N; c
for any € > 0. Moreover, if the convergent denominators q; for A1 /Ao satisfy
(1.6) q;;f < gj for some w € [0,1),
then, for all N > 1,
(1.7) E(V,N,§) < N1*T20-(1/6)x+e

for any € > 0 with

6 —6w 1

1.8 = min (5o, ).
(1.8) X9 2007 12

Remark. In the case of A\1/Az algebraic, we claim that we can take w = ¢ in (1.6),

where ¢ is an arbitrarily small positive real number. If not, there are infinitely many

g; satisfying q;;f > g;. Since g; is a convergent denominator for A1 /A2, by the proof

of Lemma 4D on page 14 of [11], we have that there are infinitely many ¢; satisfying

izl < 5 <
q;j Ao Gt q;/(l_g) .

This is in contradiction with Roth’s theorem (Theorem 2A on page 116 of [11]). Thus
Theorem 1.1 follows immediately from Theorem 1.2.
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Notation. Throughout, the symbols p and p; denote primes. Nonzero real num-
bers A;, j = 1,2,3,4, are given constants, and Vinogradov symbols may depend
on \j, j =1,2,3,4. The number ¢ is an arbitrarily small positive real number, but
not necessarily the same, we may write X2¢ < X¢. Denote by ||y|| the distance from
y to the nearest integer. We write e(z) = exp(2nix).

2. OUTLINE OF THE PROOF AND PRELIMINARY LEMMAS
Suppose that NV is some large positive quantity which we will choose later. Let

(2.1) E(J) =E(V,N,6)nT, E@3)=IE®D),

where J is any subset of [0, N]. By the definition of the well-spaced set V and the
definition of E(V, N, ¢), it is easy to show that

(2.2) E(V,N,8) = E(IN"Y™ N]) + E([0, NV/™)) < E(INTY/™ N]) 4+ NTV/72,

So we just need to estimate E([N7*/72 NJ). We use the standard dyadic argument.
Let NV/™ < X < N. We will estimate E([X/2, X]). So we shall restrict our
attention to those v satisfying

(2.3) <wv <X

po|

We use the Hardy-Littlewood circle method which was first stated by Davenport-
Heilbronn in [3]. Suppose that Z; = [(X/16|\;_1])'/7, (X/|\j_1|)'/7] for j = 2,3,
4,5, and 0 < 7 < 1. We define

(2.4) K(a) = (Fm) azo
72 if =0,
(2.5) Sj(a) =Y (logp)e(ap’),
pETZ;
(2.6) Fij(a) = [ e(aw!)du, Uj(a) = e(an?),
for j =2,3,4,5.

Then we can easily get (also see [12] or [13])
(2.7) K(a) < min(7?,|a|?), / K(a)e(ax)da = max(0, 7 — |z).
—0o0
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For convenience, we define
(2.8) (v, X;X) = / Sa(Aa)S3(Aea)Ss(Aza)Ss(Asa) K (a)e(—va) da,
X

where X is a measurable subset of R. Then by (2.7), we have

Z(v,X;R)
= > (logp)... (logp4)/ e((Mpi + Aapi + Azp3 + Map] — v)a) K (@) da
Pi€ZLj41 e
= ) (logpi)...(logps) max(0, 7 — [Aip} + Aaph + Asp§ + Aap} — v])
P €Lj+1
< (log X)* > max(0,7 — [Apf + Aopd + Aap§ + Aap] — v)).
Pj€Lj41
Thus we have
(2.9) 0 < Z(v, X;R) < 7(log X)*N (v, X),

where A (v, X) is the number of solutions to the inequality
|A1p% + )\ng + )‘3p§ + )\4p451 - U| <T, Pj S Ij-’rla ] = 1) 27 3) 4.

In order to estimate the integral Z(v, X; R), we divide the region of integration
into four parts: the major region €, the middle region ©, the minor region ¢ and the
trivial region t, which are defined as follows

(2.10) c={ailal<¢l,  D={a: p<lal <&},
c={a: E<lal<n},  t={a: |al 2k},

where ¢ = X ~13/15=¢ ¢ = X~7/9=¢ and x = 72X 7/12+2¢
We assemble here the important results we need for the analysis of all the regions
for a.

Lemma 2.1 ([5], Lemma 3). Suppose that (a,q) = 1 and |qa— a| < ¢~ %, then for
any € > 0 we have

E(a— — _o\1/4
3" (ogp)e(ap?) < PYHe(q7t + P72 4 qp2) Y,

1<psP
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Corollary 2.2 ([5], Corollary 1). Let X'/2 > Y > X1/2=1/16%¢_[f |Sy(\a)| > Y,
then there are coprime integers a, q satisfying

X1/2+6 )4

X1/2+6 4
X1
7 )

2.11 1< (
(2.11) q< v

g1 — a] < (

Lemma 2.3. Suppose that « is a real number, and there exist a € Z and q € N
with
(a,9) =1, 1<q¢<P? and |ga—a|< P32
Then one has
P1+5
(1+ P3la—a/q|)/?

S (logple(pla) < PV 4
P<p<L2P q

Proof. This follows from Lemma 8.5 in [15] and Theorem 1.1 in [10] (one can
also see Lemma 2.3 in [16]). O

Corollary 2.4. Suppose that X'/3 > Y > X1/371/36%¢ and |S3(Aga)| > Y. Then
there are two coprime integers a, q satisfying

X 1/3+e )2

X1/3+s )2 1
Y

1<q<<( Y

lghacr — a| < (

Proof. Let P = X'/3 and Q = P3/2. By Dirichlet’s approximation theorem,
there exist two coprime integers a, ¢ with 1 < ¢ < @ and |[gh2a — a| < Q™ 1. By
Lemma 2.3 and the hypothesis Y > X1/3-1/36+¢ we have

XU3-1/36%¢ ¥ < |S3(A0e)]
X 1/3+e/2

« X1/3-1/36+¢/2 .
TP X e —ajq)) 2

Thus we have 1 < ¢ < (XY/3+¢/Y)2, |ghoa — a] < (XV/3F¢/Y)2X 1. O

Lemma 2.5 ([6], Theorem 1). Suppose that « is a real number, and there exist
a € 7 and q € N with

(212) (a7Q) =1, |qa - a| < q71~

Let k be a positive integer with k > 2. Then for any € > 0, one has

1 1 q 41—k
k 1+e( = - 1
(2.13) 1<§J<P(logp)e(p a) < P <q t oz 13 k) .
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Corollary 2.6. Suppose that X ~13/15=¢ < |a| < X~ 7/9=¢. Then

(2.14) |85 (M\e)| < X1/571/2560+=

Proof. Without loss of generality, we need only consider Aga > 0. If we take
q = [|[Aa|™], a =1 in (2.12), where [z] is the integral part of a real number z, then
(2.14) follows from (2.13) immediately. O

Lemma 2.7. With the previous notation, for k = 2,3,4,5 and any positive inte-
ger m with 1 < m < k, one has

0 1
/ 1Sk(a))?" K (a) da < 7X @7 —m)/kte, / 1Sk(@)]?" da < X @7 —m)/kte,
1

— 00 —

Proof. These results follow from Hua’s lemma, one can also see Lemma 2.5
in [12] for details. O

Lemma 2.8 ([4], Lemma 4.2). With the previous notation, one has

oo 1
/ 195 (\1@)281 (As0) K () da < 7 X1, / 195 (Ma)2S1(Asa)| da < X1H.
o —1

Lemma 2.9. Suppose that A\1/\z is an irrational number, and a/q is a continued
fraction convergent to A1 /\q. If a positive integer m satisfies |[mA; /Az|| < 1/2q, then
we have m > q.

Proof. We prove by contradiction. Suppose that m < ¢, then by Legendre’s
law of best approximation for continued fractions (Theorem 5E on page 21 of [11]),

we have
A1

A1 1
H%—QH = HmA—QH <2
Since a/q is a continued fraction convergent to A1 /\a, we have (a,q) = 1 and A1 /A2 =
a/q+0/q* with |0] < 1. Then

o= <2
A2 q 2q’°
and
b o ]2
2q A2 ¢ ¢l17q ¢
Thus we have |0] < 1/2 < m|6]|/q; this is in contradiction with the hypothesis m < q.

O
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3. THE MAJOR REGION €

In this section, we evaluate the integral on the major region €. The next theorem

is our main result.

Theorem 3.1. We have

(3.1) I(v,X;€) > 72X 17/60,

First, we need some lemmas prepared to get the assertion of Theorem 3.1. For
any real number r > 1, we set

X

Jr(X,h) = /X/2 (0@ + 1)) = 0@ = (@ + W) = 2'/))" da,

where 6(z) = > logp is the usual Chebyshev function.
1<pse

Lemma 3.2 ([8], Theorem 2). For 0 <Y < 1/2 and k = 2,3,4,5, one has

FY2X Y2, (X, i).

/Y X?/k=2]0g® X
2Y

1S(a) — Up(@)]? da <
v Y

Lemma 3.3 ([8], Theorem 3). Let ¢ be an arbitrarily small positive constant. For
k =2,3,4,5, there exists a positive constant ¢; = c(g), such that

log X )1/3)

X. h hQXQ/k—l _ e
To(X, h) < exp( Cl(loglogX

holds uniformly for X'=5/(6k)+e < h < X.
From Lemmas 3.2 and 3.3, it is easy to deduce the following corollary.
Corollary 3.4. For k = 2,3,4,5, we have

log X )1/3).

Si(a) — Uy(a)? da < X/*1 (— (7
/|a<X1+5/<6k>e| k(@) el da < P\ loglog X

Lemma 3.5. For k = 2,3,4,5, we have

Xl/k
(3.2) Fi(o) < min (Xl/k7 |a|X)’
1/2
(3.3) / |F(a)2 da < X251,
~1/2
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Proof. This result follows from Lemma 1 of [1] (one can also see [5] or [12]). O

Lemma 3.6. For k = 2,3,4,5, we have

log X )1/3)

3.4 Si(a) — Fi(a)|? da < X2/*1 <_ (7
4 /a|<x—1+2/(3k>—5| k() b@) da < apiTa loglog X

(3.5) / 1Sk(a)|? do < X2/R71,
|a‘§X_1+2/(3k)_E

Proof. Itis easy to show that

(3.6) / |Sk (@) — Fi(a)* da
‘algx—1+2/(3k)—a
<[ 1Se(a) — Up(@) da
|a| KX —1+2/(8k)—¢

+f Unle) = Fe(o) da
‘algx—1+2/(3k)—a
By Euler-Maclaurin summation formula, we have
(3.7) |Uk(a) — Fr(a)] < 1+ || X.
Then
(3.8) / Uk(@) — Fi(0)|? da
‘algx—1+2/(3k)—a
<</ (1+ |a|X)? da
‘algx—1+2/(3k)—a

< (/ +/ )(1+|a|X)2da
la|l<X -1 JX-1<|a|<X —1+2/Bk) —<
< X! +X2(X71+2/(3k)75)3 < x2/k=1-¢

Hence, (3.4) follows immediately from (3.6), (3.8) and Corollary 3.4. Then (3.5)
follows from (3.4) and Lemma 3.5. O

Using the previous lemmas, we prove Theorem 3.1.
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Proof of Theorem 3.1. Similarly to Lemma 3.3 in [4], we have
/ |SQ(/\10¢)S3(/\2&)34(/\3&)35()\4@) — FQ()\loz)Fg()\goz)F4(/\3a)F5(/\4a)|K(a) do
¢
® 1/2 o 1/2
< 7[5 (Aaa) Sa(A5)| (/ 1S5(\a) — Fo(Ara)[? da) (/ 1S5 (M) ? da)
—p —p

+ 2By (\a)Sa(Asa)| (/«; 195 (Aat) — Fy(Moa)? doz)l/Q (/«; 1S5 (M) ? doz)l/Q

—p —p

+ 72| Fy(Ma)F3(Aga)| (/w |Ss(Aza) — Fy(Aza)|? da>1/2 </i |S5(\gar)|? da>1/2

—p —

+ 72| Fy(Ma)F3(A2a)| (/VJ |S5(\a) — Fs(Aga)|? da>1/2 </i |Fy(\za)|? da>1/2.

— _
Note that ¢ = X ~13/15=¢ " Then, by Lemmas 3.5, 3.6 and the trivial estimates
of Si(«), we easily obtain
(39) /|52(>\104)53(>\204)S4(>\304)S5()\404)
¢
— Fg(/\la)Fg(/\ga)F4(/\3a)F5 ()\4@)|K(&) do

1 log X \1/3
2 x17/60 (__ ( ) )
<7 eXp 2 “ loglog X

Then, by (2.7) and Lemma 3.5, we have
(3.10) / |y (M) Fs (Maa) Fa(Asa) Fs (\a) | K (0) da
la| >

< 7_2X77/60—4/ o]t da < 2 x17/60—1/4+3¢<
la|>¢

Finally, we will show that

(3.11) /Oo Fy (>\1Q)F3 ()\ga)F4 (ABQ)FS(A4OC)K(04)6(—UO4) da > 72 x17/60

— 00

Now we prove (3.11) as in Lemma 51 of Davenport, see [3]. We have

/ Fy(Ma)F5(Aaa)Fy(Asa) Fs(Ma) K (a)e(—va) da
= / / / / / e(a(A2? 4+ Aoxd + A3z3 + Mgx — )
Iy JI3JIy JI5 J—c0
x K(a)dadzy deze dos day
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= / / / max (0,7 — |)\1x% + )\ng + )\3x§ + Az — v|) dzy dag das dzg
Io JI3 JITy JI5

= f max (0,7 = [y1 + y2 + y3 + ya — v|)
120/\}/2)\5/3/\?4)\1/5 x/16 Jx/16 J x/16 J X/16

—-1/2 —2/3 —-3/4 —4/5
<y Py /ys My dyy dys dys dya,

where y; = )\jxgﬂ, j=1,2,3,4. We may take X/16 < y1,y2,y3 < X/8. Note that
X /2 < v < X by the hypothesis (2.3), and 0 < 7 < 1 (indeed, we will take 7 = X ~9).
Then we have

R
and

v—(y1+y2+y3)+%<X—1—6+§ < X.

So we can take v — (y1 + Y2+ y3) — 7/2 < ys < v — (y1 + y2 + y3) + 7/2. Thus we
have |y1 + y2 + ys + ya — v| < 7/2. Therefore, we obtain that the lower bound of the
above integral is

S X~ 1/2-2/3-3/4-4/5 /
X/16

X/8 ,rX/8 pv—(y1ty2+ys)+7/2
/ dyi dy2 dys dys

X/16 JX/16 —(y1+y2+ys)—7/2

X/8 rX/8
> ,7_2X 163/60 / / dyl dy2 dy3 > T2X17/60.
X/16 JX/16 JX/16

Combining (3.9), (3.10) and (3.11), Theorem 3.1 follows immediately. O

4. THE MIDDLE REGION ®
In this section we show that
(4.1) T(v, X;®) = o(r2 X 17/60),

By Corollary 2.6, for any o € ® = {a: X 13/157¢ = o < |a] < € = X 7/97¢} we
have

(4.2) 1S5 (Age)| < X1/571/2560+¢

Then by Cauchy’s inequality and (2.7) we have

(4.3) I(U,X;’D)z/ Sa(Aa)S3(A2a)Sa(A3a) S5 (M) K (a)e(—va) da

1/2 1/2
< 72X1/4max|55 A0 (/ |Sa(Ara)|? da) (/ 1S3 (A2a)|? da)

1/2

1/2
<« T2X9/20-1/2560+¢ (/ |5'2()\104)|2 da) (/ |S3(/\204)|2 da)
D D
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Note that & = X~ 7/97¢ = X ~142/(3:3)=¢_ Then by Lemma 3.6, we get
(4.4) / 1S5 (\a)? da < 1, / 1S5 (Aa)|? dav < X~ V/3,
® o)

Hence, (4.1) follows immediately from (4.3) and (4.4).

5. THE TRIVIAL REGION t
In this section we show that
(5.1) I(v, X;t) = o(r2X17/60),

By Cauchy’s inequality and the trivial bounds of Sy(Asza), Ss5(Ascr), we have

(5.2) Z(v, X;t) = /th(/\la)Sg(/\204)5'4(/\304)5'5(/\4a)K(a)e(—va) da

< XV/H1/5 (/t|52()\1a)|2K(a) da>1/2</t|53()\2a)|2K(04) da>1/2.

By (2.7), the periodicity of Sa(«) and Lemma 2.7, we have

/t|52(/\1a)|2K(oz)da<</:O|Sg()\1a)| o <</

kl‘f-i

> 1
2—
Sa(a) s da
m+1
< Z / |Sa(a ?da
m—\A |k]

m—+1

m=[|A1|k]

1
2 1/24e,.—1
<</0 |S2(a)]” dex E 2 < XVt

m=[|A1]x]

Similarly, we have
(5.3) /|53(A2a)|2K(a) da < X131,
t
Combining (5.2)—(5.4), we have
/ S5 (M) S5 (Aa) Sa(A50) S5 (Maar) K (0)e(—va) dar
t « X26/30+e, ~1 o x26/30+c,2 ¢ ~T/12-26 2 y17/60—¢

Hence, (5.1) follows immediately.
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6. THE MINOR REGION ¢

Our argument is similar to that used in [2], [5]. First we fix our parameter N. Let
a/q be a continued fraction convergent to A;/A2 and put

(6.1) N = ¢(72/71):(18/13)
In this section, we take

(6.2) o= —.
Let ¢ =¢; Uce and ¢ = ¢\ ¢, where

= {Oé € c: |SQ(/\10¢)| < X1/2_(2/3)0+26},
Gy = {Oé € c: |53(/\20é)| < Xl/g_(1/3)a+2€}.

Lemma 6.1. We have

(6.3) /

Proof. By Holder’s inequality and Lemmas 2.7, 2.8, we have

J

4

[15is1(Na)

j=1

2
K(a)da < - XAT/30-1/T2+2¢

2
K(o)da

4
I[85+
j=1

< (mzzllx|52()\1a)|1/4) </E |So(Aa) [ K (a) da)3/16

: (/cl |S3()\2a)|8K(a) da)1/4
X (/c1 |Sa (A1) [2[Sa(Ase)[* K () da>1/2

1/16
X < |5 (M) |2 K (o) da>
31
< 7 X 173/120+e max |SQ(/\104)|1/4
aEcy

<« TXYT/B0-(1/6)0+2e _  x4T/30-1/T242¢
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and

J

4

[1551(Na)

Jj=1

< (max ) ([ 1ss0 @da) ([ 18s0u0P K (@ da)

2K(0¢) da

< TXT/% max S5 (Moa)|M/2 < 7 XAT/30-(1/6)0+2e _ 1 x4T/30-1/72+2¢
€ty
Then Lemma 6.1 follows immediately. (]

Lemma 6.2. We have

(6.4) /

Proof. We divide the region ¢ into disjoint sets A(Y1, Ya, u), where

4

I 5541(Na)

Jj=1

2
K(a)da < - X4T/3041/9—(71/72)-(13/18)+5¢

A(Yl,Yg,u) = {Oé €c: Y; < |52(>\10é)| < 2Y1, Yo < |53(>\204)| < 2Y2, u < |Oé| < 2u}

and Y, = XV/2-@/8)ot2e0h y, — x1/3-(1/3)0+2e9l2 o — €97 for some positive

integers [y, lo, r. Thus by Corollaries 2.2 and 2.4, there are integers a1, q1, a2, qo

satisfying
(ala(h) = ]-a (027(12) = ]-7

X1/2+6 4 X1/2+6 4
6.5 1 g A _ X—l
(6.5) q < ( Y ) , e —a] <« ( Y ) )

X1/3+5 2 X1/3+5 2
(6.6) 1<K . gdea —ag| < XL

Y Y

Here we have ajas # 0. If a3 =0, by (6.5) we have

x1/2+e
Y,

4
(6.7) la] < | A —a1| < ( ) X< X710

This contradicts |a] > ¢ = X~7/97¢, thus we have a; # 0. Similarly, we also have
as # 0.
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Note that |a| > & = X ~7/97¢ hence we have

< Xk
le QG+ q1,

X1/3+€
Y,

x1/2+e\* L1
< ‘—‘ < -
‘ ‘ /\1 « + ( ) |)\10£|

2
1
‘ ‘<<‘>\—‘<<q2+< )X_1|/\ |<<QQ+X1/65<<C]2

We further divide the set A(Y7, Ya,u) into sets A(Y7, Y, u, @1, Q2) with « satisfy-
ing (6.5) and (6.6), where Q; < ¢; < 2@Q); on each set. Then we have

A — @A Ao —
(6.10) ‘agqlA_;_aqu‘ _ ‘al(GQ @A200) + az(qr Ao a1)‘

)\ga
X1/3+e\? x1/2+e\*
X! X!
<o o (5)
X1/2+5 4 X1/3+5 2
< < X! < X71+(10/3)0'76
) (55)

<« X13/18=¢ o N—(T1/72)-(13/18)—¢

since N™/72 < X < N. Also, by (6.9) and o € A(Y1, Yz, u,Q1,Q2), we have

(6.11) lazq1| < |q1g20] < u@Q1Qo.

Since N(71/72)-(13/18) — ¢ is sufficiently large, where a/q is a continued fraction
convergent to A1 /\a, then by (6.10) we have

(6.12) Ha2q1 ‘ < —

Then by Lemma 2.9, we have |asq1| = ¢. Suppose that |azq;| only takes L distinct
values, then we have L < |%|, where

(6.13) T = {meN g <m<K<ul1Q2, Hm H 4}
q
For any two positive integers my, mo € T, we have
s el < 52+ a2 < 5
my —meo|—|| < ||m1— mo— —
1 215, " % 5

Then by Lemma 2.9, we have |m1 — ma2| > ¢. Thus by the pigeon-hole principle, we
have

(6.14) L< |5 < @.
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Each value of |a2q1| corresponds to much less than X< values of as, ¢1, by the well-
known bound on the divisor function. For every fixed as and g1, by (6.10), the value
of |a1ga| is the integral part of azqiA1/A2, so there are much less than X ¢ values of
a1, q2. Therefore, by (6.5) and (6.6) we get that the length of A(Y1, Y2, u, Q1,Q2) is

1 x1/24e\* X 1/3+e\2
e (G (5 e (55)
QIX Yl QQX YQ

XzequQQ 1 X1/2+e 2X1/3+5
q Q1/2@§/2X< h ) e

X1/3+5EUQ1/2Q§/2 X5/3+8¢,,
W, g

<

<

Here we have used Q1 < (X/?2%¢/Y1)% Q2 < (X/3+2/Y3)? and the inequality
min(M, N) < MY/2N'/2 for any positive numbers M, N.

Now we evaluate the integral over the set A(Y1,Ya,u,Q1,Q2). By (2.7) and the
trivial bounds of Sg(Azar), S5(Ascx), we have

4 2
(6.15) / [15541(Nja)| K(e)da
A(Y1,Y2,u,Q1,Q2) j=1
< min(TQ,u*2)Y12Y22X2/4X2/5/ da
A(Y1,Y2,u,Q1,Q2)

X5/3+86u TX77/30+8€
<
qY14Y22 qY12

< TU_1Y712YV22X9/10

47/30+(4/3)o+4
< TX /30 (1/8)o e < 7 XAT/30+1/9+4e N~ (71/72)-(13/18)

< 7 XAT/3041/9—(71/72)-(13/18)+4¢

Now we sum over all possible values of Y7, Y5, u, @1, (J2, and we obtain that

(6.16) /

4

I Si<1(7\a)

Jj=1

2
K(a)da < - XAT/304+1/9—(71/72)-(13/18)+5¢
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7. THE PROOF OF THEOREM 1.2

We take 7 = X °. Let V be a well-spaced set. Then by (2.8) and (2.9), we have
Z(v, X;R) = 0 for every v € E([X/2,X]), where E([X/2, X]) is defined by (2.1).
Hence we have

(7.1) > I X;R)

veE([X/2,X])

= Z (Z(v, X; ) +Z(v, X;0)+Z(v, X;¢) + Z(v, X;t)) = 0.
veE([X/2,X])

This together with (3.1), (4.1) and (5.1) yields

(7.2)

Z /HSJ"rl (Aja)e(—va)K(a) da

> T2X17/60E({£,X}).
veE([X/2,X]) 2

By Cauchy’s inequality and (2.7) we get

(7.3)

Z /1:[ ir1(Aja)e(—va) K (a) da

veE([X/2,X])
< (/ Z e(—va)
~®lyeE([X/2,X])
2 1/2
K(a) da)

(/1
_ ( 3 / (01 — va)a) K (a) da>1/2

vy, UzE[E( X/2,X])"
1/2
K(a) da)

(I

1/2
= Z max (0,7 — vy — v2|)>

v1,v2 €E([X/2,X])
2 1/2
K(a) da)

(/I
< {e( ) (/]

2

K(a) da)l/Q

i+1(Aj)

i1 (Nja)

i+1(Aj)

]+1>\Oé

K(a )da>1/2.
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Here we have used that for every vy, ve € E([X/2, X]) C V, if v1 # vg, then there is
a constant ¢ such that |v; —va| > ¢, since V is a well-spaced set. Note that 7 = X9,
0 > 0 and X is a sufficiently large quantity. Thus we have

Z maX(O,T—|v1—vﬂ):rE([%,XD.

v1,v2€E([X/2,X])
Combining (7.2) and (7.3), we obtain
4

[15is1(Na)

Jj=1

2

(7.4) E([%,XD < 7'73X717/30/ K(a)da.

c

Now we begin to prove the first part of Theorem 1.2. Note that a/q is convergent
to A1 /A9, N = ¢(72/T)-(18/13) by (6.1), and N™/72 < X < N. By (7.4), Lemmas 6.1
and 6.2, we have

(7'5) E([X/Q,X]) < T—BX—17/307_X47/30—1/72+25 < X1+25_1/72+2€.
Thus, by (2.1) and (7.5), we conclude that

(7.6) E(V,N,6) < E([N"Y/™ N])+ NTV/7
[(1/72) log, N)+1
< > E(27'N,2'7'N]) + N7V
=1
[(1/72) log, N]+1
< Z (21—ZN)1+26—1/72+25 +N71/72
=1
< N1H+20-1/7243¢

Obviously, there are infinitely many ¢ we could have taken since \; /A2 is irrational,
and this gives the sequence N; — oo. This completes the proof of the first part of
Theorem 1.2.

Next, we begin to prove the second part of Theorem 1.2. Now, if the convergent
denominators for A; / Az satisfy (1.6), then we can modify our work in Section 6. Now
let N be a sufficiently large number, N2 L X € N, and assume that

(77) 0 =X,
where x is given by (1.8).
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Then the expression corresponding to (6.3) in Lemma 6.1 is

(7.8) /

Now we modify our argument in Lemma 6.2, argument obtaining

4

[15i41(Na)

Jj=1

2
K(a)da < 7 X 47/30—(1/6)x+e

A
‘Clz(h)\—l - a2Q1’ < X THHA0/3)x—e,
2

However, we know from (1.6) that there is a convergent a/q to A1/A2 with

X0 (1-00/3%) ¢ o« x1-(10/3)x

Indeed, if not, there would be two convergent denominators q; and qj+1 Satisfyin
J Jj+ g
q; < X (I-w)(1 (10/3)X), qj+1 > X 1 (10/3)X.

Thus we have ¢; < qjl_ﬁ" , which is in contradiction with (1.6).

Then, the expression corresponding to (6.15) is

4

1 Sic1(7a)

J=1

2
K(a)da

A(Y17Y2;U7Ql ,Qz2)

47/304(4/3)x+4e
TXAT/B0H U/t < 7 XAT/30+(4/3)x+He—(1-w)(1-(10/3)x)

< 7XAT/30—(1/6)x+de—(1-w)+(1/6)X(29-20w) o - y4T/30—(1/6)x-+4e

by our choice of x. Thus the expression corresponding to (6.4) in Lemma 6.2 is

(7.9) /

Recall ¢ = ¢U¢. Combining (7.4), (7.8) and (7.9), the second part of Theorem 1.2
follows immediately by modifying our argument in (7.6). d

4

1 Sic1(7a)

j=1

2
K(a)da < 7 X 47/30=(1/6)x+5e
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