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Abstract. We deal with complete submanifolds with weighted Poincaré inequality. By
assuming the submanifold is δ-stable or has sufficiently small total curvature, we establish
two vanishing theorems for Lp harmonic 1-forms, which are extensions of the results of
Dung-Seo and Cavalcante-Mirandola-Vitório.
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1. Introduction

The topological property and vanishing theorems of submanifolds in various am-
bient spaces have been studied during a few past years. Specially, the nonexistence
of nontrivial L2 harmonic 1-forms on a complete noncompact submanifold has been
studied by many geometricians. Palmer in [17] proved that a complete minimal
hypersurface in the Euclidean space Rn+1 has no nontrivial L2 harmonic 1-forms.
Thereafter, using Bochner’s vanishing technique, Miyaoka in [16] showed that a com-
plete orientable noncompact stable minimal hypersurface in a Riemannnian manifold
with nonnegative sectional curvature has no nontrivial L2 harmonic 1-forms. Later,
this result was extended to more general ambient spaces, see [12], [15], [24]. Seo
in [19] proved the vanishing theorem holds for a complete stable minimal hypersur-
face in Hn+1 with the first eigenvalue of the Laplacian satisfying λ1 > (2n−1)(n−1).
Moreover, Dung and Seo in [5] obtained the vanishing result holds for a complete
noncompact stable non-totally geodesic minimal hypersurface in a Riemannian mani-
fold N with K 6 KN , K 6 0 and λ1(M) > −K(2n− 1)(n− 1). Moreover, it turned
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out that these vanishing theorems hold for more general Riemannian manifolds with
property (P̺). We say that an n-dimensional complete Riemannian manifold M has
property (P̺), if a weighted Poincaré inequality is valid onM with some nonnegative
weight function ̺(x), namely

(1.1)
∫

M

̺(x)η2 6

∫

M

|∇η|2, ∀ η ∈ C∞
0 (M).

Moreover, the ̺-metric, defined by ds2̺ = ̺ ds2M , is complete. In particular, if λ1(M)

is assumed to be positive, then obviouslyM possesses property (P̺) with ̺ = λ1(M).
So, the notion of property (P̺) may be viewed as a generalization of the assump-
tion λ1(M) > 0. Recently, Sang and Thanh in [18] proved that a complete non-
compact stable minimal hypersurface with property (P̺) in a Riemannian manifold
N has no nontrivial L2 harmonic 1-form if the sectional curvature of N satisfies
KN(x) > −(1− τ)̺(x)/((2n− 1)(n− 1)), 0 < τ 6 1, and ̺(x) satisfies a certain
growth condition.
A natural question is how about the nonexistence results of nontrivial Lp, p 6= 2,

harmonic 1-forms of submanifolds? Yau in [25] proved that there are no noncon-
stant Lp, 1 < p < ∞, harmonic functions on a complete Riemannian manifold. Li
and Schoen in [14] proved that Yau’s result is valid for Lp, 0 < p < ∞, harmonic
functions on a complete manifold with nonnegative Ricci curvature. For Lp har-
monic forms, Greene and Wu in [8] and [9] showed that there are no nontrivial Lp,
1 6 p < ∞, ones on a complete Riemannian manifold or a Kähler manifold of non-
negative curvature. Recently, Seo in [21] considered this problem, and proved that
there are no nontrivial L2p harmonic 1-forms on a stable minimal hypersurface Mn

of a Riemannian manifold N with KN > K, K 6 0, under the assumption

λ1(M) >
−2n(n− 1)2p2K

2n− [(n− 1)p− n]2

for 0 < p < n/(n− 1)+
√
2n. Besides, Dung and Seo in [6] considered the problem on

a complete δ-stability hypersurface in a Riemannian manifold with nonnegative sec-
tional curvature. First, we recall the definition of δ-stability which is a generalization
of the usual stability.

Definition 1.1. Let Mn be an n-dimensional orientable hypersurface in a Rie-
mannian manifold N . We say M is δ-stable for 0 < δ 6 1 if the inequality

(1.2)
∫

M

|∇η|2 > δ

∫

M

(|A|2 +Ric(ν, ν))η2

holds for any η ∈ C∞
0 (M), where ν is a unit normal vector field on M , Ric is the

Ricci curvature of N and A is the second fundamental form of M .
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It is obvious that δ1-stability implies δ2-stability for 0 < δ2 < δ1 6 1. In particular,
if M is stable, then M is δ-stable for 0 < δ 6 1.
For δ-stable complete hypersurfaces in a Riemannian manifold, there have been

some vanishing theorems. For δ > 1/8, Kawai in [11] proved that a δ-stable complete
minimal surface in R3 must be a plane. Tam and Zhou in [23] showed that a complete
(n− 2)/n-stable minimal hypersurface in the Euclidean space is either a hyperplane
or a catenoid if its second fundamental form satisfies some decay conditions. Dung
and Seo in [6] proved the following vanishing theorem.

Theorem 1.2 ([6]). Let Mn, 2 6 n 6 6, be a complete orientable noncompact

hypersurface in a complete manifold N with nonnegative sectional curvature. If the

δ-stability inequality (1.2) holds on M for some (n− 2)/(2
√
n− 1) < δ 6 1, then

there is no nontrivial L2p harmonic 1-form on M for any constant p satisfying

2δ√
n− 1

(
1−

√
1− n− 2

2δ
√
n− 1

)
< p <

2δ√
n− 1

(
1 +

√
1− n− 2

2δ
√
n− 1

)
.

In the first part of this paper, motivated by all the above results, we will consider
the nonexistence of a nontrivial Lp harmonic 1-form of a complete δ-stable hypersur-
face with property (P̺) in a Riemannian manifold with sectional curvature bounded
below by a nonpositive function. More precisely, we have the following theorem.

Theorem 1.3. Let Mn, 2 6 n 6 6, be a complete noncompact hypersurface with

property (P̺) in an (n+ 1)-dimensional Riemannian manifold N . Assume that

KN(x) > − (1− τ)̺(x)

(2n− 1)(n− 1)
∀x ∈ M

for some τ : (122 − 51
√
5)(12 + 4

√
5)−1 < τ 6 1. If the δ-stability inequality (1.2)

holds on M for some δ : (n − 2)(2
√
n− 1− (n− 2)C0)

−1 < δ 6 1, then there is no

nontrivial L2p harmonic 1-form on M for any constant p satisfying C1(n, δ, τ) < p <

C2(n, δ, τ), where

C0 =
(2
√
n− 1 + n)(1 − τ)

(2n− 1)(n− 1)
,

C1(n, δ, τ) =
2δ
(
1−

√
1− n−2

2δ
√
n−1

(1 + C0δ)
)

√
n− 1(1 + C0δ)

,

C2(n, δ, τ) =
2δ
(
1 +

√
1− n−2

2δ
√
n−1

(1 + C0δ)
)

√
n− 1(1 + C0δ)

.
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Remark 1.4. (i) When τ ≡ 1, i.e. KN > 0 and C0 ≡ 0 on M , we obtain
Theorem 1.2. In this case, |ω| is a constant from the proof of Theorem 1.3, and using
Lemma 2.5 we conclude that ω ≡ 0. As a result, the assumption of property (P̺)

of M is not needed.
(ii) If we relax τ in Theorem 1.3 to 0 < τ 6 1, then Theorem 1.3 holds

only when the dimension of M is 2, 3, 4, 5, because from (3.12) we know that
(n− 2)/(2

√
n− 1− (n− 2)C0) < δ 6 1 holds only when 2 6 n 6 5.

(iii) When δ = 1 and p = 1, Theorem 1.3 is just Theorem 1.2 in [4].

If we choose ̺(x) = λ1(M) in Theorem 1.3, we have the following corollary.

Corollary 1.5. Let Nn+1 be an (n+ 1)-dimensional Riemannian manifold with

sectional curvatureKN > K, whereK is a nonpositive constant. LetMn, 2 6 n 6 6,

be a complete noncompact hypersurface in N . Assume further that

λ1(M) > − (2n− 1)(n− 1)K

1− τ

for some constant τ : (122− 51
√
5)(12 + 4

√
5)−1 < τ < 1. If the δ-stability in-

equality (1.2) holds on M for some (n − 2)(2
√
n− 1− (n− 2)C0)

−1 < δ 6 1, then

there is no nontrivial L2p harmonic 1-form on M for any constant p satisfying

C1(n, δ, τ) < p < C2(n, δ, τ), where C0, C1(n, δ, τ) and C2(n, δ, τ) are defined in

Theorem 1.3.

Moreover, we can prove a vanishing theorem for Lp harmonic 1-forms on complete
noncompact hypersurfaces with property (P̺) similar to Theorem 1.3 except for the
condition that the lower bound of KN depends on δ, p, ̺. More precisely, we have

Theorem 1.6. Let Nn+1 be an (n + 1)-dimensional Riemannian manifold, and

let Mn, 2 6 n 6 6, be a complete noncompact hypersurface satisfying the weighted

Poincaré inequality for some nonnegative function ̺ inN . If the δ-stability inequality

(1.2) holds on M for some (n− 2)/(2
√
n− 1) < δ 6 1, and

KN > −4pδ(n− 1)− 2(n− 2)δ − (n− 1)
√
n− 1p2

δp2(n− 1)(2n− 2 + n
√
n− 1)

̺,

where p satisfies

2δ√
n− 1

(
1−

√
1− n− 2

2δ
√
n− 1

)
< p <

2δ√
n− 1

(
1 +

√
1− n− 2

2δ
√
n− 1

)
,

then there is no nontrivial L2p harmonic 1-form on M .
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On the other hand, without the assumption of stability, some vanishing theorems
about L2 harmonic 1-forms have also been obtained. In [26], Yun proved that if
M →֒ R

n+1 is a complete minimal hypersurface with sufficiently small total scalar
curvature ‖A‖2Ln , then there is no nontrivial L2 harmonic 1-form on M . Later, Seo
in [20] proved this result is valid for a complete minimal hypersurface in a hyper-
bolic space. Thereafter, it turned out that these vanishing theorems hold for more
general submanifolds, see [2], [7]. Recently, Cavalcante, Mirandola and Vitório in [3]
showed that a complete noncompact submanifold M in a Hadamard manifold N

with sectional curvature satisfying −k2 6 KN 6 0 has no nontrivial L2 harmonic
1-forms, if the total curvature ‖Φ‖2Ln is sufficiently small, and with the additional

assumption λ1(M) > (n− 1)2n−1
(
k2 − inf

M
H2
)
in the case of KN 6≡ 0. After that,

Dung and Seo in [6] proved a similar vanishing theorem for L2 harmonic 1-forms on
complete noncompact submanifolds under the same assumption as in [3] except for
the condition that the lower bound of λ1(M) depends on ‖Φ‖2Ln.

In the second part of this paper, motivated by the above results, we prove the
following nonexistence result of Lp harmonic 1-forms on a complete noncompact
submanifold with property (P̺), assuming that the total curvature of the submani-
fold is sufficiently small instead of the assumption of δ-stability. More precisely, We
have the following vanishing theorem which is an extension of Theorem 1.2 in [3] and
Theorem 1.5 in [4].

Theorem 1.7. Let Mn be a complete noncompact submanifold with prop-

erty (P̺) for some nonnegative function ̺ in a Riemannian manifold N . Assume

that

0 > KN(x) > −n(1− τ)

(n− 1)2
̺(x) − γ inf

M
H2 ∀x ∈ M

for some constants τ : 0 < τ < 1 and γ : 0 6 γ < 1. If there exists a sufficiently small

positive constant Λ such that ‖Φ‖Ln < Λ, then there is no nontrivial L2p harmonic

1-form on M , where p satisfies

n− 1−
√
(n− 1)2 − n(n− 2)(1− τ)

n(1− τ)
< p <

n− 1 +
√
(n− 1)2 − n(n− 2)(1− τ)

n(1 − τ)
.

In particular, if we choose ̺(x) = λ1(M) in Theorem 1.7, we get the following
corollary.

Corollary 1.8. Let N be a Riemannian manifold with 0 > KN > K, where K

is a nonpositive constant. Let Mn be a complete noncompact submanifold in N . In
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the case of KN 6≡ 0, assume further that

λ1(M) >
(n− 1)2

(1 − τ)n

(
−K − γ inf

M
H2
)

for some constants τ : 0 < τ < 1 and γ : 0 6 γ < 1. If there exists a positive

constant Λ such that ‖Φ‖Ln < Λ, then there is no nontrivial L2p harmonic 1-form

on M , where p satisfies

n− 1−
√
(n− 1)2 − n(n− 2)(1− τ)

n(1− τ)
< p <

n− 1 +
√
(n− 1)2 − n(n− 2)(1− τ)

n(1 − τ)
.

IfM is a complete minimal submanifold in Theorem 1.7, we also obtain a vanishing
result on L2p harmonic 1-forms. In this case, the upper bound of ‖A‖Ln has a specific
expression which depends on p, n and the lower bound of the sectional curvature of
the ambient space.

Theorem 1.9. Let Mn be a complete noncompact minimal submanifold with

property (P̺) for some nonnegative function ̺ in a Riemannian manifold N . Assume

that

0 > KN (x) > −n(1− τ)

(n− 1)2
̺(x) ∀x ∈ M

for some 0 < τ < 1, and

‖A‖2Ln < n
2(n− 1)p− n+ 2− n(1− τ)p2

(n− 1)2p2S

for some
(
n− 1−

√
(n− 1)2 − n(n− 2)(1− τ)

)
n−1(1 − τ)−1 < p <

(
n − 1 +√

(n− 1)2 − n(n− 2)(1− τ)
)
n−1(1 − τ)−1, where S = S(n, 2) is the Sobolev con-

stant in Lemma 2.6. Then there is no nontrivial L2p harmonic 1-form on M .

2. Some lemmas

Let us recall some useful results which will be used in the proofs of the main the-
orems. The first two lemmas are the Bochner-Weitzenböck formula and the refined
Kato inequality for L2 harmonic forms.

Lemma 2.1 ([13]). Given a Riemannian manifold Mn for any 1-form ω on Mn

we have

∆|ω|2 = 2|∇ω|2 + 2〈∆ω, ω〉+ 2Ric(ω♯, ω♯),

where ω♯ is the dual vector field of ω.
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Lemma 2.2 ([1]). Given a Riemannian manifold Mn for any closed and coclosed

k-form ω on Mn we have

|∇ω|2 > Cn,k

∣∣∇|ω|
∣∣2, where Cn,k =





n− k + 1

n− k
, 1 6 k 6

n

2
,

k + 1

k
,

n

2
6 k 6 n− 1.

What’s more, Shiohama and Xu in [22] proved the following estimate on the Ricci
curvature of a submanifold.

Lemma 2.3 ([22]). Let M be an n-dimensional complete immersed hypersurface

in a Riemannian manifold N . If all sectional curvatures of N are bounded pointwise

from below by a function k, then

Ric > (n− 1)(H2 + k)− n− 1

n
|Φ|2 − (n− 2)

√
n(n− 1)

n
|H ||Φ|.

We should note that in [22], the author assumed that all sectional curvatures of N
are bounded below by a constant k. But according to his argument, this assumption
was only used at the end of the proof, hence this method can be used to prove the
above lemma without any change.

Lemma 2.4. Let Mn be an n-dimensional orientable submanifold in a Rieman-

nian manifold N . Assuming that H is the mean curvature and A is the second

fundamental form of M , we have

(2.1) 2(n− 1)H2− (n− 2)
√
n(n− 1)

n
|H |
√
|A|2 − nH2 >

2(n− 1)− n
√
n− 1

2n
|A|2.

P r o o f. If |A| = 0, then from |A|2 − nH2 = |Φ|2 > 0 we have H ≡ 0. Thus the
inequality (2.1) is trivial. Now we assume that |A| > 0. We define fn(t) on [0, 1/

√
n]

by

fn(t) = 2(n− 1)t2 − (n− 2)
√
n(n− 1)

n
t
√
1− nt2.

Supposing that c is a constant such that min
[0,1/

√
n]
fn(t) > c, we have

2(n− 1)t2 − (n− 2)
√
n(n− 1)

n
t
√
1− nt2 > c ∀ t ∈

[
0,

1√
n

]
,
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i.e.
n3(n− 1)x2 − (n− 1)(4cn+ (n− 2)2)x+ c2n > 0,

where x = t2 for all x ∈ [0, 1/n]. A simple computation shows that this inequality is
equivalent to

gn(c) = 4n2c2 − (n− 2)2(n− 1)− 8cn(n− 1) > 0.

The discriminant of gn(c) is ∆ = 16n4(n − 1). Thus we get that c 6 (2(n − 1) −
n
√
n− 1)/(2n), which completes the proof. �

Moreover, we will need the conditions for the volume of the Riemannian manifold
to be infinite.

Lemma 2.5 ([6]). Let Mn be a complete oriented noncompact immersed hyper-

surface in a complete Riemannian manifold Nn+1 with nonnegative sectional curva-

ture. If the δ-stability inequality (1.2) holds on M for a constant δ : 0 < δ 6 1, then

the volume of M is infinite.

In addition, the following Hoffman-Spruch inequality is also useful.

Lemma 2.6 ([10]). Let x : Mn →֒ N be an isometric immersion of a complete

manifold M in a complete simply connected manifold N with nonpositive sectional

curvature. Then for all 1 6 l < n, the following inequality holds:

(∫

M

hln/(n−l) dV

)(n−l)/n

6 S(n, l)

∫

M

(|∇h|l + (h|H |)l) dV

for all nonnegative C1-functions h : Mn → R with compact support, where

S(n, l)1/l = c(n)2l(n− 1)/(n− l) and c(n) is a positive constant, depending only

on n.

The last but most important lemma was proved by Vieira in [24].

Lemma 2.7 ([24]). LetM be a complete manifold satisfying a weighted Poincaré
inequality with a weight function ̺. Suppose a smooth function u on M satisfies the

differential inequality

u∆u > −a̺u2 + b|∇u|2

for a constant 0 < a < 1 + b, and assume
∫

M

u2 < ∞.

Then the function u is a constant. Moreover, if u is not identically zero, then the

volume of M is finite and the weight function ̺ is identically zero.
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3. Proof of the main theorems

P r o o f of Theorem 1.3. Let ω be an L2p harmonic 1-form. Using the Weitzen-
böck formula and the Kato inequality, we get that

(3.1) |ω|∆|ω| > 1

n− 1
|∇|ω||2 +Ric(ω♯, ω♯).

Under our hypothesis on the sectional curvature of N , we can estimate the Ricci
curvature of M by using Lemma 2.3 and Lemma 2.4:

RicM > −(n− 1)
(1− τ)̺

(2n− 1)(n− 1)
+ (n− 1)H2− n− 1

n
|Φ|2 − (n− 2)

√
n(n− 1)

n
|H ||Φ|

= − (1− τ)̺

2n− 1
+ 2(n− 1)H2− (n− 2)

√
n(n− 1)

n
|H |
√
|A|2 −nH2− n− 1

n
|A|2

> − (1− τ)̺

2n− 1
+

2(n− 1)−n
√
n− 1

2n
|A|2 − n− 1

n
|A|2

= − (1− τ)̺

2n− 1
−

√
n− 1

2
|A|2.

Thus equation (3.1) becomes

(3.2) |ω|∆|ω| > 1

n− 1
|∇|ω||2 − (1 − τ)̺

2n− 1
|ω|2 −

√
n− 1

2
|A|2|ω|2.

Given any α > 0, using (3.2) we have that

(3.3) |ω|α∆|ω|α = |ω|α(α(α − 1)|ω|α−2|∇|ω||2 + α|ω|α−1∆|ω|)

=
α− 1

α
|∇|ω|α|2 + α|ω|2α−2|ω|∆|ω|

>

(
1− n− 2

(n− 1)α

)
|∇|ω|α|2 − α

√
n− 1

2
|A|2|ω|2α − (1− τ)̺α

2n− 1
|ω|2α.

Given s > 0 and a smooth function η with compact support in M , multiplying both
sides of the inequality (3.3) by |ω|2sαη2 and integrating over M , we obtain that

(
1− n− 2

(n− 1)α

) ∫

M

|ω|2sα|∇|ω|α|2η2

6

∫

M

|ω|(2s+1)αη2∆|ω|α +
α
√
n− 1

2

∫

M

|A|2|ω|2(s+1)αη2

+
α(1− τ)

2n− 1

∫

M

̺|ω|2(s+1)αη2

= − (2s+ 1)

∫

M

|ω|2sα|∇|ω|α|2η2 − 2

∫

M

η|ω|(2s+1)α〈∇η,∇|ω|α〉

+
α
√
n− 1

2

∫

M

|A|2|ω|2(s+1)αη2 +
α(1− τ)

2n− 1

∫

M

̺|ω|2(s+1)αη2,
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i.e.

(3.4)
(
2(s+ 1)− n− 2

(n− 1)α

) ∫

M

|ω|2sα|∇|ω|α|2η2

6 − 2

∫

M

η|ω|(2s+1)α〈∇η,∇|ω|α〉+ α
√
n− 1

2

∫

M

|A|2|ω|2(s+1)αη2

+
α(1 − τ)

2n− 1

∫

M

̺|ω|2(s+1)αη2.

On the other hand, replacing η by |ω|(s+1)αη in (1.2) and applying the lower bound
of the sectional curvature of N allows us to conclude that

(3.5) δ

∫

M

|A|2|ω|2(s+1)αη2 6

∫

M

|∇(|ω|(s+1)αη)|2 + nδ(1− τ)

(2n− 1)(n− 1)

∫

M

̺|ω|2(s+1)αη2

= (s+1)2
∫

M

|ω|2sα|∇|ω|α|2η2 +
∫

M

|ω|2(s+1)α|∇η|2

+ 2(s+1)

∫

M

|ω|(2s+1)αη〈∇η,∇|ω|α〉

+
nδ(1− τ)

(2n− 1)(n− 1)

∫

M

̺|ω|2(s+1)αη2.

Combining (3.4) with (3.5), we obtain that

(3.6)
(
2(s+ 1)− n− 2

(n− 1)α
− α

√
n− 1

2

(s+ 1)2

δ

) ∫

M

|ω|2sα|∇|ω|α|2η2

6
α
√
n− 1

2δ

∫

M

|ω|2(s+1)α|∇η|2 + E

∫

M

̺|ω|2(s+1)αη2

+
(α

√
n− 1

2

2(s+ 1)

δ
− 2
)∫

M

|ω|(2s+1)αη〈∇η,∇|ω|α〉,

where

E =
(n

√
n− 1

2
+ n− 1

) α(1 − τ)

(2n− 1)(n− 1)
.

From the assumption of weighted Poincaré inequality, we obtain that

(3.7)
∫

M

̺(|ω|2(s+1)αη2) 6

∫

M

|∇(|ω|(s+1)αη)|2

= (s+ 1)2
∫

M

|ω|2sα|∇|ω|α|2η2 +
∫

M

|ω|2(s+1)α|∇η|2

+ 2(s+ 1)

∫

M

|ω|(2s+1)αη〈∇η,∇|ω|α〉.
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Plugging (3.7) into (3.6) implies that

(3.8) B

∫

M

|ω|2sα|∇|ω|α|2η2 6 C

∫

M

|ω|2(s+1)α|∇η|2

+ 2D

∫

M

|ω|(2s+1)αη〈∇η,∇|ω|α〉,

where

B = 2(s+ 1)− n− 2

(n− 1)α
− α

√
n− 1

2

(s+ 1)2

δ
− E(s+ 1)2,

C =
α
√
n− 1

2δ
+ E,

D =
α
√
n− 1

2

(1 + s)

δ
− 1 + E(s+ 1).

For any ε > 0, using the Cauchy-Schwarz inequality, we can rewrite equation (3.8)
as

(3.9) (B − |D|ε)
∫

M

|ω|2sα|∇|ω|α|2η2 6

(
C + |D|1

ε

) ∫

M

|ω|2(s+1)α|∇η|2.

Now if we let p = (s+ 1)α, we see that

(3.10) B = 2(s+ 1)− n− 2

(n− 1)α
− α

√
n− 1

2

(s+ 1)2

δ
− E(s+ 1)2

=
1

α

{
2p− n− 2

n− 1
−

√
n− 1

2δ
p2 −

(n
√
n− 1

2
+ n− 1

) (1− τ)

(2n− 1)(n− 1)
p2
}

=
1

α

{
2p− n− 2

n− 1
−

√
n− 1

2

[1
δ
+
(
n+ 2

√
n− 1

) (1− τ)

(2n− 1)(n− 1)

]
p2
}
.

Let

f(p) = −
√
n− 1

2

[1
δ
+
(
n+ 2

√
n− 1

) (1 − τ)

(2n− 1)(n− 1)

]
p2 + 2p− n− 2

n− 1
,

then the discriminant of f(p) is

(3.11) ∆ = 4
(
1− n− 2

2
√
n− 1

[1
δ
+

(n+ 2
√
n− 1)(1− τ)

(2n− 1)(n− 1)

])
> 0,

which is satisfied under the assumption

n− 2

2
√
n− 1− (n−2)(n+2

√
n−1)(1−τ)

(n−1)(2n−1)

< δ.
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Let
g(n) =

n− 2

2
√
n− 1− (n−2)(n+2

√
n−1)(1−τ)

(n−1)(2n−1)

;

when 2 6 n 6 6 and 122−51
√
5

12+4
√
5

< τ 6 1, we can see that

(3.12) g(2) = 0 < δ 6 1,

g(3) =
1

2
√
2− 1

10 (3 + 2
√
2)(1− τ)

< δ 6 1,

g(4) =
2

2
√
3− 2

21 (4 + 2
√
3)(1− τ)

< δ 6 1,

g(5) =
3

4− 3
4 (1 − τ)

< δ 6 1,

g(6) =
4

2
√
5− 4

55 (6 + 2
√
5)(1− τ)

< δ 6 1.

Consequently, (3.11) is true under the assumption

n− 2

2
√
n− 1− (n−2)(n+2

√
n−1)(1−τ)

(n−1)(2n−1)

< δ 6 1.

The condition C1 < p < C2 allows us to conclude that f(p) > 0, or equivalently
B > 0. Therefore, for a sufficiently small ε > 0, we have

B − |D|ε > 0.

For every r > 0, let Br denote the geodesic ball of radius r on M centered at a fixed
point and let η ∈ C∞

0 (M) be a smooth function such that

{
η = 1 on Br,

η = 0 on M \B2r

and |∇η| 6 1/r on B2r \Br. Then the inequality (3.9) becomes

∫

Br

|ω|2sα|∇|ω|α|2 6
F

r2

∫

B2r

|ω|2p,

i.e. ∫

Br

|∇|ω|p|2 6
F (s+ 1)2

r2

∫

B2r

|ω|2p,

where F > 0 is a constant which depends on n, ε, δ, p, α. Using the fact that ω ∈
L2p(M) and letting r → ∞ allows us to conclude that |ω| is a constant. Consequently,
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we can get that ω ≡ 0. Otherwise, if ̺ ≡ 0, i.e. KN > 0, from Lemma 2.5 we
can conclude that the volume of M is infinite. However, the fact ω ∈ L2p infers∫
M

|ω|2p < ∞, i.e., the volume ofM is finite, which is a contradiction. If ̺ 6≡ 0, from
equation (3.7) we deduce that ∫

M

̺|ω|2p = 0,

which implies that ̺ ≡ 0. So the space of L2p harmonic 1-forms must be trivial. �

P r o o f of Theorem 1.6. Let KN > −k̺, where

k <
4pδ(n− 1)− 2(n− 2)δ − (n− 1)

√
n− 1p2

δp2(n− 1)(2n− 2 + n
√
n− 1)

.

Similarly to the proof of Theorem 1.3, we obtain that

B̃

∫

M

|ω|2sα|∇|ω|α|2η2 6 C̃

∫

M

|ω|2(s+1)α|∇η|2 + 2D̃

∫

M

|ω|(2s+1)αη〈∇η,∇|ω|α〉,

where

Ẽ =
(n

√
n− 1

2
+ n− 1

)
kα,

B̃ = 2(s+ 1)− n− 2

(n− 1)α
− α

√
n− 1

2

(s+ 1)2

δ
− Ẽ(s+ 1)2,

C̃ =
α
√
n− 1

2δ
+ Ẽ,

D̃ =
α
√
n− 1

2

(s+ 1)

δ
− 1 + Ẽ(s+ 1).

For any ε > 0, applying the Cauchy-Schwarz inequality, we have that

(B̃ − |D̃|ε)
∫

M

|ω|2sα|∇|ω|α|2η2 6

(
C̃ + |D̃|1

ε

)∫

M

|ω|2(s+1)α|∇η|2.

Let p = (s+ 1)α, then we have

B̃ =
1

α

{
2p− n− 2

n− 1
−

√
n− 1

2δ
p2 −

(n
√
n− 1

2
+ n− 1

)
kp2
}
.

Let
f̃(p) = −(n− 1)

√
n− 1p2 + 4δ(n− 1)p− 2δ(n− 2),

then the discriminant of f̃(p) is

∆ = 16δ2(n− 1)2
(
1− n− 2

2δ
√
n− 1

)
> 0,
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which is satisfied under the assumption 1
2 (n− 2)/

√
n− 1 < δ 6 1. Thus from the

conditions on p, we see that f̃(p) > 0. Moreover, the condition

k <
4pδ(n− 1)− 2(n− 2)δ − (n− 1)

√
n− 1p2

δp2(n− 1)(2n− 2 + n
√
n− 1)

allows us to conclude that

B̃ =
1

α

{
2p− n− 2

n− 1
−

√
n− 1

2δ
p2 −

(n
√
n− 1

2
+ n− 1

)
kp2
}

=
1

α

{4δ(n− 1)p− 2δ(n− 2)− (n− 1)
√
n− 1p2

2δ(n− 1)
−
(n

√
n− 1

2
+ n− 1

)
kp2
}

=
1

α

{ f̃(p)

2δ(n− 1)
−
(n

√
n− 1

2
+ n− 1

)
kp2
}
> 0.

Therefore, for a sufficiently small ε > 0, we have B̃ − |D̃|ε > 0. Using the same
argument as before, we complete the proof of Theorem 1.6. �

P r o o f of Theorem 1.7. Let ω be an L2p harmonic 1-form on M . Using the
Weitzenböck formula and the Kato inequality, we get that

(3.13) |ω|∆|ω| > 1

n− 1
|∇|ω||2 +Ric(ω♯, ω♯).

Under our hypothesis on the sectional curvature of N , we can estimate the Ricci
curvature of M by using Lemma 2.3:

RicM (ω♯, ω♯) > − (n− 1)
n(1− τ)

(n− 1)2
̺|ω|2 − (n− 1)γ inf

M
H2|ω|2 + (n− 1)H2|ω|2

− n− 1

n
|Φ|2|ω|2 − (n− 2)

√
n(n− 1)

n
|H‖Φ‖ω|2

= − n(1− τ)

n− 1
̺|ω|2 − (n− 1)γ inf

M
H2|ω|2 + (n− 1)H2|ω|2

− n− 1

n
|Φ|2|ω|2 − (n− 2)

√
n(n− 1)

n
|H ||Φ||ω|2.

Plugging this inequality into (3.13) implies that

(3.14) |ω|∆|ω| > 1

n− 1
|∇|ω||2 − n(1− τ)

n− 1
̺|ω|2 − (n− 1)γ inf

M
H2|ω|2

+ (n− 1)H2|ω|2 − n− 1

n
|Φ|2|ω|2 − (n− 2)

√
n(n− 1)

n
|H ||Φ||ω|2.
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Applying (3.14), we get that

(3.15) |ω|p∆|ω|p =
p− 1

p
|∇|ω|p|2 + p|ω|2p−2|ω|∆|ω|

>

(
1− n− 2

(n− 1)p

)
|∇|ω|p|2 − n(1 − τ)

n− 1
p̺|ω|2p

− (n− 1)γp inf
M

H2|ω|2p + (n− 1)pH2|ω|2p

− (n− 1)p

n
|Φ|2|ω|2p − (n− 2)p

√
n(n− 1)

n
|H ||Φ||ω|2p.

For any η ∈ C∞
0 (M), multiplying both sides of (3.15) by η2 and integrating by parts

allows us to conclude that

(
1− n− 2

(n− 1)p

) ∫

M

η2|∇|ω|p|2

6

∫

M

η2|ω|p∆|ω|p + pn(1− τ)

n− 1

∫

M

̺η2|ω|2p + (n− 1)γp inf
M

H2

∫

M

η2|ω|2p

− (n− 1)p

∫

M

η2H2|ω|2p + (n− 1)p

n

∫

M

η2|Φ|2|ω|2p

+
(n− 2)p

√
n(n− 1)

n

∫

M

η2|H ||Φ||ω|2p

= −
∫

M

η2|∇|ω|p|2 − 2

∫

M

η|ω|p〈∇η,∇|ω|p〉+ pn(1− τ)

n− 1

∫

M

̺η2|ω|2p

+ (n− 1)γp inf
M

H2

∫

M

η2|ω|2p − (n− 1)p

∫

M

η2H2|ω|2p

+
(n− 1)p

n

∫

M

η2|Φ|2|ω|2p + (n− 2)p
√
n(n− 1)

n

∫

M

η2|H ||Φ||ω|2p,

i.e.

(3.16)
(
2− n− 2

(n− 1)p

)∫

M

η2|∇|ω|p|2

6 − 2

∫

M

η|ω|p〈∇η,∇|ω|p〉+ pn(1− τ)

n− 1

∫

M

η2̺|ω|2p

+
(n− 1)p

n

∫

M

η2|Φ|2|ω|2p

+ (n− 1)γp inf
M

H2

∫

M

η2|ω|2p − (n− 1)p

∫

M

η2H2|ω|2p

+
(n− 2)p

√
n(n− 1)

n

∫

M

η2|H ||Φ||ω|2p.
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For any a > 0, we have the Cauchy-Schwarz inequality

(3.17)
(n− 2)p

√
n(n− 1)

n

∫

M

η2|H ||Φ||ω|2p

6
a(n− 2)p

√
n(n− 1)

2n

∫

M

H2η2|ω|2p + (n− 2)p
√
n(n− 1)

2na

∫

M

|Φ|2η2|ω|2p.

Applying formula (3.17) to (3.16) we get

(3.18)
(
2− n− 2

(n− 1)p

) ∫

M

η2|∇|ω|p|2

6 −2

∫

M

η|ω|p〈∇η,∇|ω|p〉+ pn(1− τ)

n− 1

∫

M

η2̺|ω|2p

+ (n− 1)γp inf
M

H2

∫

M

η2|ω|2p + C

∫

M

η2H2|ω|2p +B

∫

M

η2|Φ|2|ω|2p,

where

(3.19) B = B(n, a, p) =
(n− 1)p

n
+

(n− 2)p
√
n(n− 1)

2na
,

C = C(n, a, p) = −(n− 1)p+
a(n− 2)p

√
n(n− 1)

2n
.

On the other hand, Lemma 2.6 and the Hölder inequality imply that

(3.20)
∫

M

η2|Φ|2|ω|2p 6

(∫

M

|Φ|n
)2/n(∫

M

(|ωpη|)2n/(n−2)

)(n−2)/n

6 S‖Φ‖2Ln

∫

M

(
|∇(|ωpη|)|2 + η2|ω|2pH2

)

= S‖Φ‖2Ln

(∫

M

η2|∇|ω|p|2 +
∫

M

|∇η|2|ω|2p + 2

∫

M

η|ω|p〈∇η,∇|ω|p〉
)

+ S‖Φ‖2Ln

∫

M

η2|ω|2pH2,

where ‖Φ‖2Ln =
(∫

M
|Φ|n

)2/n
and S = S(n, 2) is a constant in Lemma 2.6. Plugging

(3.20) into (3.18) yields that

(3.21)
(
2− n− 2

(n− 1)p
−BS‖Φ‖2Ln

)∫

M

η2|∇|ω|p|2

6 2(BS‖Φ‖2Ln − 1)

∫

M

η|ω|p〈∇η,∇|ω|p〉+ pn(1− τ)

n− 1

∫

M

η2̺|ω|2p

+ (n− 1)γp inf
M

H2

∫

M

η2|ω|2p + (C +BS‖Φ‖2Ln)

∫

M

η2H2|ω|2p

+BS‖Φ‖2Ln

∫

M

|∇η|2|ω|2p.
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The property (P̺) implies that

(3.22)
∫

M

̺|ω|2pη2 6

∫

M

|∇(|ω|pη)|2 =

∫

M

η2|∇|ω|p|2

+

∫

M

|ω|2p|∇η|2 + 2

∫

M

η|ω|p〈∇η,∇|ω|p〉.

Combining (3.22) with (3.21), we deduce that

(3.23) D

∫

M

η2|∇|ω|p|2 −G

∫

M

η2H2|ω|2p

6 E

∫

M

|∇η|2|ω|2p + (n− 1)γp inf
M

H2

∫

M

η2|ω|2p

+ 2F

∫

M

η|ω|p〈∇η,∇|ω|p〉,

where

(3.24) D = 2− n− 2

(n− 1)p
− pn(1− τ)

n− 1
−BS‖Φ‖2Ln,

E =
pn(1− τ)

n− 1
+BS‖Φ‖2Ln,

F =
pn(1− τ)

n− 1
+BS‖Φ‖2Ln − 1,

G = C +BS‖Φ‖2Ln.

For any ε > 0, applying the Cauchy-Schwarz inequality again, we see that

(3.25) (D − |F |ε)
∫

M

η2|∇|ω|p|2 −G

∫

M

η2H2|ω|2p

6

(
E + |F |1

ε

)∫

M

|∇η|2|ω|2p + (n− 1)γp inf
M

H2

∫

M

η2|ω|2p.

Choose 0 < b < 1/2, a = a(b) > 0 and Λ = Λ(b) > 0 satisfying

(3.26)






a(n− 2)p
√
n(n− 1)

2n
< (n− 1)bp,

SBΛ2 < (n− 1)bp.

Now we let

(3.27) D = 2− n− 2

(n− 1)p
− pn(1− τ)

n− 1
−BSΛ2,

E =
pn(1− τ)

n− 1
+BSΛ2,

F =
pn(1− τ)

n− 1
+BSΛ2 − 1,

G = C +BSΛ2.
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Assume that the total curvature satisfies ‖Φ‖Ln < Λ. Plugging the above choices
in (3.25), we obtain that

(3.28) (D − |F |ε)
∫

M

η2|∇|ω|p|2 −G

∫

M

η2H2|ω|2p

6

(
E + |F |1

ε

)∫

M

|∇η|2|ω|2p + (n− 1)γp inf
M

H2

∫

M

η2|ω|2p.

Combining equations (3.19), (3.26) with (3.27), we get that

(3.29) −G = (n− 1)p− a(n− 2)p
√
n(n− 1)

2n
−BSΛ2 > (n− 1)p(1− 2b) > 0.

Thus equation (3.28) becomes

(3.30) (D − |F |ε)
∫

M

η2|∇|ω|p|2 − (G+ (n− 1)γp) inf
M

H2

∫

M

η2|ω|2p

6

(
E + |F |1

ε

) ∫

M

|∇η|2|ω|2p.

Then we can choose b sufficiently small as to satisfy that

−(G+ (n− 1)γp) > (n− 1)p(1− γ − 2b) > 0.

Now we let f(p) = −n(1− τ)p2 +2(n− 1)p− n+2. After a simple computation, we
have that the discriminant of f(p) is

∆ = 4[(n− 1)2 − n(n− 2)(1− τ)] > 0.

Consequently, the condition on p implies that f(p) > 0. Choosing sufficiently small
ε > 0, b > 0, we deduce that

D − |F |ε = 2− n− 2

(n− 1)p
− pn(1− τ)

n− 1
−BSΛ2 − |F |ε

=
2(n− 1)p− n+ 2− n(1 − τ)p2

(n− 1)p
−BSΛ2 − |F |ε

=
f(p)

(n− 1)p
−BSΛ2 − |F |ε

>
f(p)

(n− 1)p
− (n− 1)bp− |F |ε > 0.

For every r > 0, let Br denote the geodesic ball of radius r on M centered at a fixed
point and let η ∈ C∞

0 (M) be a smooth function such that
{
η = 1 on Br,

η = 0 on M \B2r
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and |∇η| 6 1/r on B2r \ Br. Using (3.30) with η and the fact that ω ∈ L2p while
letting r → ∞, we conclude

∣∣∇|ω|p
∣∣2 = inf

M
H2|ω|2p = 0,

which implies |ω| is a constant. If |ω| 6= 0, then inf
M

H2 ≡ 0. Using equation (3.28)

with η and taking r → ∞ implies H2|ω|2p ≡ 0, i.e. H2 ≡ 0. Applying the same
way, from equation (3.20) and the fact that ‖Φ‖ < Λ, we obtain that |Φ|2 ≡ 0.
Consequently, equation (3.15) becomes

∣∣ω|p∆|ω
∣∣p >

(
1− n− 2

(n− 1)p

)
|∇|ω|p|2 − n(1 − τ)p

n− 1
̺|ω|2p,

where we have used the Cauchy-Schwarz inequality. From Lemma 2.7, the fact that
f(p) > 0 and ω ∈ L2p(M), we deduce that ̺ ≡ 0 and the volume ofM is finite. Thus
the condition on KN becomes KN > 0. The conclusion H2 = |Φ|2 ≡ 0 implies that
M is totally geodesic in N . Thus M has nonnegative Ricci curvature, which gives
the conclusion that the volume ofM is infinite, see [25], which is a contradiction. So
the space of L2p harmonic 1-forms must be trivial. �

P r o o f of Theorem 1.9. Let ω be an L2p harmonic 1-form on M . Using the
Weitzenböck formula and the Kato inequality, we get that

(3.31) |ω|∆|ω| > 1

n− 1
|∇|ω||2 +Ric(ω♯, ω♯).

Under our hypothesis on the sectional curvature of N , we can estimate the Ricci
curvature of M by using Lemma 2.3:

RicM > −n(1− τ)

n− 1
̺− n− 1

n
|Φ|2.

The minimality of M implies |Φ|2 = |A|2. Thus inequality (3.31) becomes

(3.32) |ω|∆|ω| > 1

n− 1
|∇|ω||2 − n(1− τ)

n− 1
̺|ω|2 − n− 1

n
|A|2|ω|2.

Applying formula (3.32) yields that

(3.33) |ω|p∆|ω|p =
p− 1

p
|∇|ω|p|2 + p|ω|2p−2|ω|∆|ω|

>

(
1− n− 2

(n− 1)p

)
|∇|ω|p|2 − (n− 1)p

n
|A|2|ω|2p

− pn(1− τ)

n− 1
̺|ω|2p.
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For any η ∈ C∞
0 (M), multiplying both sides of (3.33) by η2 and integrating by parts,

we obtain

(
1− n− 2

(n− 1)p

)∫

M

η2|∇|ω|p|2 6

∫

M

η2|ω|p∆|ω|p + p(n− 1)

n

∫

M

η2|A|2|ω|2p

+
pn(1− τ)

n− 1

∫

M

η2̺|ω|2p

= −
∫

M

η2|∇|ω|p|2 − 2

∫

M

η|ω|p〈∇η,∇|ω|p〉

+
p(n− 1)

n

∫

M

η2|A|2|ω|2p + pn(1− τ)

n− 1

∫

M

η2̺|ω|2p,

i.e.

(3.34)
(
2− n− 2

(n− 1)p

)∫

M

η2|∇|ω|p|2 6 −2

∫

M

η|ω|p〈∇η,∇|ω|p〉

+
p(n− 1)

n

∫

M

η2|A|2|ω|2p + pn(1− τ)

n− 1

∫

M

η2̺|ω|2p.

The property (P̺) implies that

(3.35)
∫

M

̺|ω|2pη2 6

∫

M

|∇(|ω|pη)|2

=

∫

M

η2|∇|ω|p|2 +
∫

M

|ω|2p|∇η|2 + 2

∫

M

η|ω|p〈∇η,∇|ω|p〉.

Combining (3.34) with (3.35), we deduce that

(3.36)
(
2− n− 2

(n− 1)p
− pn(1− τ)

n− 1

) ∫

M

η2|∇|ω|p|2

6
p(n− 1)

n

∫

M

η2|A|2|ω|2p + 2
(pn(1− τ)

n− 1
− 1
)∫

M

η|ω|p〈∇η,∇|ω|p〉

+
pn(1− τ)

n− 1

∫

M

|∇η|2|ω|2p.

On the other hand, Lemma 2.6 and the Hölder inequality imply that

(3.37)
∫

M

η2|A|2|ω|2p 6

(∫

M

|A|n
)2/n(∫

M

(|ωpη|)2n/(n−2)

)(n−2)/n

6 S‖A‖2Ln

∫

M

|∇(|ωpη|)|2

6 S‖A‖2Ln

(∫

M

η2|∇|ω|p|2 +
∫

M

|∇η|2|ω|2p + 2

∫

M

η|ω|p〈∇η,∇|ω|p〉
)
,
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where ‖A‖2Ln =
(∫

M |A|n
)2/n
, S = S(n, 2). Plugging (3.37) into (3.36) gives

B

∫

M

η2|∇|ω|p|2 6 C

∫

M

|∇η|2|ω|2p + 2D

∫

M

η|ω|p〈∇η,∇|ω|p〉,

where

B = 2− n− 2

(n− 1)p
− pn(1− τ)

n− 1
− p(n− 1)

n
S‖A‖2Ln,

C =
pn(1− τ)

n− 1
+

p(n− 1)

n
S‖A‖2Ln,

D =
pn(1− τ)

n− 1
− 1 +

p(n− 1)

n
S‖A‖2Ln.

For any ε > 0, applying the Cauchy-Schwarz inequality we see that

(3.38) (B − |D|ε)
∫

M

η2|∇|ω|p|2 6

(
C + |D|1

ε

) ∫

M

|∇η|2|ω|2p.

Now we let f(p) = −n(1− τ)p2 +2(n− 1)p−n+2. After a simple computation, we
find that the discriminant of f(p) is

∆ = 4[(n− 1)2 − n(n− 2)(1− τ)] > 0.

Consequently, the condition on p implies that f(p) > 0. Since

B = 2− n− 2

(n− 1)p
− pn(1− τ)

n− 1
− p(n− 1)

n
S‖A‖2Ln

=
2(n− 1)p− n+ 2− n(1− τ)p2

(n− 1)p
− p(n− 1)

n
S‖A‖2Ln

=
f(p)

(n− 1)p
− p(n− 1)

n
S‖A‖2Ln ,

the conditions on p and ‖A‖2Ln allow us to conclude that B > 0. Choosing a suffi-
ciently small ε > 0, we deduce that

B − |D|ε > 0.

For every r > 0, let Br denote the geodesic ball of radius r on M centered at a fixed
point and let η ∈ C∞

0 (M) be a smooth function such that

{
η = 1 on Br,

η = 0 on M \B2r
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and |∇η| 6 1/r on B2r \Br. Using (3.38) with η we have

∫

Br

|∇|ω|p|2 6 C(n, p, ε)
1

r2

∫

B2r\Br

|ω|2p.

Letting r → ∞ and using the fact that ω ∈ L2p, we conclude |ω| is a constant. The
same argument as before shows that ω ≡ 0. �
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