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Abstract. In this work, oscillatory behaviour of solutions of a class of fourth-order neutral
functional difference equations of the form

A% (r(n) A% (y(n) + p(n)y(n — m))) + q(n)G(y(n — k) = 0

is studied under the assumption
ST
n=0 r(n)

New oscillation criteria have been established which generalize some of the existing results
in the literature.
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1. INTRODUCTION

The study of the behaviour of solutions of functional difference equations is a
major area of research and is fast growing due to the development of time scales and
the time-scale calculus (see, e.g., [3], [4]). Most papers on higher-order nonlinear
neutral equations deal with the existence of positive solutions and the asymptotic
behaviour of solutions. However, not much attention has been given to oscillation
results. We refer the reader to some of the works [2], [5], [6], [9], [11], [12], [13] and
the references cited therein.

In [13], the present author has studied the oscillatory and asymptotic behaviour
of solutions of

(1.1) A2(r(n) A (y(n) + p(n)y(n — 1)) +q(n)G(y(n — o)) =0
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and

(1.2) A2(r(n) A (y(n) + p(n)y(n — 1)) + q(n)G(y(n — o)) = f(n),

where A is the forward difference operator defined by Ay(n) = y(n+1) —y(n), r, p,
g and f are real-valued functions defined on N(ng) = {ng,no+1,...}, ng > 0, such
that r(n) > 0, ¢(n) > 0 for n > ng, G € C(R,R) is nondecreasing and 7, o are
positive constants, under the assumption that

(Ao) Z % < 0.
n=0

In [8], Migda has discussed the asymptotic properties of nonoscillatory solutions
of neutral difference equations of the form

(1.3) Am(xn + pnmn—r) + f(’I’L, xa(n)) = hn

and has shown that any nonoscillatory solution x,, has the property z,, = ecn™ ' +

O(nmfl)

for some ¢ € R. For m =4, f(n,2,)) = ¢(n)G(T5mn)) and o(n) =n — o,
(1.3) reduces to (1.2) for r(n) = 1 and hence the papers [13] and [8] are compa-
rable. But, more emphasis may be given to [13], which deals with the oscillatory,
nonoscillatory and asymptotic characters. It has been established that (1.2) is oscil-
latory under a suitable forcing function f(n), whereas (1.1) is oscillatory only when
p(n) = 0. In the case p(n) < 0, the solution of (1.1) either oscillates or converges
to zero as n — oo. The objective of this work is to study the oscillatory behaviour
of solutions of functional difference equations (1.1) under the assumption (Ag) with
different ranges of p(n). Some oscillation criteria have been established by applying
the discrete Taylor series [1].

The motivation of the present work has come from two directions. First is due
to [13] and [14], and the second is due to [10]. Indeed, Parhi and Tripathy in [10]
have discussed the oscillatory and asymptotic behaviour of solutions of

A™(y(n) +p(n)y(n — 7)) + ¢(n)G(y(n — o)) =0, m=>2

and they have used the criterion that any higher-order difference equation can be
converted into a first-order difference inequality.

By a solution of (1.1) we mean a real-valued sequence defined for n > ng — ¢ which
satisfies (1.1) for n > ng, where ¢ = max{r,o}. If

(14) y(n)zw(n)v n:no_gan0_9+1a70a172a
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are given, then (1.1) admits a unique solution satisfying the initial conditions (1.4).
A solution y(n) of (1.1) is said to be oscillatory if for every integer N > 0, there
exists an n > N such that y(n)y(n 4+ 1) < 0. Otherwise, it is called nonoscillatory.
Equation (1.1) is said to be oscillatory, if all its solutions are oscillatory.

We need the following lemma for our use in the next discussion.

Lemma 1.1 ([7]). If p(n) > 0 for all n = ng > 0 and
fk+1

lim inf L
n— o0 jzn:k k?—|— 1)k+1

then Az(n)+p(n)z(n—k) <0 (= 0),n > ng > 0 cannot have an eventually positive
(negative) solution.

2. OSCILLATION CRITERIA

In this section, new oscillation criteria for (1.1) will be established. We define the
quasi-difference operators as follows:

Liu(n) = ALou(n) = Au(n),

Lau(n) = r(n)ALju(n),
Lzu(n) = ALyu(n),
Lau(n) = ALsu(n).

We need the following lemmas for our use in the sequel.

Lemma 2.1 ([13]). Let (Ag) hold. Let u be a real-valued function such that
Lyu(n) < 0 for large n. If u(n) > 0 ultimately, then one of cases (a)—(d) holds for
large n, and if u(n) < 0 ultimately, then one of cases (b)—(f) holds for large n, where

(a) Lyu(n) >0, Lou(n) > 0 and Lau(n) > 0,

(b) (n) >0, Lou(n) < 0 and Lgu(n) > 0

(c) (n) >0, Lau(n) < 0 and Lzu(n) <0
(d) Liu(n) <0, Lou(n) > 0 and Lgu(n) >0
) Liu(n) <0, Lou(n) < 0 and Lgu(n) >0

) Liu(n) <0, Lou(n) < 0 and Lgu(n) < 0

(e
(f
Lemma 2.2 ([13]). Let the conditions of Lemma 2.1 hold. If u(n) > 0 ultimately,
then there exist constants C; > 0 and Cy > 0 such that C1R(n) < u(n) < nCy for
large n, where
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Before stating our main results, we have the following notations:

k—2
. (k—1—1)(1—m)
D[k, m] = 2 0 :
k—1
S k=l-)(+1-m)
E[k,m] = = 7"(1) )
k—1
Flk,m] = Z%,
l=m
M[k,m]:’“ “(l+1-m m)(l —m)

r(l)
Theorem 2.3. Let 0 < p(n) < d < oo and o > 27. If (Ag) and
G(u)

T
3

(A1) " >8>0, u#0,ueR,
(A2) G(w) > G(u)G(v), G(—u)=-G(u), u,veR,u,v>0,
(A3) there exists A\ > 0 such that G(u) + G(v) > AG(u + v)
for u,v € R and u,v > 0,
(A4) Q(n) = mln{q(n)a Q(n - T)}7 n > T,
k
() tmsw 3 QUIGDL - ok — o)) > T,
oo ]_ _r
~ 14 G(d)
A im — - ik el
(Ag) 1k_>sip]27 Elj—o,k—o0o]) > SV
—o—1
() dmew 3 QUIGHML ok o) > 10D
n%%aJJ o2
. & , 1+ G(d)
(Asg) limsup Y QR)G(M[j — o,k —o]) > 5
j—o0

k=j+7—0-2
hold, then (1.1) is oscillatory.

Proof. Let y(n) be a nonoscillatory solution of (1.1) such that y(n) > 0 for
n = ng > o. If we set

(2.1) z(n) = y(n) + p(n)y(n —7),
then (1.1) becomes
(2.2) Lyz(n) = —q¢(n)G(y(n — o)) < 0.
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Hence, we can find ny > ng such that L;z(n), i = 1,2,3 are eventually of one sign
on [n1,00). In what follows, we consider the possible cases (a)—(d) of Lemma 2.1.

Case (c): For k —1 > m > ny, it follows from the discrete Taylor series that
k—1 k—1
(2.3) —z(k) = —z(m)—(k—m)Az(k)+ Z (I+1-m)A%2(1) < Z (1+1-m)A%2(1)
l=m l=m
and
Loz(l) — Laz(m Z L3z(s —m)Lzz(m)

implies that Loz(I) < (I —m)Lzz(m), that is, A22(l) < Lzz(m)(l —m)/r(l). Conse-
quently,
k—1 I—m
2k)> =) (1+1- m)Wng(m) = —Lsz(m)M][k,m].

l=m

For j —o > k — 0+ 2 > ny + 2, the above inequality can be written as
2(j — o) =2 —Lsz(m — o)M[j — 0,k — o].
Using (1.1), it is easy to verify that
(2.4) 0=L4z(n)+q(n)G(y(n—0))+G(d)Laz(n—7)+G(d)g(n—7)G(y(n—oc—7)).
Due to (Ag) and (As), (2.4) yields that

02> Laz(j) + G(d)Laz(j — 7) + AQ()G(2(j — 0))

L
Lyz(5) + G(d)Laz(j — 7) + AQ(5)G(M[j — 0,k — 0])G(—Lsz(m — 7)),

VoV

that is,
A YL QUG = ayk = o))G(=Lyz(m — )

< - Z (L4z(j) + G(d)Laz(j — 7))

ng( —0)—G(d)Lzz(m — 0 —T)
—(1+ G(d))Lsz(m — o).
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As a result,

m—o—1
. . 1+ G(d) —Lzz(m—o) 1+ G(d)
Mlj— —0]) < < ;
which is a contradiction to (A7) due to (A1).
Case (d): For k —1 > m > ny, it follows from (2.3) that

k—1 k—1
z(m) = z(k) — (k — m)Az(k) + Z(l +1-m)A?%z() > Z(l +1—m)A%z(1).
l=m I=m
Since
Loz(l) — Laz(m Z L3z(s —m)L3z(l — 1),

we have L22(l) > (I — m)L3z(l — 1), that is, A%2(l) < Lzz(m)(l —m)/r(l). Conse-
quently,

S

z(m) = Y (l+1- )lr_(l;n[/gz(l —1) = Lyz(k — 2)M [k, m].

F
3

For j—o > k— 0+ 2> n; + 2, we write the preceding inequality as
(2.5) z2(k—0) > Lsz(j —o —2)M[j — 0,k — o]
Applying (Az) and (As) in (2.4), it follows that

0> Lyz(k)+ G(d)Laz(k — 1) + \Q(k)G(z(k — 0)).

Due to (2.5) the above inequality becomes

j+T—0
A Y QUOGMj — ok — o])G(Lsz(j — o — 2))
k=j+17—0-2 itr—o
<= > (Laz(k) + G(d)Laz(k — 7))
k=j+1—0-2
<Lsz(j+17+0—-2)+G(d)L3z(j —o —2)
<1+ G(d)Lsz(j —o —2).
Therefore,
j+T—0 azli— o —
> QGO ok - o) < D R T R LEED

k=j+7—0-2
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contradicts (As) due to (Ay). Cases (a) and (b) can be dealt with similarly as the
above cases. Also, these two cases follow from [14].

Finally, we suppose that y(n) < 0 for n > ng. Using (Az) and putting z(n) =
—y(n) in (1.1), we obtain z(n) > 0 and hence

(2.6) A2(r(n)A%(x(n) + p(n)z(n — 7)) + ¢(n)G(z(n — 0)) = 0.

Proceeding as above, we can show that every solution of (2.6) oscillates. This com-
pletes the proof of the theorem. O

Theorem 2.4. Let —1 < p(n) < 0 and o > 27. If (Ag)—(Az), and

k
. . . 1
(Ag) limsup > ¢(j)G(D[j — o,k — o)) > =,
k—o0 j=k—T 6
i 1
(A1o) limsup Y q(§)G(E[j — 0,k —0]) > =,
k—o0 j=k—r B
m—o—1 1
(A1r) limsup Y q(/)G(M[j — o,k —0]) > =,
Jjt+T—0 1
(A12) lim sup Z q(k)G(M[j — o,k —o]) > 5
Jreo k=j+7—0—-2
k+o—1
. . . 1
(A13) lim sup Z qJ)GFlk+1—0,j+7—0]) >,
k—o0 j=ktT—0 6
I+7—0+1
. ; . 1
(A1q) lim sup Z qHGMk+T17—0,j+7—0]) > =,
[—00 j=ltr—o 6
k
. . . 1
(A1s) lim sup Z qG)GMj+1—0k+7—0]) > =
k=00 j=k+17—0-2 6

hold, then every solution of (1.1) oscillates.

Proof. Suppose on the contrary that y(n) is a nonoscillatory solution of (1.1)
such that y(n) > 0 for n > ng > o. The case y(n) < 0 for n > ng > p can be
dealt with similarly. Setting z(n) as in (2.1), we get (2.2). Consequently, we can find
ny > no such that z(n) and L;z(n), i = 1,2, 3 are eventually of one sign on [n, 00).
Let z(n) > 0. Then there exists ng > n; such that for n > ng, 2(n) < y(n) and (2.2)
becomes

(2.7) Lsiz(n) 4+ q(n)G(z(n — o)) < 0.
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Upon applying Lemma 2.1 to the inequality (2.7) and then proceeding as in the proof
of Theorem 2.3, we get contradictions to (Ag)—(A12) due to o > 27 > 7.

Next, we suppose that z(n) < 0 for n > n;. There exists ny > n; such that for
n = na, z(n) = —y(n — 7) implies that y(n — o) > —2(n+ 7 — ). By Lemma 2.1,
any of cases (b)—(f) holds for n > ny. Consider case (b). Since

— Loz(l) > Laz(k — 1) — Laz(1) Z Lsz(s —1—1)Lsz(k — 2),

it foll that
it follows tha k_1—1

r(l)

for k > 14 2 > n;. Summing the above inequality from [ = m to k — 1, we obtain

—A%z(l) > Lsz(k —2)

k—1
Az(m) > Laz(k—2) Y ——

k—1—1
= )

that is,
k-1
z(m+1) — z(m) > Lsz(k — 2) l:Em 0

which implies that

k—1 ki1
—z(m) = Lsz(k — 2) —L(;z(k 2)F[k,m] > Lsz(k)F[k, m]

l=m

for k > 14 2 > no. Therefore, fork+7—0c>2j+7—0=21l4+7—0+2> nog,
(2.8) —z2(j+7—0) 2 Lsz(k+T7—0)Flk+717—0,j+T7—0]
Since (1.1) can be viewed as
(2.9) Laz(j) + 9(/)G(=2(j + 7 —0)) <0,
using (2.8) and (Az), (2.9) yields
Lyz(j) + q(j)G(Lsz(k + 7 — 0))G(Flk + T — 0,5+ 7 — 0]) < 0.

Summing the last inequality from j =k 4+ 7 — o to k + o — 7, it follows that

k+o—1
G(Lsz(k+7—0)) Y a@)GEk+7—0j+7—0]) < Lsz(k+7 - 0).
j=k+17—0
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Hence,

k+o—1
1
lim sup Z q))GFlk+1—0,j+7—0]) < =,
k—oo . 6
j=k+7—0
which gives a contradiction to (A13).
Consider case (c). From (2.3), it follows that
k—1 k—1
—z(m) = —z(k) + (k =m)Az(k) = } (I+1-m (+1-m
l=m l=m
fork—1>m >n; and
Loz(l) = Laz(m Z L3z(s —m)Lzz(m)

implies that Loz(l) < (I — m)Lsz(m), that is,

l—m

A%(l) >

ng(m)

Consequently,

k—1
—2(m) ==Y (1 +1- m)lr_T;nng(m) = —Lyz(m)MT[k,m]
l=m

and hence

(2.10) —z2(j+717—0) > —Lsz(j+717—0)Mk+T—0,j+T—0]

2
2

—Lyz(l+7—0+2)Mk+7—0,j+7—0]

A?2(1)

holds for k+7—0c > j+7—0 =21+ 7—0+42 > ny. Using (A2) and (2.10) in (2.9),

and then summing from [+ 7 — o tol+ 7 — o + 1, we obtain

+17—0+1

G(—Lsz(l+7—-0+2) Y  q()GMk+7—0,j+7—0])
j=l4+17—0
—Lyz(l+7—0+2).
Therefore,

l+17—0+1

) , —Lsz(l+717—0+42)

Mk — — < <

rg;gﬂﬁG([ +T—0,j+T—0)) G Lozlir_012)

which gives a contradiction to (Aq4).
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In case (d), we use (2.3) and it follows that

k—1 k—1
—z(k) = —z(m) — (k = m)Az(k) + > _(I+1-m)A%z(1) > > (I+1-m)A%z()
l=m l=m
for k—1>m > ny. Since
Loz(l) > Laz(l) — Laz(m Z L3z(s —m)L3z(l — 1),

we have A?z(l) > L3z(l — 1)(I — m)/r(l), which implies that

S

—z(k) 2 Y (I+1-m)
l

r_(l) Lsz(l — 1) = Lsz(k — 2)M[k, m].

I
3

Hence for j+ 71— > k+7—042>ny + 2, it follows that
—z(j+r—0)2L3z(j+T7—0—-2)M[j+7—0,k+7T—0].

Consequently, (2.9) becomes

k
> q()GMj+T—ok+7—0])G(Lsz(j+ T —0—2))
j=k+17—0-2
< Lsz(k+717—0—2).
As a result,
k
, ) Liz(k+7—0—2) 1
_ _ < < =
]k;U2Q(])G(M[j + 7 Uak+T J])\ G(LgZ(k+T—U—2)) N /87

which contradicts to our assumption (Ajs).
In both cases (e) and (f), 1im z(n) = —oo. On the other hand, z(n) < 0 for
n > ny implies that y(n) < y(n — T) for n > nq, that is,

y(n) Sy(n—7) <y(n —27) <. <y(m),

y(n) is bounded and hence z(n) is bounded, a contradiction. This completes the
proof of the theorem. O
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Theorem 2.5. Let —oo < —d < p(n) < —1,d > 0 and 27 < 0. Assume
that (Ag)—(A2) hold. Furthermore, if

(M) Y aln) = o,

n=0
m+1—o—1 1
(A7) 1glnj;10p]:m;072 q))GD[j+7—0o,m+71—0]) > 3Gy’
~ 1
A li )G(D[j — o,k —0c]) > ——,
(Ass) lfisipj_zk;q(j) (D[j — 0.k —0]) 36T
k 1
(A1g) hzlisipjzk:TQ(J)G(E[J —ok—o]) > 3G 1)’
m—o—1 1
(As) 1glnj;10prn§72q(1)G(M[J —ok—ol) > gerey
j+T—0 1
A lim sup qk)GM[j — o,k —0]) > ——,
( 21) oo kj;g2 ( ) ( [ ]) 6G(d_1)
k4+o—1
(A)  lmsuwp > g()G(Flk+7—0,j+7—0]) > o,
pe 2 BGT)
l+17—0+1
(A23) lim sup Z g ) GMk+T—0,j+T7—0]) > 1
e 2 BG(d)
~ 1
A li NVGM[j+T—0,k+T—0]) >
(Azy) llisipj_k;a_Qq(J) (M[j+7—0,k+7—0]) et

hold, then every solution of (1.1) oscillates.

Proof. The proof of the theorem follows from the proof of Theorem 2.4. We
consider cases (e) and (f) of Lemma 2.1 only when z(n) < 0 for n > n;. There exists
ng > ny such that for n > ng, y(n — o) > —z(n+ 7 —0)/d. Consequently, (1.1)
becomes

)G(z(n—l—T—a)) <0

Ul

(2.11) Lyz(n) — q(n)G(

for n > ng due to (Az). In case (e), z(n) is nonincreasing. So, we can find nz > ng
and L > 0 such that z(n) < —L for n > n3. Therefore, (2.11) yields

Laz(n) + G(l)G(L)q(n) <0
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for n > ng. Summing the above inequality from ng to co, we obtain a contradiction
to (Aw).

Assume that case (f) of Lemma 2.1 holds. For k& > n; + 2, it follows from the
discrete Taylor series

k—2
2(k) = z2(n1) + (n = n)Az(m) + Y (k—1—1)A%z(])
l=n1
k—2

that 2(k) < . (k—1—1)A2z(l). Since

l=ny
-1
Loz(l) < Laz(l) — Laz(m) = Z L3z(s) < (I —m)Lsz(m),

we have A?z(l) < Lzz(m)(l — m)/r(l), which implies that

k—2
2y < S (k-1 1)%ng(m) = Lyz(m)Dk, m]

l:n1
for k > m+2 > ny + 2. Therefore, for j+7—0c>m+7—0+2 >n; + 2 it follows
that

(2.12) —z(j+7—0)=2Lsz(m+7—0)D[j+T7—0,m+71— 0]

Using (2.12) and (Ag) in (2.11), and then summing the resultant inequality from
m+717—0—2tom+7—0—1, we obtain

1 m+1—o—1

G(3)G(-Laztm+r=0) Y q()GDli+7 -0 m+r 0]

j=m+1—0-2
< —Lsz(m+ 71 —0),

that is,

m+4+7—o—1
Y a()GD+T—om+T—0]) <

j=m+T1—0—2

—Lzz(m+ 17— 0)
G(d=Y)G(—Lsz(m+ 71 —0))
1
S BGWE )’

which is a contradiction to (A;7). Hence the proof of the theorem is complete. [
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Theorem 2.6. Let 0 < p(n) < d < co. Assume that (Ag) and (Az)—(A4) hold.
Furthermore, suppose that

(A2s) > QM)G(R(n—0)) =00, N>p
n=N
and
— _Q(n) _
(Ags) ,;\,7"(”"'2)G(R(n_a>) =00, N>p

hold. Then (1.1) is oscillatory.

Proof. Proceeding as in the proof of Theorem 2.4, we consider cases (a)—(d) of
Lemma 2.1. For each case, (2.4) holds. Upon using (Az) and (Ay), it follows that

Lyz(n) + G(d)Laz(n —7) + MQ(n)G(z2(n —0)) <0

for n > na > ny. To the last inequality, we apply Lemma 2.2. For cases (a), (b)
and (d) it is easy to see that

(2.13) Liz(n) + G(d)Laz(n — 7) + AG(C1)Q(n)G(R(n — o)) <0

holds due to (Ag). Summing (2.13) from n3 (= n2 + o) to oo, we get a contradiction
to (Ags). For case (c), we use (2.13) to get

AG(C1)Q(n)G(R(n — o)) < —(Laz(n) + G(d)Lyz(n — 1))

< —L3z(n+1)— G(d)Lsz(n+1—71)

< —(1+G(d)Loz(n+ 1)

= —(14+G(d))(Laz(n + 2) — Loz(n + 1))
)

< —(14 G(d)Laz(n +2)

for n > no, that is,

AG(Cl)r(g(—t)Z) G(R(n—0)) < —(1+ G(d))A%z(n +2).

Summing the last inequality from ng (> na+0) to 0o, we get a contradiction to (Asgg).
Thus the proof of the theorem is complete. O
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Theorem 2.7. Let —1 < p(n) < 0 and ¢ > max{7,7 — 2}. Suppose that
(Ag)—(A2) and (A6) hold. Furthermore, if

(Aar) > a()G(R(n—0)) =00, N>o,
n=N
— _q(n) _
(A28) nz:;v mG(H(n — 0')) = 00, N > 0,
n—1 .
- G) 1 _(o-mrm
() a2 0 7R T

(Ago) lim inf ﬂ >

hold, then (1.1) is oscillatory.

Proof. On the contrary, we proceed as in Theorem 2.4 to obtain (2.7) for
n = ns. The rest of this case follows from the proof of Theorem 2.6.

When z(n) < 0 for n > ny, we consider cases (b), (c) and (d) of Lemma 2.1 only.
For case (b), we use (2.9) and it follows that

—ALsz(n) = —Lsz(n+ 1) + L3z(n)
L3z(n) = ALyz(n) < —Loz(n)

implies that

(2.14) Az(n)—f—ﬂ%z(n—i—T—a) >0
due to (A7), that is, (2.14) cannot have an eventually negative solution (because of
Lemma 1.1) due to (Agg), a contradiction.

Using a similar type of argument as in case (b), we find the inequality

q(n)

z(n+2) _677'(71—1—2)

zln+71—-0) <0
for case (c) due to (A1). Since o > 7 — 2, then the above inequality reduces to

(1 —6%)2(71—1—7’—0) <0,
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which is not possible because of (Asp). In case (d), z(n) is nonincreasing. Hence,
there exist C' > 0 and ny > n; such that z(n) < —C for n > no. Using this fact
in (2.9) and then summing the resultant inequality from n3 (> ns2) to oo, we get a
contradiction to (A1g). This completes the proof of the theorem. O

Theorem 2.8. Let —o0 < —d < p(n) < =1, d > 0 and 0 > max{r,7 — 2}.
Assume that (Ag)—(Az), (A1s), (Aa7) and (Asg) hold. Furthermore, if

n—1 .
o q(j) 1 (0 =) 7H
A lim inf = > ,
(A1) n—=00 j:n%;fg r(j) © G N)B (6 —7+1)7 "

.. q(n) 1
(o) Hminf e > G@ 3

T < O,

hold, then every bounded solution of (1.1) is oscillatory.

Proof. The proof of the theorem follows from the proof of Theorem 2.7.
Cases (e) and (f) of Lemma 2.1 are not possible when z(n) < 0 for n > ny, since y(n)
is bounded. Hence, the details are omitted. O

Example 2.9. Consider
(2.15) A?(ne" A% (y(n) + p(n)y(n — 1)) + q(n)G(y(n - 3)) =0,

where n > 3, p(n) = e 2+e™ ", q(n) = (e2—1)%(e+1)(2e+ne+n)e™ —(e+1)%(n+1),
r(n) = ne™ and G(u) = 4u/e?* = Bu. Clearly, all conditions of Theorem 2.3 are
satisfied. Hence (2.15) is oscillatory. Indeed, y(n) = (—1)™ is one of the oscillatory
solutions of (2.15).

Remark 2.10. The existence of positive solutions of (1.1)/(1.2) is discussed
in [13).
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