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Abstract. This paper is concerned with the oscillatory behavior of first-order nonlinear
difference equations with variable deviating arguments. The corresponding difference equa-
tions of both retarded and advanced type are studied. Examples illustrating the results are
also given.
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1. Introduction

In this paper we establish sufficient conditions for the oscillation of all solutions

of the nonlinear retarded difference equations

(1.1) ∆x(n) +

m∑

i=1

fi(n, x(τi(n))) = 0, τi(n) < n, n > n0

and the (dual) nonlinear advanced difference equations

(1.2) ∇x(n)−

m∑

i=1

fi(n, x(σi(n))) = 0, σi(n) > n, n > n0.

Here, fi are real-valued functions, τi and σi are integer-valued sequences, ∆ denotes

the forward difference operator ∆x(n) = x(n+ 1)− x(n) and ∇ corresponds to the

backward difference operator ∇x(n) = x(n)− x(n− 1).
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By a solution of (1.1), we mean a sequence of real numbers {x(n)}n which satis-

fies (1.1). When the initial data

x(n) = ϕ(n) for inf
s>n0

min
16i6m

τi(s) 6 n 6 n0

is given, we can obtain a unique solution to (1.1) by using the method of steps.

By a solution of (1.2), we mean a sequence of real numbers {x(n)}n which sat-

isfies (1.2). Existence of solutions to (1.2) is usually proved using a fixed point

argument.

We shall assume the existence of solutions, and concentrate on the study of their

oscillatory behavior.

A solution {x(n)}n of (1.1) or (1.2) is called oscillatory, if the terms x(n) of the

sequence are neither eventually positive nor eventually negative. Otherwise, the

solution is said to be nonoscillatory.

First, we state some known results for particular cases of (1.1) and (1.2). When

fi(n, x) = pi(n)x, equations (1.1) and (1.2) become the linear equations:

(1.3) ∆x(n) +

m∑

i=1

pi(n)x(τi(n)) = 0

and

(1.4) ∇x(n)−

m∑

i=1

pi(n)x(σi(n)) = 0,

respectively.

Under the assumption that the retarded arguments τi(n), 1 6 i 6 m are non-

decreasing, Chatzarakis et al. [3], Theorem 2.2 proved that if

(1.5) lim sup
n→∞

m∑

i=1

pi(n) > 0, lim inf
n→∞

m∑

i=1

n−1∑

j=τi(n)

pi(j) >
1

e
,

then all solutions of (1.3) oscillate.

In the same paper [3], Theorem 3.2, they proved that if

(1.6) lim sup
n→∞

m∑

i=1

pi(n) > 0, lim inf
n→∞

m∑

i=1

σi(n)∑

j=n+1

pi(j) >
1

e
,

where the advanced arguments σi(n), 1 6 i 6 m are non-decreasing, then all solu-

tions of (1.4) oscillate.
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Yan et al. [17] proved that if

(1.7) lim inf
n→∞

n−1∑

j=τ(n)

m∑

i=1

pi(j)
(n− τi(j) + 1

n− τi(j)

)n−τi(j)+1

> 1,

where τ(n) = max
16i6m

τi(n), then all solutions of (1.3) oscillate.

If τi(n) = n− ki, condition (1.7) is expressed as

(1.8) lim inf
n→∞

m∑

i=1

(ki + 1

ki

)ki+1 n−1∑

j=n−k

pi(j) > 1

and was used by Li and Zhou [12]. When m = 1, condition (1.8) reduces to

(1.9) lim inf
n→∞

n−1∑

j=n−k

p(j) >
( k

k + 1

)k+1

,

which was used by Ladas et al. [9]. For more information about difference and

differential equations, the reader may refer to the references [1]–[18].

Note that the summations in conditions (1.5)–(1.9) have finitely many terms and

relate to equations wih monotone deviating arguments. Our goal is to find an infinite

summation condition that applies to some cases where (1.5) cannot be applied. In

addition, we consider nonlinear difference equations, and do not assume that the

deviating arguments are monotone. To establish an infinite sum condition, we adapt

on the steps used by Li [11] for the linear delay differential equation

(1.10) x′(t) +

m∑

i=1

pi(t)x(t − τi) = 0,

where pi(t) > 0 are continuous and τi are positive constants. For this equation, Li

proved the following theorem:

Theorem 1.1 ([11], Theorem 2). Let τ∗ = max{τ1, τ2, . . . , τm}. Suppose that

m∑

i=1

∫ t+τi

t

pi(s) ds > 0 for t > t0, t0 > 0

and

lim sup
t→∞

∫ t+τ∗

t

p∗(s) ds > 0.

If, in addition,

∫
∞

t0

( m∑

i=1

pi(t)

)
ln

(
e

m∑

i=1

∫ t+τi

t

pi(s) ds

)
dt = ∞,

then all solutions of (1.10) oscillate.
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Strong interest in the nonlinear retarded difference equation (1.1) is motivated

by the fact that it represents a discrete analogue of the nonlinear delay differential

equation

(1.11) x′(t) +

m∑

i=1

fi(t, x(τi(t))) = 0, t > t0,

where

(1.12) τi(t) < t for t > t0 and lim
t→∞

τi(t) = ∞, 1 6 i 6 m.

Recently, Dix et al. [5] proved the following theorem:

Theorem 1.2 ([5], Theorem 4). Assume that (1.12) holds, xfi(t, x) > 0 and there

exist continuous functions pi(t) > 0 and gi(x) such that

|fi(t, x)| > pi(t)|gi(x)| ∀x ∈ R, t > t0,

where xgi(x) > 0 for x 6= 0 and lim sup
x→0

x/gi(x) < ∞. If, in addition,

∫ τinv(s)

s

m∑

j=1

pj(r) dr > 0 ∀ s > t0

and ∫
∞

t0

m∑

i=1

pi(s)

(
1 + ln

∫ τinv(s)

s

m∑

j=1

pj(r) dr

)
ds = ∞,

where τinv(s) = max{t : τ(t) = s}, τ(t) = max
t06s6t

τ0(s), τ0(t) = max
16i6m

τi(t), then all

solutions of (1.11) oscillate.

An interesting question then arises whether there exists a discrete analogue of

Theorem 1.2 for (1.1), and consequently for (1.2).

In the present paper an affirmative answer to the above question is given.

70



2. Nonlinear retarded difference equations

In this section we make the following assumptions:

(A1) The retarded arguments satisfy τi(n) < n and lim
n→∞

τi(n) = ∞ for 1 6 i 6 m

and n > n0;

(A2) xfi(n, x) > 0 and there exist non-negative functions pi such that |fi(n, x)| >

pi(n)|x| for all x ∈ R, n > n0.

Having made these assumptions, we define the sequences

(2.1) τ̃i(n) = max{τi(s) : 1 6 s 6 n}

and

(2.2) τ̃ (n) = max
16i6m

τ̃i(n).

Clearly, the sequences τ̃i(n) and τ̃ (n) are non-decreasing and

(2.3) τi(n) 6 τ̃i(n) 6 τ̃ (n) < n, 1 6 i 6 m, ∀n > n0.

Lemma 2.1. Assume (A1) and (A2) hold and x is a nonoscillatory solution

of (1.1). Then there exists a positive integer n1 such that: When x is eventually

positive, then x(n) > 0, x(τi(n)) > 0, x(τ̃i(n)) > 0, x(τ̃ (n)) > 0 for all n > n1 and

x(n) is non-increasing. When x is eventually negative, then x(n) < 0, x(τi(n)) < 0,

x(τ̃i(n)) < 0, x(τ̃ (n)) < 0 for all n > n1 and x(n) is non-decreasing.

P r o o f. First, assume that x is eventually positive. Then there exists n∗ such

that x(n) > 0 for all n > n∗. Since lim
n→∞

τi(n) = ∞, there exists n1 > n∗ such that

τi(n) > n∗ for all n > n1. By (2.3) the result follows. In view of (A2), (1.1) gives

∆x(n) = −
m∑

i=1

fi(n, x(τi(n))) 6 −
m∑

i=1

pi(n)x(τi(n)) 6 0;

therefore x(n) is non-increasing.

For eventually negative solutions, the corresponding statements are shown simi-

larly. �

From the definition of τ̃ it follows that τ̃(n) is non-decreasing, but it may not be

one-to-one. We define an “inverse” function by taking the largest element in the set

{n : τ̃ (n) 6 s}. This set is bounded because lim
n→∞

τ̃ (n) = ∞. Let

τ̃ inv(s) = max{n : τ̃ (n) 6 s}.
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This function is defined for all s > τ̃ (n0), and is non-decreasing. In addition, by (A1),

it satisfies

τ̃ (n) < n < τ̃ inv(n).

Lemma 2.2. Assume (A1) and (A2) hold and x is a nonoscillatory solution

of (1.1). Then
τ̃ inv(n)∑

j=n

m∑

i=1

pi(j) < 1 for n > n1.

P r o o f. First, assume that x is eventually positive. By Lemma 2.1, x is non-

increasing. In view of (A2), (1.1) gives

∆x(n) = −

m∑

i=1

fi(n, x(τi(n))) 6 −

m∑

i=1

pi(n)x(τi(n))(2.4)

6 −

m∑

i=1

pi(n)x(τ̃i(n)) 6 −x(τ̃ (n))

m∑

i=1

pi(n).

To abbreviate the notation, let P(n) =
m∑
i=1

pi(n). Summing this inequality from n

to τ̃ inv(n) yields

x(τ̃ inv(n) + 1)− x(n) 6 −

τ̃ inv(n)∑

j=n

x(τ̃ (j))P(j) 6 −x(n)

τ̃ inv(n)∑

j=n

P(j).

Since x(·) > 0, we have

0 < x(τ̃ inv(n) + 1) 6 x(n)

(
1−

τ̃ inv(n)∑

j=n

P(j)

)

and the result follows for eventually positive solutions.

Now, assume that x is eventually negative. By Lemma 2.1, x is non-decreasing.

In view of (A2), (1.1) gives

∆x(n) = −

m∑

i=1

fi(n, x(τi(n))) > −

m∑

i=1

pi(n)x(τi(n))(2.5)

> −

m∑

i=1

pi(n)x(τ̃i(n)) > −x(τ̃ (n))

m∑

i=1

pi(n).
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Summing this inequality from n to τ̃ inv(n) yields

x(τ̃ inv(n) + 1)− x(n) > −

τ̃ inv(n)∑

j=n

x(τ̃ (j))P(j) > −x(n)

τ̃ inv(n)∑

j=n

P(j).

Since x(·) < 0, we have

0 > x(τ̃ inv(n) + 1) > x(n)

(
1−

τ̃ inv(n)∑

j=n

P(j)

)

and the result follows for eventually negative solutions. �

From Lemma 2.2, using a contradiction argument we can show that if

lim sup
n→∞

τ̃ inv(n)∑

j=n

m∑

i=1

pi(j) > 1,

then all solutions of (1.1) are oscillatory.

Lemma 2.3. Assume (A1) and (A2) hold and x is a nonoscillatory solution

of (1.1). Furthermore, assume that

(2.6) lim sup
n→∞

τ̃ inv(n)∑

j=n+1

m∑

i=1

pi(j) > 0.

Then

lim inf
n→∞

x(τ̃ (n))

x(n)
< ∞.

P r o o f. From (2.6), it is clear that there exist a positive constant d and a

sequence {nk}
∞

k=1, converging to ∞, such that

(2.7)

τ̃ inv(nk)∑

j=nk+1

P(j) > d > 0 for k = 1, 2, . . . ,

where P(j) =
m∑
i=1

pi(j). Then in each interval [nk + 1, τ̃ inv(nk)] there exists an

integer θk such that

(2.8)

θk∑

j=nk+1

P(j) >
d

2
and

τ̃ inv(nk)∑

j=θk

P(j) >
d

2
.

Note that P(θk) is included in both the summations.
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To find θk, partial sums are considered recursively: If P(nk + 1) > 1
2d, we set

θk = nk+1; otherwise, we proceed with the next term. If P(nk+1)+P(nk+2) > 1
2d,

we set θk = nk+2; otherwise proceed with the next term. This process will eventually

stop, after finitely many steps, since the whole summation is greater than 1
2d.

In the first part of this proof, we assume that the solution x is eventually positive.

Summing (2.4) from nk to θk, and using that x is non-increasing, we have

0 >

θk∑

j=nk

∆x(j) +

θk∑

j=nk

x(τ̃ (j))P(j) > x(θk + 1)− x(nk) + x(τ̃ (θk))

θk∑

j=nk

P(j).

Since x(θk + 1) > 0, by omitting this term and using (2.8), we have

x(nk) > x(τ̃ (θk))

θk∑

j=nk

P(j) > x(τ̃ (θk))
d

2
.

Thus

(2.9) 0 <
x(τ̃ (θk))

x(nk)
<

2

d
.

Summing (2.4) from θk to τ̃
inv(nk), and using that x is non-increasing, we have

0 >

τ̃ inv(nk)∑

j=θk

∆x(j) +

τ̃ inv(nk)∑

j=θk

x(τ̃ (j))P(j)

> x(τ̃ inv(nk) + 1)− x(θk) + x(nk)

τ̃ inv(nk)∑

j=θk

P(j).

Since x(τ̃ inv(nk) + 1) > 0, by omitting this term and using (2.8), we have

x(θk) > x(nk)

τ̃ inv(nk)∑

j=θk

P(j) > x(nk)
d

2
.

Thus

(2.10) 0 <
x(nk)

x(θk)
<

2

d
.

Combining the inequalities (2.9) and (2.10), we obtain

x(τ̃ (θk)

x(θk)
<

(2
d

)2
.
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Note that the right-hand side is independent of k. Therefore, the conclusion follows

for eventually positive solutions.

Now, assume that x is eventually negative. Summing (2.5) from nk to θk, and

using that x is non-decreasing, we have

0 6

θk∑

j=nk

∆x(j) +

θk∑

j=nk

x(τ̃ (j))P(j) 6 x(θk + 1)− x(nk) + x(τ̃ (θk))

θk∑

j=nk

P(j).

Since x(θk + 1) < 0, by omitting this term and using (2.8), we have

x(nk) < x(τ̃ (θk))

θk∑

j=nk

P(j) 6 x(τ̃ (θk))
d

2
.

Thus

(2.11) 0 <
x(τ̃ (θk))

x(nk)
<

2

d
.

Summing (2.5) from θk to τ̃
inv(nk), and using that x is non-decreasing, we have

0 6

τ̃ inv(nk)∑

j=θk

∆x(j) +

τ̃ inv(nk)∑

j=θk

x(τ̃ (j))P(j)

6 x(τ̃ inv(nk) + 1)− x(θk) + x(nk)

τ̃ inv(nk)∑

j=θk

P(j).

Since x(τ̃ inv(nk) + 1) < 0, by omitting this term and using (2.8), we have

x(θk) > x(nk)

τ̃ inv(nk)∑

j=θk

P(j) > x(nk)
d

2
.

Thus

(2.12) 0 <
x(nk)

x(θk)
<

2

d
.

Combining the inequalities (2.11) and (2.12), we obtain

x(τ̃ (θk)

x(θk)
<

(2
d

)2
.

Note that the right-hand side is independent of k. Therefore, the conclusion follows

for eventually negative solutions. �
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Theorem 2.4. Assume (A1), (A2), (2.6) hold, and

(2.13)
∞∑

n=1

( m∑

i=1

pi(n)

)
ln

(
e

τ̃ inv(n)∑

j=n+1

m∑

i=1

pi(j)

)
= ∞.

Then all solutions of (1.1) are oscillatory.

P r o o f. To reach a contradiction, suppose that x is an eventually positive

solution of (1.1). By Lemma 2.1, x(n) is positive and non-increasing for n > n1.

Recall that ln(r) 6 r − 1 for r > 0. Defining a new variable ξ and using this

inequality, we have

ξ(n) := −
∆x(n)

x(n)
= −

(x(n+ 1)

x(n)
− 1

)
6 − ln

(x(n+ 1)

x(n)

)
.

Summing from τ̃ (n) to n− 1, we have

n−1∑

j=τ̃(n)

ξ(j) 6 −

n−1∑

j=τ̃(n)

ln
(x(j + 1)

x(j)

)
(2.14)

= − ln
(x(τ̃ (n) + 1)

x(τ̃ (n))
× . . .×

x(n)

x(n− 1)

)
= ln

(x(τ̃ (n))
x(n)

)
.

Dividing by −x(n) in (2.4) and using the notation P =
m∑
i=1

pi(j), we have

ξ(n) = −
∆(n)

x(n)
>

x(τ̃ (n))

x(n)
P(n),

or

(2.15)
ξ(n)

P(n)
>

x(τ̃ (n))

x(n)
.

Applying logarithms on both sides and using (2.14), we obtain

ln
( ξ(n)

P(n)

)
> ln

(x(τ̃ (n))
x(n)

)
>

n−1∑

j=τ̃(n)

ξ(j).

Therefore,

(2.16) ξ(n) > P(n) exp

( n−1∑

j=τ̃(n)

ξ(j)

)
.
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Next we use the inequality eby > y + ln(eb)/b which holds for b > 0. Indeed,

the function g(y) = eby − y − ln(eb)/b attains its absolute minimum gmin = 0 at

y = − ln(b)/b. Using this inequality, with

b(n) =

τ̃ inv(n)∑

j=n+1

P(j) and y =
1

b(n)

n−1∑

j=τ̃(n)

ξ(j)

in (2.16), we obtain

ξ(n) > P(n)

(
1

b(n)

n−1∑

j=τ̃(n)

ξ(j) +
1

b(n)
ln(eb(n))

)
.

Then

ξ(n)b(n)− P(n)

n−1∑

j=τ̃(n)

ξ(j) > P(n) ln(eb(n)).

We select a positive integer v such that τ̃ (v − 1) < τ̃ (v). Note that there are

infinitely many integers with this property because lim
n→∞

τ̃ (n) = ∞. By selecting

such an integer, we aim at interchanging the order, in the double summation below.

Summing the above inequality from u to v − 1 (with u < τ̃(v − 1)), we have

(2.17)
v−1∑

n=u

ξ(n)b(n)−
v−1∑

n=u

P(n)
n−1∑

j=τ̃(n)

ξ(j) >
v−1∑

n=u

P(n) ln(eb(n)).

Interchanging the order in the double summation, and shortening the area of sum-

mation, we have

v−1∑

n=u

P(n)

n−1∑

j=τ̃(n)

ξ(j) >

τ̃(v−1)∑

j=u−1

ξ(j)

τ̃ inv(j)∑

n=j+1

P(n) =

τ̃(v−1)∑

n=u−1

ξ(n)

τ̃ inv(n)∑

j=n+1

P(j)

=

τ̃(v−1)∑

n=u−1

ξ(n)b(n) >

τ̃(v−1)∑

n=u

ξ(n)b(n).

From this inequality and (2.17), we obtain

v−1∑

n=u

ξ(n)b(n)−

τ̃(v−1)∑

n=u

ξ(n)b(n) >

v−1∑

n=u

P(n) ln(eb(n)).

By Lemma 2.2, we have b(n) < 1 (with one term to spare). Therefore

v−1∑

n=τ̃(v−1)+1

ξ(n) >

v−1∑

n=u

P(n) ln(eb(n)).
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Applying (2.14) with v − 1 instead of n, it follows that

ln
(x(τ̃ (v − 1))

x(v − 1)

)
>

v−1∑

n=τ̃(v−1)+1

ξ(n) >

v−1∑

n=u

P(n) ln(eb(n)).

Since (2.13) holds, the last inequality yields

(2.18) lim
v→∞

x(τ̃ (v − 1))

x(v − 1)
= ∞.

Using a contradiction argument, from (2.13) we can show the existence of a se-

quence {θk} converging to ∞, such that

τ̃ inv(θk)∑

j=θk+1

P(j) >
1

e
for k > 1.

Therefore (2.6) is satisfied and Lemma 2.3 implies

lim inf
k→∞

x(τ̃ (θk))

x(θk)
< ∞.

This contradicts (2.18), and shows that a solution cannot be eventually positive.

Now we assume that x is an eventually negative solution of (1.1). By Lemma 2.1,

x is negative and non-decreasing for n > n1. Dividing by x(n) in (2.5), we have

ξ(n) := −
∆(n)

x(n)
>

x(τ̃ (n))

x(n)
P(n).

Then we follow the steps in the first part of this proof to show that a solution cannot

be eventually negative. �

Next we compare our oscillation condition with those stated in the introduction.

First we show that (1.5) implies (2.13). It is easy to see that (1.5) implies the

existence of a constant α > 1/e such that

m∑

i=1

n−1∑

j=τi(n)

pi(j) > α >
1

e
.

Using this constant, we can show (2.13).
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E x am p l e 2.5. In this example (2.13) is satisfied, but (1.5) and (1.8) are not.

Consider the retarded difference equation

(2.19) ∆x(n) +
1

e
esinnx(n− 1) +

3

8e
esinnx(n− 2) = 0, n > 2.

Here τ̃(n) = n− 1, τ̃ inv(n) = n+ 1, and
2∑

i=1

pi(n) =
11
8 exp(sinn)/e > 0. Using that

ln(·) is a non-decreasing function, we obtain

∞∑

n=2

( 2∑

i=1

pi(n)

)
ln

(
e

n+1∑

j=n+1

2∑

i=1

pi(j)

)
>

11

8e

∞∑

n=2

esinn ln

(
e

n+1∑

j=n+1

p1(j)

)

=
11

8e

∞∑

n=2

esinn ln

(
e
1

e

n+1∑

j=n+1

esin j

)

>
11

8e

∞∑

n=2

esinn
n+1∑

j=n+1

sin j

=
11

8e

∞∑

n=2

esinn sin(n+ 1).

To estimate the above series, we make groups of 7 summands

∞∑

n=2

ϕ(n) =

6∑

n=0

ϕ(n+ 2) +

6∑

n=0

ϕ(n+ 9) +

6∑

n=0

ϕ(n+ 16) + . . .

Using that esinn sin(n + 1) is 2π-periodic, each summation can be written as
6∑

n=0
esin(n+t) sin(n + 1 + t) for certain values of t ∈ [0, 2π). Computations (using

Mathematica) show that

inf
06t62π

6∑

n=0

esin(n+t) sin(n+ 1 + t) = 1.26288.

Therefore
∞∑

n=2
esinn sin(n + 1) = ∞, and consequently all solutions of (2.19) are

oscillatory.

To show that (1.5) and (1.8) are not satisfied, note that

lim inf
n→∞

m∑

i=1

n−1∑

j=τi(n)

pi(j) = lim inf
n→∞

( n−1∑

j=n−1

p1(j) +

n−1∑

j=n−2

p2(j)

)

= lim inf
n→∞

(11
8e

esin(n−1) +
3

8e
esin(n−2)

)
=

7

4e2
<

1

e
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and

lim inf
n→∞

m∑

i=1

(ki + 1

ki

)ki+1 n−1∑

j=n−1

pi(j)

= lim inf
n→∞

((2
1

)2 n−1∑

j=n−1

p1(j) +
(3
2

)3 n−1∑

j=n−1

p2(j)

)

= lim inf
n→∞

(4
e
esin(n−1) +

81

64e
esin(n−1)

)

= lim inf
n→∞

(337
64e

esin(n−1)
) 337

64e2
< 1.

The next two examples show that conditions (1.9) and (2.13) are independent of

each other.

E x am p l e 2.6. Consider the retarded difference equation

(2.20) ∆x(n) +
1

e
esinnx(n− 1) = 0, n > 2.

Clearly

lim inf
n→∞

n−1∑

j=n−k

p(j) = lim inf
n→∞

n−1∑

j=n−1

p(j) = lim inf
n→∞

1

e
esin(n−1)

=
1

e2
<

( k

k + 1

)k+1

=
(1
2

)2

=
1

4
,

which means that (1.9) is not satisfied.

Observe, however, that (2.13) holds. Indeed, as in the previous example

∞∑

n=2

p(n) ln

(
e

n+1∑

j=n+1

p(j)

)
>

1

e

∞∑

n=2

esinn sin(n+ 1) = ∞

and therefore all solutions of (2.20) are oscillatory.

E x am p l e 2.7. Let k > 3 be an integer and α a real number such that

( k

k + 1

)k+1

< α <
1

e
.

Also let τ(n) = n− k, m = 1, and

p(j) =

{
0 if j is a multiple of k,

α

k − 1
otherwise.
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We consider the nonlinear equation

∆x(n) = −p(n)
(11
10

x(n− k) +
1

10
sin(n− k)

)
.

Then for the corresponding linear equation (1.3), condition (1.9) is satisfied because

1∑

i=1

n−1∑

j=n−k

p(j) = α >
( k

k + 1

)k+1

.

To show that (2.13) is not satisfied, we have τ̃ inv(n) = n+ k, and

n+k∑

j=n+1

1∑

i=1

p(j) = α <
1

e
.

Therefore, ln(·) < 0 in (2.13), and the series cannot approach ∞.

3. Nonlinear advanced difference equations

In this section we make the following assumptions:

(A2) xfi(n, x) > 0 and there exist non-negative functions pi such that |fi(n, x)| >

pi(n)|x| for all x ∈ R, n > n0.

(A3) The advanced arguments satisfy σi(n) > n for 1 6 i 6 m and n > n0;

Having made these assumptions, we define the sequences:

(3.1) σ̃i(n) = min{σi(s) : s > n}

and

(3.2) σ̃(n) = min
16i6m

σ̃i(n).

Clearly, the sequences σ̃i(n) and σ̃(n) are non-decreasing and

(3.3) n < σ̃(n) 6 σ̃i(n) 6 σi(n), 1 6 i 6 m, ∀n > n0.

Lemma 3.1. Assume (A2) and (A3) hold and x is a nonoscillatory solution

of (1.2). Then there exists a positive integer n1 such that: When x is eventually

positive, then x(n) > 0, x(σi(n)) > 0, x(σ̃i(n)) > 0, x(σ̃(n)) > 0 for all n > n1 and

x(n) is non-decreasing. When x is eventually negative, then x(n) < 0, x(σi(n)) < 0,

x(σ̃i(n)) < 0, x(σ̃(n)) < 0 for all n > n1 and x(n) is non-increasing.
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The proof of this lemma is similar to that of Lemma 2.1, so we omit it.

From the definition of σ̃ it follows that σ̃(n) is non-decreasing, but it may not be

one-to-one. We define an “inverse” function by taking the smallest element in the

set σ̃−1(s) = {n : σ̃(n) > s}. This function is defined for s > σ̃(n0) and is bounded

below because n < σ̃(n). Let

σ̃inv(s) = min{n : σ̃(n) > s}.

This sequence is non-decreasing. In addition, by (A3), it satisfies

σ̃inv(n) < n < σ̃(n).

Lemma 3.2. Assume (A2) and (A3) hold and x is a nonoscillatory solution

of (1.2). Then
n∑

j=σ̃inv(n)

∑m

i=1
pi(j) < 1 for n > n1.

P r o o f. First assume that x is eventually positive. By Lemma 3.1, x is non-

decreasing. Then by (A2) we have

∇x(n) =

m∑

i=1

fi(n, x(σi(n))) >

m∑

i=1

pi(n)x(σi(n))(3.4)

>

m∑

i=1

pi(n)x(σ̃i(n)) > x(σ̃(n))

m∑

i=1

pi(n).

As before, we let P(n) =
m∑
i=1

pi(n). Summing this inequality from n to σ̃(n) yields

x(σ̃(n))− x(n− 1) >

σ̃(n)∑

j=n

x(σ̃(j))P(j) > x(σ̃(n))

σ̃(n)∑

j=n

P(j).

Then

0 < x(n− 1) 6 x(σ̃(n))

(
1−

σ̃(n)∑

j=n

P(j)

)

and the result follows for eventually positive solutions.

Now assume that x is eventually negative. By Lemma 3.1, x is non-increasing.

Then by (A2) we have

∇x(n) =

m∑

i=1

fi(n, x(σi(n))) 6

m∑

i=1

pi(n)x(σi(n))(3.5)

6

m∑

i=1

pi(n)x(σ̃i(n)) 6 x(σ̃(n))P(n).
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Summing this inequality from n to σ̃(n) yields

x(σ̃(n))− x(n− 1) 6

σ̃(n)∑

j=n

x(σ̃(j))P(j) 6 x(σ̃(n))

σ̃(n)∑

j=n

P(j).

Then

0 > x(n− 1) > x(σ̃(n))

(
1−

σ̃(n)∑

j=n

P(j)

)

and the result follows for eventually negative solutions. �

From Lemma 3.2, using the contradiction argument we can show that if

lim sup
n→∞

n∑

j=σ̃inv(n)

m∑

i=1

pi(j) > 1,

then all solutions of (1.2) are oscillatory.

Theorem 3.3. Assume (A2), (A3) hold and that

(3.6)

∞∑

n=1

( m∑

i=1

pi(n)

)
ln

(
e

n−1∑

j=σ̃inv(n)

m∑

i=1

pi(j)

)
= ∞.

Then all solutions of (1.2) are oscillatory.

P r o o f. To reach a contradiction, suppose that x is an eventually positive

solution of (1.2). By Lemma 3.1, x(n) is positive and non-decreasing for n > n1.

Recall that ln(r) 6 r−1 for r > 0. Defining a new variable ξ and using this inequality,

we have

ξ(n) :=
∇x(n)

x(n)
= −

(x(n− 1)

x(n)
− 1

)
6 − ln

(x(n− 1)

x(n)

)
.

Summing from n+ 1 to σ̃(n), we have

(3.7)

σ̃(n)∑

j=n+1

ξ(j) 6 −

σ̃(n)∑

j=n+1

ln
(x(j − 1)

x(j)

)
= ln

(x(σ̃(n))
x(n)

)
.

Dividing by x(n) in (3.4) and using the notation P =
m∑
i=1

pi(j), we have

ξ(n) =
∇(n)

x(n)
>

x(σ̃(n))

x(n)
P(n),
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or

(3.8)
ξ(n)

P(n)
>

x(σ̃(n))

x(n)
.

Applying logarithms on both sides and using (3.7), we obtain

ln
( ξ(n)

P(n)

)
> ln

(x(σ̃(n))
x(n)

)
>

σ̃(n)∑

j=n+1

ξ(j),

or

(3.9) ξ(n) > P(n) exp

( σ̃(n)∑

j=n+1

ξ(j)

)
.

Using the inequality eby > y + ln(eb)/b, with

b(n) =

n−1∑

j=σ̃inv(n)

P(j) and y =
1

b(n)

σ̃(n)∑

j=n+1

ξ(j)

in (3.9), we obtain

ξ(n) > P(n)

(
1

b(n)

σ̃(n)∑

j=n+1

ξ(j) +
1

b(n)
ln(eb(n))

)
.

Then

ξ(n)b(n)− P(n)

σ̃(n)∑

j=n+1

ξ(j) > P(n) ln(eb(n)).

We select a positive integer u such that σ̃(u − 1) < σ̃(u). Note that there are

infinitely many integers with this property because lim
n→∞

σ̃(n) = ∞. By selecting

such an integer, we aim at interchanging the order in the double summation below.

Summing the above inequality from u to v − 1 (with σ̃(u) < v − 1), we have

(3.10)

v−1∑

n=u

ξ(n)b(n)−

v−1∑

n=u

P(n)

σ̃(n)∑

j=n+1

ξ(j) >

v−1∑

n=u

P(n) ln(eb(n)).

Interchanging the order in the double summation and shortening the summation

area, we have

v−1∑

n=u

P(n)

σ̃(n)∑

j=n+1

ξ(j) >

v∑

j=σ̃(u)

ξ(j)

j−1∑

n=σ̃inv(j)

P(n) =

v∑

n=σ̃(u)

ξ(n)

n−1∑

j=σ̃inv(n)

P(j)

=

v∑

n=σ̃(u)

ξ(n)b(n) >

v−1∑

n=σ̃(u)+1

ξ(n)b(n).
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From this inequality and (3.10) we obtain

v−1∑

n=u

ξ(n)b(n)−
v−1∑

n=σ̃(u)+1

ξ(n)b(n) >
v−1∑

n=u

P(n) ln(eb(n)).

By Lemma 3.2, we have b(n) < 1 (with one term to spare). Therefore

σ̃(u)∑

n=u

ξ(n) >

v−1∑

n=u

P(n) ln(eb(n)).

Note that the left-hand side is independent of v. By keeping u fixed and letting v

approach ∞, we have a contradiction to (3.6).

Now we assume that x is an eventually negative solution of (1.2). By Lemma 3.1,

x is negative and non-increasing for n > n1. Dividing by x(n) in (3.5), we have

ξ(n) :=
∇(n)

x(n)
>

x(σ̃(n))

x(n)
P(n).

Then following the steps in the first part of the proof, we can show that a solution

cannot be eventually negative. �

E x am p l e 3.4. Consider the advanced difference equation

(3.11) ∇x(n) −
1

e
esinn+cosnx(n+ 1)−

1

e2
esinn/nx(n+ 2) = 0, n > 3.

Computations (using Mathematica) show that

∞∑

n=3

( m∑

i=1

pi(n)

)
ln

(
e

m∑

i=1

n−1∑

j=n−ki

pi(j)

)

=
1

e

∞∑

n=3

(
esinn+cosn +

1

e
esinn/n

)
ln

( n−1∑

j=n−1

esin j+cos j +
1

e

n−1∑

j=n−2

esin j/j

)

=
1

e

∞∑

n=3

(
esinn+cosn +

1

e
esinn/n

)

× ln
(
esin(n−1)+cos(n−1) +

1

e
(esin(n−2)/(n−2) + esin(n−1)/(n−1))

)
= ∞.

Thus
∞∑

n=3

( m∑

i=1

pi(n)

)
ln

(
e

m∑

i=1

n−1∑

j=n−ki

pi(j)

)
= ∞,

that is (3.6) is satisfied, and therefore all solutions of (3.11) are oscillatory.
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R em a r k 3.5. A slight modification in the proofs of Theorems 2.4 and 3.3 leads

to the following results about difference inequalities.

Theorem 3.6. Assume that all the conditions of Theorem 2.4 hold. Then

(i) the retarded difference inequality

∆x(n) +

m∑

i=1

fi(n, x(τi(n))) 6 0 ∀n > n0

has no eventually positive solutions;

(ii) the retarded difference inequality

∆x(n) +

m∑

i=1

fi(n, x(τi(n))) > 0 ∀n > n0

has no eventually negative solutions.

Theorem 3.7. Assume that all the conditions of Theorem 3.3 hold. Then

(i) the advanced difference inequality

∇x(n)−
m∑

i=1

fi(n, x(σi(n))) > 0 ∀n > n0

has no eventually positive solutions;

(ii) the advanced difference inequality

∇x(n)−
m∑

i=1

fi(n, x(σi(n))) 6 0 ∀n > n0

has no eventually negative solutions.
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