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Abstract. In the present paper, we investigate certain geometric properties and inequali-
ties for the Wright function and mention a few important consequences of our main results.
A nonlinear differential equation involving the Wright function is also investigated.

Keywords: analytic function; univalent function; starlike function; strongly starlike func-
tion; convex function; close-to-convex function; Wright function; Bessel function; subordi-
nation of functions

MSC 2010: 30C45, 33C10

1. INTRODUCTION

The entire function (of 2)

o0 Zn
(L1) W)= -2 s 1 ec,
= n!T(An+ p)

called the Wright function, has appeared for the first time in connection with the
partitions of natural numbers, see [28]. Later on, it has been used in the asymptotic
theory of partitions, Mikusinski operational calculus, integral transforms and in frac-
tional differential equations (see [10], [13]). The Wright function can be represented
in terms of familiar hypergeometric functions (see [10], page 389) and in terms of the
Bessel functions J, (see [23], page 204).

Also, the Wright function generalizes various functions like array function, Whit-
taker function, (Wright-type) entire auxiliary functions, etc. The reader is referred
to [10], [12] for details and many interesting results on the Wright function.
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Let A denote the class of analytic functions in the open unit disk D := {z € C:
|z| < 1} having the form

(1.2) f(z):z—l—Zanz”,
n=2

By S, we denote the subclass of A consisting of functions which are univalent in D.
For two analytic functions f and F' in D, we say that f is subordinated to F', and
express this symbolically by f(z) < F(z), if f(z) = F(w(z)) in D, for some analytic
function w in D with w(0) = 0 and |w(z)] < 1. In particular, if I € S, then
f(2) < F(z) if and only if f(0) = F(0) and f(D) C F(D).

A function f € A is called starlike, if tw € f(D) whenever w € f(D) and ¢t € [0, 1].
The class of starlike functions in A4 is denoted by S*. Analytically, a function f € A
is called starlike if and only if it satisfies R{zf'(z)/f(2)} > 0, z € D. A function
f € A which maps D onto a convex domain is called a convex function and the class
of such functions is denoted by K. A function f € A is called convex if and only if
it satisfies 1+ R{zf"(2)/f'(2)} > 0, z € D. Let S*(a), 0 < a < 1 be the class of
strongly starlike functions of order a in D, which is defined by

o~ z2f'(2) an

(1.3) S (a):{fEA: ‘arg( ) )‘<7, zelD}.

Note that S*(1) = S*. Further, a function f € A is called close-to-convex in D if
the complement of f(D) can be written as the union of non-intersecting half-lines.
A function f € A is close-to-convex with respect to a starlike function g, denoted
by C,, if it satisfies R{zf'(2)/g(2)} > 0, z € D. For more details about these classes
one can refer to [7], [9].

In this paper, we consider the following normalized form of the Wright function:

(14) Wy ,(z) = 2T(u)W (z)'—iM A>—1, u>0, z€D
. A1 - M A1 T ~ n'F(/\’I’L—I—/L)’ ) M 9 .

The normalized Wright function Wy , was studied recently by the present author
in [23] (see also [17]). Note that

(1.5) Wi q1(—2) = J,(2) = D(v + 1)2277/27,(2V/2).

Here, J,(z) denotes the normalized Bessel function, investigated recently for the
geometric properties in [2], [22], [25]. The function J,(z) is the well known Bessel
function, defined by

o 2e) = (3 Wi (5 = 32 G
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The special functions play an important role in function theory, especially the hy-
pergeometric function, which appeared in De-Branges’ solution of the famous Bieber-
bach conjecture (see [6]). Several researchers studied classes of analytic functions
involving special functions F C A, to find different conditions such that the mem-
bers of F to have certain geometric properties such as univalency, starlikeness or
convexity in D. In this context many results are available in the literature regarding
the hypergeometric functions (see [14], [24], [21], [20]), normalized Bessel functions
(see [2], [4], [22], [25]), generalized Bessel functions (see [3], [16]), generalized Struve
functions (see [30], [31]), Lommel functions (see [29]), Wright functions (see [23]) and
Mittag-LefHler function (see [1]). In this paper, our main aim is to examine the geo-
metric properties and inequalities of the Wright function W, ,. We also investigate
an initial value problem involving the Wright function.

2. CLOSE-TO-CONVEXITY AND STARLIKENESS OF WA,M

In this section we obtain certain sufficient conditions for close-to-convexity and
starlikeness of W) , in D. To prove our results, we shall need the following known
results.

Lemma 2.1 (Fejér [8]). Let f € A be of the form (1.2) with a,, > 0. If the
sequences {nay,} and {na, — (n+1)a,11} are non-increasing, then f is starlike in D.

Lemma 2.2 (Ozaki [18]). Let f € A be of the form (1.2). If
1>22a2>2...2na, 2 (n+apg1... 20

or
1<2a<...<na, < (n+ Dapsr ... <2,

then f is close-to-convex with respect to g(z) = z/(1 — z).

Lemma 2.3 (Halenbeck and Ruscheweyh [11]). Let G(z) be convex and univalent
in D and F(z) be analytic in D with G(0) = F'(0) = 1. If F(z) < G(z) in D, then

(n+1)z "1 /Oz t"E(t)dt < (n+ 1)z "1 /Oz t"G(t)dt, neNuU{0}.

Our first result is given below by Theorem 2.1:

Theorem 2.1. Let A > 1 and p > 1. If T(A+ ) > 2T'(u), then W, ,, is close-to-
convex with respect to g(z) = z/(1 — z).
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Proof. By using Lemma 2.2, it is sufficient to show that
(2.1) 1>2a2...2na, 2 (n+ Dapg1...20.

From (1.4), we have

(n+ DO(A(n — 1) + 1)
nl(An + p)
= 70w 1 T O ) = (04 DI = 1) + p))

T nT(Own+ p) X(n),

nay, — (n + 1)ant1 = nay, — n

where
X(n) =n’T(M+p) — (n+1DI(A(n — 1) + p).

Under the hypothesis, it is clear that

n?T(Mn+p) =n’ TAn — 1)+ A+ p) = n°TAn —1) + 14 p)
=n*A(n— 1)+ T (A(n — 1) + p)
>(n+1DI'An—-1)+u), neN\{l}.
Also, X(1) 2 0 and T'(An + ) > T'(A(n — 1) + p), n > 2. Hence X(n) > 0 for all
n > 1. This shows that the inequality (2.1) holds. This completes the proof. ([
Taking A =1, u =v+1 (v > —1) and replacing z by —z in Theorem 2.1, we get

the following result:

Corollary 2.1. If v > 1, then J, is close-to-convex in D with respect to g(z) =

z/(1 = 2z).

Example 2.1. Taking A =1 in Theorem 2.1, we obtain that the function W, ,
is close-to-convex for 1 > 2. Also, we obtain that the function W5 , is close-to-convex
for p > 1. In particular, functions W; > and W ; are close to convex and their image
domains under D are given below in Figures (a) and (b).

Theorem 2.2. Let A > 1 and p > 1. If T'(A + p) > 4I'(u), then W, , is starlike
in D.

Proof. In view of Lemma 2.1, it is sufficient to prove that {na,} and {na, —
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(n+1)an+1} are non-increasing sequences for all n > 1. Clearly, the sequence {nay}
is non-increasing by Theorem 2.1. Therefore, it suffices to show that

(2.2) nan, —2(n+ Dant1 + (R +2)ap42 20 Vn > 1
Under the hypothesis, we have

n’T(An +p) = n’T(An — 1)+ p+1) =n*(An — 1) + p)DA(n — 1) + p)
>2(n+1)F(A(n—1)+pu), neN.

Hence

na, —2(n + Va1 + (0 + 2)ant2
nl() 2(n + )T (1) (n+2)(p)

ST TAn—=1)+w)(n—=1 TOn+wpn!  TOAm+1)+p)(n+1)
_ (W n . 2(n+1) (n+2)

(n—l)!(F()\(n—l)—i—u) TOw + o)n F(/\(n+1)+u)(n+1)n)>o'

This shows that the inequality (2.2) holds, hence W) ,(z) is starlike in D. O

Taking A =1, u = v + 1, v > —1 and replacing z by —z in Theorem 2.2, we get
the following result:

Corollary 2.2. If v > 3, then J, is starlike in D.
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Example 2.2. Taking A = 1 in Theorem 2.2, we obtain that the function
W, , is starlike for p > 4. Also, we obtain that the function W, , is starlike for
w= %(—1 ++/17). Further, we observe that, as ) increases, 1 decreases to preserve
the starlikeness of the function Wy ,.

Theorem 2.3. If A\ > 1 and p > 1+ /3, then Wy, € g*(oz). Here « is given by
2
(2.3) a=_ arcsin(m/ 1— inQ + %77\/ 1-— 772),

where n = 2(u + 1)/ p?.

Proof. Under the hypothesis, the inequality T'(u+n) < I'(An+u), n € N holds
and is equivalent to

(2.4) T o T _ 1

TOntm STotm . "5

where (z),, is the well known Pochhammer symbol defined by

1, n =0,
(@ = z(z+1)...(x+n—-1), neN.

For n € N, we have
(2.5) (@) =2(x+ 1Dpo1, z" < (2)p.

Using (2.5) in (2.4), we have

1/&<n 1 =1 1 1/ 1 =1
:E(nzﬁ(mﬁ;mmn)gﬁ(;o(u)ﬁ%(u)n)
2~ 1 241y

<u§(u+1)"_ 2 "

Note that under the hypothesis 0 < 7 < 1. From (2.6), we conclude that W  (2) <
14+ nz, z € D, which implies that

(2.7) larg(W) ,(2))] < arcsing, =z e D.
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Using Lemma 2.3, for F(2) = W) ,(2), G(2) = 1+ nz and n = 0, we obtain
W,u(2)/2 < 1+ 3nz, z € D, and consequently

Wi, .
(2.8) arg ()‘7‘(2)>‘ < arcsmg, z € D.

Now from (2.7) and (2.8), we conclude that

2W,
o ()| o5 + ot
arg + Iarg(W&,u(Z)N
<Jore (77|

< arcsin g + arcsing
= arcsin (m [1— 12+ iny/1-— 7)2),
ie, Wy u(z) € S*(a) for a given by (2.3). O

Corollary 2.3. Let A\ > 1 and p > 1+ V3. If 0 < a <1 and

_2ptl) (5 4VT—0?

2.9 =
(2.9) 12 Y 1602 +9

Wherel/—sm( ) then WAHES ().

Proof. If we substitute the value of n from (2.9) to (2.3), we obtain the re-
quired a. Hence the result. O

Taking o = 1 in Corollary 2.3, we get

vr=l=asn=—F—"-=—= =
Hence, we get the following result:

Corollary 2.4. Let A\ > 1 and u = p*, where p* is the positive root of pu? —
V5 — /5= 0. Then W, , is starlike in D.
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3. A NONLINEAR DIFFERENTIAL EQUATION

In this section, we aim to study a nonlinear differential equation involving the
Wright function. For this, we shall need the following lemmas:

Lemma 3.1 (Miller and Mocanu [15]). Let Q C C. Suppose that the func-
tion 1)(z): C2 x D — C satisfies the condition 1)(Mel?, Kel%: z) ¢ Q for all K >
M(M —lal)/(M +a|), 0 € R and z € D. Let p(z) be an analytic function of the

form
(3.1) p(z) =a+arz+ax*+..., z€D,
such that ¥(p(z),zp'(2); z) € Q for all z € D. Then |p(z)| < M, where 0 < |a| < M.

Lemma 3.2 (Tuneski [26]). If f € A and |f"(2)| < 1, z € D, then f is starlike
in D.

Theorem 3.1. For all A > —1 and p > 0, let W), ,(2) satisfy the inequality

M(M — |a])

62 W) < G Dar e

0<]a|<M<1; z€D.

Let ¢ be the (unique) solution of the initial value problem

P (2) + Wau(2)9™(2) = Wau(z), z€D
(n € NU{0}, 9(0) =0, ¢'(0) =1, ¢(0) =0, k=2,....n~1, ¢! (0) = a),
where ¢(™ denotes the nth derivative with respect to z. Then the inequality
| (2)| < M, z € D holds.
Proof. Let the function p(z) be defined by p(z) = ¢(™)(z), z € D. Note that
p(z) has the form (3.1), and then it follows that

2p'(2)  zp"tU(2)
T+p(z) 1490 (2)

=2Wi u(2), zeD go(”)(z) # —1.
We denote 9 (r, s; z) and Q by

S
N = — —1
w(r7s7z) 1+7’7 T?é

and
M(M — |a|)

(M +1)(M + |a])’

Q;:{we@; w| < o<|a|<M<1},
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respectively. Then clearly

2p' (2 2ot (4
»(p(2), 20/ (2); 2) = 1f;(i) = 1i¢(n)((z)) €Q, zeD.

Further, for any 0 € R, K > M(M — |a|)/(M + |a|) and z € D, we have

Kei0
+ Mei®

M(M — |al)
T (M +1)(M + |a])’

[ (Me, K 2)] = |-

which gives that
Y(Me?, Ke; 2) ¢ Q.

Therefore, in view of Lemma 3.1 it follows that
p(2)| =™ (z)| <M, 2€D; 0<]al <M <L

This completes the proof. O

By taking n = 2 in the above theorem we get the following result:

Corollary 3.1. For all A\ > —1 and p > 0, let W, ,,(2) satisfy the inequality (3.2)
in D. Let ¢ be the (unique) solution of the initial value problem given by

(3.3) O"(2) + Wi u(2)¢" (2) =Wy u(2), z€D
(¢(0) =0, ¥'(0) =1, ¥"(0) = a).

Then the inequality |¢"(z)] < M, 0 < |a] < M < 1 holds.

Corollary 3.2. If W, ,(z) satisfies the inequality

1 —a|

S Sy

0< |a| <1

and the function ¢(z) is the (unique) solution of the initial value problem given
by (3.3), then ¢ is starlike in D.

Proof. The proof can be obtained easily by taking M = 1 in Corollary 3.1 and
then using Lemma 3.2. (]
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4. INEQUALITIES
The following result by Fejér will be needed in this section.

Lemma 4.1 (Fejér [8]). Let {a,} be a sequence of nonnegative real numbers such
that ay = 1. If the sequence {ay} is convex decreasing, i.e., 0 = apt2 — Gpy1 =
ant1 — an for allm € N\ {1}, then

1
n—1
E n ) c D.
%(n 10,2 >>2 z

The convex hull of I, denoted by €0 KC, is the set of all convex combinations of
functions belonging to K. We recall from [5] that the closure of the set €0 K is

(4.1) EIC:{feA: %(@p% zED}.

It is well known (see [27]) that a sequence {b,, }22; of complex numbers is said to
be a subordinating sequence for the class X C A, whenever we have

o0 o0
(4.2) ananz" =< Z anz”, ze€D
n=1 n=1

o0
for all > a,z™ € X.

n=1

Lemma 4.2 (Piejko and Sokdét [19]). The function of the form (1.2) is in the set
co K if and only if as, as, ... is a subordinating factor sequence for the class K.

Theorem 4.1. For each A > 1 and p > 1, we have
(Wi, (2)] < roFi (=5 psm),

where oFy (—; p;r) is the well known hypergeometric function and |z| = r < 1.

Proof. Using (2.4), we get

oo
L(p)[=]"
4.3 W <
0 |Z|n+1
<zl + r=roFi(= ).
This proves the result. (I
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By using (1.4) and Theorem 4.1, we get the following result:

Corollary 4.1. Foreach A > 1 and pp > 1, we have |[W ,(2)| < oF1(—; p;7)/T (1),
|z| =7 < 1.

Theorem 4.2. Let A > 1 and p > 1. If T(A+ p) > 2T'(p), then

(4.4) %(M) > % zeD.

Proof. Under the hypothesis, the inequality
I TAn+p) = n—DIT(A(n—1) 4+ p)

holds, which is equivalent to
1 1
>

(45) F(A(n— 1)+ p)(n—1)! 7 T(An+ p)n!’

Now we need to show that

oo

o T'(w)
{an}ni, = {I‘()\(n “ 1)+ p0)(n - 1) }n:l

is a convex decreasing sequence. We observe that

Ap42 — 2an+1 + an

_ ['(p) o 20(p) L(p) >0
FAn+1D)+p)n+1)! TAn+wpn!  TAn-1)+p)n-1)1" "

which shows that {a,}22  is a convex decreasing sequence. Now applying Lemma 4.1,

we get
> 1
%{Z anz"_l} > 2 zeD
n=1
which is equivalent to (4.4). This proves the result. O

Proceeding similarly as in Theorem 4.2, we get the following result:

Theorem 4.3. Let A > 1 and p > 1. If T(A+ p) > 4T'(p), then

(4.6) R{W), ,(2)} > % 2eD.
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Corollary 4.2. Let A\> 1 and p > 1. If (A + ) > 2T'(n), then the sequence

(4.7) {7r( Hy) }OO

An + p)n!

n=1

is a subordinating sequence for the class IC.

Proof. By using (4.1) and (4.4), we have W) ,(z) € T K. O

Now applying Lemma 4.2, we get the desired result.

Corollary 4.3. Let A > 1 and p > 1. If T(A\+ p) > 4T (), then the sequence

(4.8)

n+ DT(u) Yo
{(Fet)

n=1

is a subordinating sequence for the class K.

Proof. By using (4.1) and (4.6), we have zW) ,(2) € coK. Now applying

Lemma 4.2, we get the desired result. O
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