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KYBER NET IKA — VOLUM E 5 4 ( 2 0 1 8 ) , NUMBE R 1 , P AGES 7 9 – 9 5

A NOVEL ALGORITHM FOR THE MODELING
OF COMPLEX PROCESSES

José de Jesús Rubio, Edwin Lughofer, Plamen Angelov, Juan Francisco
Novoa and Jesús A. Meda-Campaña

In this investigation, a new algorithm is developed for the updating of a neural network. It is
concentrated in a fuzzy transition between the recursive least square and extended Kalman filter
algorithms with the purpose to get a bounded gain such that a satisfactory modeling could be
maintained. The advised algorithm has the advantage compared with the mentioned methods
that it eludes the excessive increasing or decreasing of its gain. The gain of the recommended
algorithm is uniformly stable and its convergence is found. The new algorithm is employed for
the modeling of two synthetic examples.
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1. INTRODUCTION

In recent years, the recursive least square and extended Kalman filter algorithms have
been highly utilized in the modeling issue. The recursive least square technique is an
adaptive filter which recursively finds coefficients that minimize a weighted cost function
relating to input signals, and it shows extremely fast convergence [4, 20]. The Kalman
filter strategy is an algorithm that employes a series of measurements observed over time,
containing statistical noise and other inaccuracies, and it estimates unknown variables.
In the estimation theory, the extended Kalman filter is the nonlinear version of the
Kalman filter which is the linearization about an estimate of the current mean and
covariance [5, 16].

There is some research about recursive least square algorithms. In [24], the least
square and backpropagation are combined. The least square method is addressed in [9].
In [17], fuzzy least squares are commented. The recursive fuzzily weighted least square
is employed for updating consequent parameters in evolving fuzzy systems [21] and [30],
which is extended to a generalized form in [26]. The characteristic of this algorithm is
that its gain could converge through the time to a small value. The problem is that the
gain could be too small; therefore, the quality of the modeling could become low.
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There is some research about extended Kalman filter algorithms. In [1, 2, 3], and [31],
several Kalman filter algorithms of neural networks are developed. An extended Kalman
filter of a wavelet neural network is explored in [13]. In [8] and [33], the programming with
Kalman filters is expressed. An observer-type of Kalman filtering algorithm is addressed
in [12]. In [11], the Kalman filter of nonlinear processes is commented. Single-pass active
modeling filters are employed in [22, 23] for the semi-supervised drift detection. The
characteristic of this algorithm is that its gain could grow through the time to a big value.
The problem is that the gain could be too big; therefore, the quality of the modeling
could become low.

In this research, a new algorithm is employed for the updating of a feedforward neural
network with one hidden layer. Compared with the mentioned methods, the advised
algorithm is a combination between the recursive least square and extended Kalman
filter such as it is concentrated in a fuzzy transition between both algorithms with the
purpose to get a bounded gain, maintaining a satisfactory modeling.

Furthermore, the Lyapunov technique is employed to ensure the uniform stability
and convergence of the gain in the recommended algorithm. Stability is a method to
analyze whether the inputs, outputs, and parameters remain bounded through the time
[6, 10, 27, 32, 37]. The uniform stability is stronger than the common stability due to
the first is satisfied for any initial time, while the second is satisfied only for a zero initial
time.

Finally, the new algorithm is compared with the recursive least square and extended
Kalman filter for the modeling of two complex processes. The complex adaptive pro-
cesses issue has been explored as a well established research area [14, 15, 25].

The paper is organized. The neural network, recursive least square, extended Kalman
filter, and new algorithm are explained in Section 2. The advised technique is summa-
rized in Section 3. The recommended method is applied for the modeling of two synthetic
examples in Section 4. Conclusions and future research are explained in Section 5.

2. UPDATING ALGORITHMS OF A NEURAL NETWORK

In this part of the article: first, the neural network will be explained, second, the
recursive least square, extended Kalman filter, and new algorithm will be explained for
the updating of a neural network, and third, the stability and convergence of the gain
in the advised algorithm will be analyzed.

2.1. The neural network

Take into account the next unknown complex process:

y(k) = f [x(k)] (1)

with
x(k) = [x1(k), . . . , xi(k), . . . , xN (k)]T

= [y(k − 1), . . . , y(k − n), u(k), . . . , u(k −m)]T ∈ <N×1

N = n + m is the process input, y(k) = υ ∈ < is the process output, and f is the
unknown behavior of the complex process, f ∈ C∞.
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Fig. 1. The neural network with one hidden layer.

In this study, a special neural network is utilized which only has one hidden layer.
It could be extended to a general multilayer neural network; however, this research is
concentrated in a smaller neural network.

The structure of the neural network with one hidden layer of this study is shown in
Figure 1.

The next neural network with the input, hidden, and output layers is written:

ŷ(k) = υ̂(k)φ(k) =
M∑

j=1

υ̂j(k)φj(k)

φ(k) = [φ1(k), . . . , φj(k), . . . , φM (k)]T

φj(k) = tanh
{
ω̂j(k)

N∑
i=1

xi(k)
} (2)

with i = 1, . . . , N , j = 1, . . . ,M , x(k) ∈ <N×1 is the neural network input expressed in
(1), xi(k) ∈ <, ŷ(k) ∈ < is the neural network output, ω̂(k) ∈ <1×M and υ̂(k) ∈ <1×M

are the hidden layer and output weights, ω̂j(k) ∈ <, υ̂j(k) ∈ <, φj(k) ∈ <, φ(k) ∈ <M×1.
The next modeling error e(k) ∈ < is expressed:

e(k) = ŷ(k)− y(k) (3)

with y(k) and ŷ(k) being expressed in (1) and (2).
In the next three subsections, three alternative strategies for the updating of the

neural network will be explained: the recursive least square, extended Kalman filter,
and a new algorithm.

2.2. The recursive least square algorithm

The recursive least square algorithm is expressed in this subsection for the updating of
a neural network. The characteristic of this algorithm is that its gain Gk could converge
through the time to a small value. The problem is that the gain could be too small;
consequently, the quality of the modeling could become low.
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The next recursive least square algorithm utilized as the adapting law of the neural
network (2) for the modeling of the complex process (1) [28]:

ψ̂(k + 1) = ψ̂(k)− 1
q(k)Gk+1a(k)e(k)

Gk+1 = Gk − 1
r(k)Gka(k)aT (k)Gk

(4)

with
aT (k) = [σ1(k), . . . , σM (k), φ1(k), . . . , φM (k)] ∈ <1×2M

ψ̂(k) = [ω̂1(k), . . . , ω̂M (k), υ̂1(k), . . . , υ̂M (k)]T ∈ <2M×1

r(k) = q(k) + aT (k)Gka(k)
q(k) = r2 + aT (k)Gka(k) ∈ <

σj(k) = υ̂j(k)sech2

{
ω̂j(k)

N∑
i=1

xi(k)

}
N∑

i=1

xi(k)

0 < r2 ∈ < is a forgetting factor, e(k) is the modeling error of (3), φj(k) is expressed
in (2), σj(k) is the partial derivative of φj(k) with respect to ω̂j(k). Gk+1 ∈ <2M×2M

is the algorithm gain which is a positive definite covariance matrix, G1 = g1I is the
initial algorithm gain, and g1 > 0 is a scalar constant usually big enough to ensure an
acceptable convergence, and I ∈ <2M×2M is the identity matrix.

2.3. The extended Kalman filter algorithm

The extended Kalman filter algorithm is expressed in this subsection for the updating
of a neural network. The characteristic of this algorithm is that its gain Gk could
grow through the time to a big value. The problem is that the gain could be too big;
consequently, the quality of the modeling could become low.

The next extended Kalman filter algorithm utilized as the adapting law of the neural
network (2) for the modeling of the complex process (1) [29]:

ψ̂(k + 1) = ψ̂(k)− 1
q(k)Gk+1a(k)e(k)

Gk+1 = Gk − 1
r(k)Gka(k)aT (k)Gk +R1

(5)

with
aT (k) = [σ1(k), . . . , σM (k), φ1(k), . . . , φM (k)] ∈ <1×2M

ψ̂(k) = [ω̂1(k), . . . , ω̂M (k), υ̂1(k), . . . , υ̂M (k)]T ∈ <2M×1

r(k) = q(k) + aT (k)Gka(k)
q(k) = r2 + aT (k)Gka(k) ∈ <

σj(k) = υ̂j(k)sech2

{
ω̂j(k)

N∑
i=1

xi(k)

}
N∑

i=1

xi(k)

0 < r2 ∈ < is a forgetting factor, e(k) is the modeling error of (3), φj(k) is expressed
in (2), σj(k) is the partial derivative of φj(k) with respect to ω̂j(k). Gk+1 ∈ <2M×2M

is the algorithm gain which is a positive definite covariance matrix, G1 = g1I is the
initial algorithm gain, and g1 > 0 is a scalar constant usually big enough to ensure an
acceptable convergence, and I ∈ <2M×2M is the identity matrix. R1 = r1I, 0 < r1 ∈ <.
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Fig. 2. The new algorithm.

2.4. The new algorithm

The new algorithm is expressed in this subsection for the updating of a neural network.
It is concentrated in a fuzzy transition between the recursive least square and extended
Kalman filter algorithms with the purpose to get a bounded gain Gk, maintaining a
satisfactory modeling. Figure 2 shows the advised algorithm.

The next recommended algorithm utilized as the adapting law of the neural network
(2) for the modeling of the complex process (1):

ψ̂(k + 1) = ψ̂(k)− 1
q(k)Gk+1a(k)e(k)

Gk+1 = Gk − 1
r(k)Gka(k)aT (k)Gk +R1

(6)

with
aT (k) = [σ1(k), . . . , σM (k), φ1(k), . . . , φM (k)] ∈ <1×2M

ψ̂(k) = [ω̂1(k), . . . , ω̂M (k), υ̂1(k), . . . , υ̂M (k)]T ∈ <2M×1

r(k) = q(k) + aT (k)Gka(k)
q(k) = r2 + aT (k)Gka(k) ∈ <

σj(k) = υ̂j(k)sech2

{
ω̂j(k)

N∑
i=1

xi(k)

}
N∑

i=1

xi(k)

0 < r2 ∈ < is a forgetting factor, e(k) is the modeling error of (3), φj(k) is expressed
in (2), σj(k) is the partial derivative of φj(k) with respect to ω̂j(k). Gk+1 ∈ <2M×2M

is the algorithm gain which is a positive definite covariance matrix, G1 = g1I is the
initial algorithm gain, and g1 > 0 is a scalar constant usually big enough to ensure an
acceptable convergence, and I ∈ <2M×2M is the identity matrix. The next 5 rules are
employed to get R1 as a fuzzy transition between the recursive least square R1 = 0I and
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the extended Kalman filter R1 = r1I:

if 0 ≤ ‖Gk‖ ≤ 1
4g1, then R1 = r1I

if 1
4g1 < ‖Gk‖ ≤ 1

2g1, then R1 = 3
4r1I

if 1
2g1 < ‖Gk‖ ≤ 3

4g1, then R1 = 1
2r1I

if 3
4g1 < ‖Gk‖ ≤ g1, then R1 = 1

4r1I

if g1 < ‖Gk‖ , then R1 = 0I

(7)

with 0 < r1 ∈ <.
The stability and convergence of the gain in the recommended algorithm are analyzed

by the next Theorem.

Theorem 2.1. The gain of the new algorithm (6) (7) for the updating of the neural
network (2), (3) is uniformly stable and the next convergence is satisfied:

lim sup
T→∞

1
T

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb = r1 (8)

with b = [1, 1 . . . , 1]T , Gk is the gain of the advised algorithm expressed in (6), a(k) and
r(k) are expressed in (6), and r1 is expressed in (7).

P r o o f . Chose the next Lyapunov function:

Lk = bTGkb (9)

getting ∆Lk:
∆Lk = Lk+1 − Lk = bTGk+1b− bTGkb (10)

five cases are commented. a) when 0 ≤ ‖Gk‖ ≤ 1
4g1, taking into account (6) and that

bT b = 1:
∆Lk = bTGk+1b− bTGkb

= bT
[
Gk − 1

r(k)Gka(k)aT (k)Gk + r1

]
b− bTGkb

= bTGkb− bT 1
r(k)Gka(k)aT (k)Gkb+ bT r1b− bTGkb

∆Lk = −bT 1
r(k)Gka(k)aT (k)Gkb+ r1

(11)

The next result is gotten:

∆Lk = −bT 1
r(k)

Gka(k)aT (k)Gkb+ r1 (12)

since bT 1
r(k)Gka(k)aT (k)Gkb ≥ 0 and r1 is small and positive, the gain of the algorithm

is uniformly stable. b) when 1
4g1 < ‖Gk‖ ≤ 1

2g1, taking into account (6) and that
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bT b = 1:
∆Lk = bTGk+1b− bTGkb

= bT
[
Gk − 1

r(k)Gka(k)aT (k)Gk + 3
4r1

]
b− bTGkb

= bTGkb− bT 1
r(k)Gka(k)aT (k)Gkb− bTGkb+ 3

4r1b
T b

= −bT 1
r(k)Gka(k)aT (k)Gkb+ 3

4r1

(13)

The next result is gotten:

∆Lk = −bT 1
r(k)

Gka(k)aT (k)Gkb+
3
4
r1 (14)

since bT 1
r(k)Gka(k)aT (k)Gkb ≥ 0 and 3

4r1 is small and positive, the gain of the algorithm
is uniformly stable. c) when 1

2g1 < ‖Gk‖ ≤ 3
4g1, taking into account (6) and that bT b = 1:

∆Lk = bTGk+1b− bTGkb

= bT
[
Gk − 1

r(k)Gka(k)aT (k)Gk + 1
2r1

]
b− bTGkb

= bTGkb− bT 1
r(k)Gka(k)aT (k)Gkb− bTGkb+ 1

2r1b
T b

= −bT 1
r(k)Gka(k)aT (k)Gkb+ 1

2r1

(15)

The next result is gotten:

∆Lk = −bT 1
r(k)

Gka(k)aT (k)Gkb+
1
2
r1 (16)

since bT 1
r(k)Gka(k)aT (k)Gkb ≥ 0 and 1

2r1 is small and positive, the gain of the algorithm
is uniformly stable. d) when 3

4g1 < ‖Gk‖ ≤ g1, taking into account (6) and that bT b = 1:

∆Lk = bTGk+1b− bTGkb

= bT
[
Gk − 1

r(k)Gka(k)aT (k)Gk + 1
4r1

]
b− bTGkb

= bTGkb− bT 1
r(k)Gka(k)aT (k)Gkb− bTGkb+ 1

4r1b
T b

= −bT 1
r(k)Gka(k)aT (k)Gkb+ 1

4r1

(17)

The next result is gotten:

∆Lk = −bT 1
r(k)

Gka(k)aT (k)Gkb+
1
4
r1 (18)

since bT 1
r(k)Gka(k)aT (k)Gkb ≥ 0 and 1

4r1 is small and positive, the gain of the algorithm
is uniformly stable. e) when g1 < ‖Gk‖, taking into account (6) and that bT b = 1:

∆Lk = bTGk+1b− bTGkb

= bT
[
Gk − 1

r(k)Gka(k)aT (k)Gk

]
b− bTGkb

= bTGkb− bT 1
r(k)Gka(k)aT (k)Gkb− bTGkb

= −bT 1
r(k)Gka(k)aT (k)Gkb

(19)
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The next result is gotten:

∆Lk = −bT 1
r(k)

Gka(k)aT (k)Gkb (20)

since bT 1
r(k)Gka(k)aT (k)Gkb ≥ 0, the gain of the algorithm is asymptotically stable.

Since the uniform stability is weaker than the asymptotic stability [6, 10, 27, 32, 37],
taking into account all cases, the gain of the new algorithm is uniformly stable. Now
taking into account all cases. a) when 0 ≤ ‖Gk‖ ≤ 1

4g1, summarize (12) from 1 to T :

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb = L1 − LT + Tr1 (21)

multiplying by 1
T and getting the limit:

lim sup
T→∞

1
T

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb = r1 (22)

b) when 1
4g1 < ‖Gk‖ ≤ 1

2g1, summarize (14) from 1 to T :

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb = L1 − LT + T

3
4
r1 (23)

multiplying by 1
T and getting the limit:

lim sup
T→∞

1
T

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb =

3
4
r1 (24)

c) when 1
2g1 < ‖Gk‖ ≤ 3

4g1, summarize (14) from 1 to T :

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb = L1 − LT + T

1
2
r1 (25)

multiplying by 1
T and getting the limit:

lim sup
T→∞

1
T

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb =

1
2
r1 (26)

d) when 3
4g1 < ‖Gk‖ ≤ g1, summarize (14) from 1 to T :

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb = L1 − LT + T

1
4
r1 (27)
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multiplying by 1
T and getting the limit:

lim sup
T→∞

1
T

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb =

1
4
r1 (28)

e) when g1 < ‖Gk‖, summarize (14) from 1 to T :

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb = L1 − LT (29)

multiplying by 1
T and getting the limit:

lim sup
T→∞

1
T

T∑
k=1

bT
1

r(k)
Gka(k)aT (k)Gkb = 0. (30)

Since the limit (22) is the weakest of all, taking into account all cases, the gain of the
convergence (22) is (8), it holds the result. �

Remark 2.2. Even if the neural network of this research is equal with the neural net-
work of [28], there are three differences between the proposed research and the investi-
gation of [28]: first, in the investigation of [28] the least square algorithm is employed as
the updating law of the neural network, while in this research a new algorithm with a
fuzzy transition between the recursive least square and extended Kalman filter methods
is proposed as the updating law of the neural network; second, in the investigation of
[28] the stability and convergence of the modeling error is ensured, while in this research
the stability and convergence of the gain in the new algorithm is ensured; and third, the
algorithm of [28] is applied in the modeling of two crude oil blending processes, while
the algorithm of this research is applied in the modeling of two synthetic examples.

Remark 2.3. There is some research about fuzzy transition systems. A fuzzy transi-
tion based model is recommended in [7] and [18]. In [19, 34, 35, 36], nondeterministic
fuzzy transition systems are explored. Contrary to the nondeterministic fuzzy transition
applied in the aforementioned texts, the deterministic fuzzy transition is employed in
this investigation.

Remark 2.4. The description about how the new algorithm improves both the least
square and Kalman filter is mathematically explained. From the gain Gk+1 = Gk −

1
r(k)Gka(k)aT (k)Gk of equation (4), it can be seen that through the time Gk of the least
square algorithm could converge to zero due to r(k) is a positive term. From the gain
Gk+1 = Gk − 1

r(k)Gka(k)aT (k)Gk + R1 of equation (5), it can be seen that through
the time Gk of the Kalman filter algorithm could converge to infinity due to r(k) is a
positive term and R1 = r1I is a constant positive term with value r1. From the gain
Gk+1 = Gk − 1

r(k)Gka(k)aT (k)Gk +R1 of equation (6), it can be seen that through the
time Gk of the new algorithm eludes the convergences to zero or infinity due to r(k)
is a positive term and R1 is a positive semidefinite term which changes from 0 to r1
depending of the value of ‖Gk‖ as can be seen in equation (7).
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Remark 2.5. g1 > 0 is a scalar constant that must be big enough to ensure an accept-
able convergence, it is due to if g1 is very small in the least square its gain Gk could
converge to zero, or if g1 is very big in the Kalman filter algorithm its gain Gk could
converge to infinity. Consequently, g1 must be chosen inside of an interval which will be
commented in the next section.

3. STEPS OF THE NEW ALGORITHM

The next steps explain the new algorithm:

1. The complex process output y(k) is gotten with equation (1). The complex process
should has the form represented by the equation (1); the element N is chosen in
concordance with this complex process.

2. Take into account the next elements; chose weights υ̂j(1) and ω̂j(1) for (2) as
random numbers between 0 and 1; chose the number of hidden layer neurons M
for (2) with an integer value, chose the initial algorithm gain g1 with a positive
value, and elements r1 and r2 for (6), (7) with positive values.

3. For each iteration k, the neural network output ŷ(k) is gotten with equation (2),
the modeling error e(k) is gotten with equation (3), ψ̂(k) is gotten with weights
υ̂j(k) and ω̂j(k) utilizing (6), (7), aT (k) is gotten with σj(k) and φj(k) utilizing
(2), (6), (7), the element ψ̂(k + 1) is updated with equations (6), (7), weights of
the neural network υ̂j(k + 1) and ω̂j(k + 1) with ψ̂(k + 1) are updated utilizing
(6), (7).

4. The behavior of the algorithm could be modified by choosing different values in
the elements M ∈ [N, 5N ], g1 ∈

[
1× 102, 1× 104

]
, r1 ∈

[
5× 10−5, 5× 101

]
, or

r2 ∈
[
8× 10−2, 5× 10−1

]
.

4. EXAMPLES

In this part of the article, the advised algorithm is applied for the modeling of two syn-
thetic examples. The two chosen synthetic examples have the two main characteristics:
first, they are nonlinear with the structure of equation (1), and second, they let to show
the advantage in the recommended algorithm of maintaining its gain bounded. In all
cases, the new algorithm called KFLS will be compared with the least square algorithm
of [28] called LS, and with the extended Kalman filter algorithm of [29] called KF. The
differences between three algorithms were explained in past sections. The next root mean
square error denoted as MSE is employed for comparisons:

MSE =

(
1
N

N∑
k=1

e2(k)

) 1
2

(31)

with e(k) as the modeling error of (3).
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4.1. Example 1

The next complex process of the example 1 is explained [30]:

y(k) =
y(k − 1)y(k − 2) [y(k − 1)− 0.5]

1 + y(k − 1)2 + y(k − 2)2
+ u(k − 1) (32)

with

u(k − 1) = sin
(

2π(k − 1)
25

)
.

The complex process of equations (1), (32) is utilized where inputs are x1(k) =
y(k − 1), x2(k) = y(k − 2), x3(k) = u(k − 1) and the output is y(k) = y(k). The data
of 3000 iterations is employed for the training and the data of the least 200 iterations is
employed for the testing.

The LS of [28] is explained as (2), (3), (4) with elements N = 3, M = 5, g1 = 1×103,
r2 = 0.2, υ̂j(1) and ω̂j(1) employ random numbers between 0 and 0.5.

The KF [29] is explained as (2), (3), (5) with elements N = 3, M = 5, g1 = 1× 103,
r1 = 3× 10−1, r2 = 0.2, υ̂j(1) and ω̂j(1) employ random numbers between 0 and 0.5.

The KFLS is explained as (2), (3), (6), (7) with elements N = 3, M = 5, g1 = 1×103,
r1 = 3× 10−1, r2 = 0.2, υ̂j(1) and ω̂j(1) employ random numbers between 0 and 0.5.

Figures 3, 4, and 5 show the comparisons for the norm of the gain (‖Gk‖), the training,
and testing of the LS, KF, and KFLS. The training and testing MSE comparisons of
(31) are shown in Table 1.

Fig. 3. Norm of the gain for the example 1.

Strategies Training MSE Testing MSE
LS 0.0693 0.0153
KF 0.0547 0.0367
KFLS 0.0518 0.0153

Tab. 1. Comparisons for the example 1.
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Fig. 4. Training for the example 1.

Fig. 5. Testing for the example 1

From the Figure 3, it is observed that all algorithms show bounded norms of gains.
From Figures 4 and 5, it is observed that the KFLS improves both the LS and KF due to
the signal of the first reaches better the signal of the plant than the signal of the other.
From Table 1, it is observed that the KFLS achieves better accuracy when compared
with both the LS and KF due to the MSE is smaller for the first. Then, the KFLS is
the best option for the modeling in the Example 1.

4.2. Example 2

The next complex process of the example 2 is explained [30]:

y(k) = 0.3y(k − 1) + 0.6y(k − 2) + f(u(k − 1)) (33)

with

f(u(k − 1)) = 0.6 sin(πu(k − 1)) + 0.3 sin(3πu(k − 1)) + 0.1 sin(5πu(k − 1))
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u(k − 1) = sin
(

2π(k − 1)
200

)
The complex process of equations (1), (33) where inputs are x1(k) = y(k−1), x2(k) =

y(k − 2), x3(k) = u(k − 1) and the output is y(k) = y(k). The data of 3000 iterations
is employed for the training and the data of the least 200 iterations is employed for the
testing.

The LS of [28] is explained as (2), (3), (4) with elements N = 3, M = 5, g1 = 1×103,
r2 = 0.2, υ̂j(1) and ω̂j(1) employ random numbers between 0 and 1.

The KF of [29] is explained as (2), (3), (5) with elements N = 3, M = 5, g1 = 1×103,
r1 = 1× 10−1, r2 = 0.2, υ̂j(1) and ω̂j(1) employ random numbers between 0 and 1.

The KFLS is explained as (2), (3), (6), (7) with elements N = 3, M = 5, g1 = 1×103,
r1 = 1× 10−1, r2 = 0.2, υ̂j(1) and ω̂j(1) employ random numbers between 0 and 1.

Figures 6, 7, and 8 show the comparisons for the norm of the gain (‖Gk‖), the training,
and testing of the LS, KF, and KFLS. The training and testing MSE comparisons of
(31) are shown in Table 2.

Strategies Training MSE Testing MSE
LS 0.1892 0.0320
KF 0.1125 0.0273
KFLS 0.1087 0.0263

Tab. 2. Comparisons for the example 2.

Fig. 6. Norm of the gain for the example 2.

From the Figure 6, it is observed that all algorithms show bounded norms of gains.
From Figures 7 and 8, it is observed that the KFLS algorithm improves both the LS and
KF due to the signal of the first reaches better the signal of the plant than the signal of
the other. From Table 2, it is observed that the KFLS achieves better accuracy when
compared with both the LS and KF due to the MSE is smaller for the first. Then,the
KFLS is the best option for the modeling in the Example 2.
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Fig. 7. Training for the example 2.

Fig. 8. Testing for the example 2.

5. CONCLUSION

In this research, a new algorithm was introduced for the updating of a neural network
with one hidden layer. The stability and convergence of the gain in the advised algo-
rithm were ensured by the Lyapunov technique. From examples, it was seen that the
recommended algorithm achieves better accuracy when compared with both the recur-
sive least square algorithm and extended Kalman filter for the modeling of two complex
processes. The algorithm could be employed to as the updating of the fuzzy or evolv-
ing intelligent systems. In the future research, the new algorithm will be applied to
real world complex processes or it will be employed for the control, pattern recognition,
prediction, or classification.
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