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K Y B E R N E T I K A — V O L U M E 5 4 ( 2 0 1 8 ) , N U M B E R 1 , P A G E S 1 5 5 – 1 7 4

ADAPTIVE HIGH GAIN OBSERVER EXTENSION AND
ITS APPLICATION TO BIOPROCESS MONITORING

Sergej Čelikovský, Jorge Antonio Torres-Muñoz and
Alma Rosa Dominguez-Bocanegra

The adaptive version of the high gain observer for the strictly triangular systems subjected
to constant unknown disturbances is proposed here. The adaptive feature is necessary due to
the fact that the unknown disturbance enters in a way that cannot be suppressed by the high
gain technique. The developed observers are then applied to a culture of microorganism in a
bioreactor, namely, to the model of the continuous culture of Spirulina maxima. It is a common
practice that just the biomass (or substrate) concentration is directly measured as the output of
the process for monitoring and control purposes. This paper thereby shows both by theoretical
analysis and numerical simulation that the adaptive high-gain observers offer a realistic option
of online software sensors for substrate estimation.
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Classification: 93C95, 90C46

1. INTRODUCTION

The deterministic observer theory goes back to the well-known Luenberger observer
for the linear system and their extensions to the case of more complex dynamics, see
e. g. [21, 27] and references within there. Observability theory for nonlinear systems was
introduced in the seminal paper [18]. Along with this line of research considering a more
general classes of systems than the linear one, the problem of observers construction for
the systems with unknown parameters was introduced as well. More specifically, during
the early seventies the adaptive observer for linear systems with a parameter adaptation
algorithm was presented in [15]. For the multi-input multi-output (MIMO) linear system,
assuming detectability, as well as persistent excitation (PE) of some observer internal
signal, one may basically conclude that both the state and the unknown parameter
can be asymptotically estimated. Furthermore, the adaptive observers with exponential
convergence were proposed in [23]. This concept can be extended to systems having a
possibly nonlinear input and output injection term at the right-hand side of the state
equation, which is perhaps the most general case where PE can be checked through some
clear test. Some earlier results on nonlinear observers during the eighties go back to [3],
continued in the nineties by [9, 28, 29], all these efforts were nicely and comprehensively
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presented in the well-know monograph [27]. Relatively recent development is related
with the series of mutually related works [5, 25, 36] commented in detail later on. As an
alternative to the adaptive approach, various robust techniques were considered, most
importantly, the sliding mode technique, see e.g [4, 10, 13], or the high gain technique, see
e.g [14],[21]. The recent observers research field is a very broad one, including observers
design for classes of implicit and descriptor systems [1, 17], time delayed systems [19, 34]
and fractional order systems [35]. Observer concept finds also its application in other
system related tasks, like fault detection and fault tolerant control [20, 22], to mention
just a few. The above overview is by no mean complete as the current paper aims
anyway to concentrate to a certain more narrow segment of the overall extensive and
broad adaptive observers research subarea.

The aim of the current paper is twofold. First, to provide combination of the high-
gain approach with the dynamic adaptive observers that are the generalization of those
in [25, 36]. Secondly, to use these results, to tackle an important practical problem
of the observation of the unknown state of the waste water treatment facility with the
simultaneous estimation of the unknown constant component of the dilution factor of
the substrate inlet.

The class of systems where adaptive observers are to be designed is the so-called
strictly triangular one [27] and [11], as far as the dependence of the right-hand side on
the state and the input is concerned. Nevertheless, the unknown constant additive input
disturbance is assumed to be present as well, i. e. this constant disturbance enters, in
general, every row of the system right-hand side. Therefore, one can not simply regard
the unknown input component as an artificial additional state component to be esti-
mated as the resulting structure would be no more strictly triangular. Furthermore, the
constant unknown disturbance is multiplied by the vector field having the strictly trian-
gular dependence on the state. Therefore, one can not use the static-like observers from
[27], as they require that such a field is a constant vector multiplied by scalar nonlin-
earity depending on output only, not speaking about the additional strong assumption
enabling to use the strict positive realness property. Neither can one use directly the
results [25, 36] as they require that vector field to be output dependent only. More-
over, these results require some a priori stability assumptions that might be difficult to
achieve. In our approach, combining the high-gain design with dynamical adaptation
allows to handle more general vector field that multiplies uncertain parameter. In [12],
the high-gain observer for a class of uniformly observable single-output nonlinear system
is presented where the compulsory use of the high-gain parameter makes necessary to
analyze the case when it goes to infinity, therefore leading to look for a palliative to the
PE condition as stated in [11]. It is important to note that due to our new constructive
proof of the basic high-gain technique one can constructively design gains with reason-
able values. In [24], on the basis of the Extended Kalman Filter, the adaptive observer
was considered. Nevertheless, the current paper proposes a different array based on the
adaptive extension of the high-gain technique capable to deal with the robust observer
problem. Summarizing, the present work deals with the design of nonlinear observers
for strictly triangular systems in presence of the input disturbances. The adaptation
feature then allows to determine the unknown constant parameter which extends the
work reported in [31].
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An important motivation to investigate the class of strictly triangular systems is
the necessity to observe the model of the waste water treatment facility. Nowadays,
biological and biotechnological processes have gained a prominent place within the basic
and applied research due to its high impact in the industrial processes. In turn, Spirulina
maxima is used as a dietary supplement for humans and under stress condition it is
capable to produce an expensive dietary pigment for the food industry, moreover, it
is employed for the waste water treatment [2, 6, 8, 33]. In such a process, the reliable
control and monitoring requires the online measurements of biomass and nutrients, which
is a complex issue as it involves nonlinear dynamics, high parameter sensitivity, external
disturbances, ambient noise, etc.

The rest of the paper is organized as follows. The preliminary definitions and results
on nonlinear observability and observers are collected in the next section including the
derivation of the classical high-gain exponentially stable observer and the alternative
proof of its convergence compared to [14, 21]. Section 3 presents the main contribution
of the paper being two versions of the dynamic adaptive high-gain observer. The waste
water system transformation from the standard Monod bioprocess description to a more
convenient one together with a useful forward invariant property is presented in Section
4. Finally, the specific bioprocess observer design and its numerical simulations are
provided in Section 5. Final section contains conclusions and outlooks for the possible
future research.

2. DEFINITIONS AND PRELIMINARY RESULTS

Consider the following single-input single-output nonlinear system

ẋ = A0x+ f(x) + g(x)u, y = h(x), (1)

where A0, f(x), g(x), h(x) are such that (1) has the following form

ẋ =


x2

x3

...
xn

0

+


f1(x1)

f2(x1, x2)
...

fn−1(x1, . . . , xn−1)
fn(x1, . . . , xn)

+


g1(x1)

g2(x1, x2)
...

gn−1(x1, . . . , xn−1)
gn(x1, . . . , xn)

u,
y = x1.

(2)

In other words, A0, f(x), g(x), h(x) are given as

A0 =


0 1 0 0
...

. . .
1

0 · · · 0

 , f(x) =


f1(x1)

f2(x1, x2)
...

fn−1(x1, . . . , xn−1)
fn(x1, . . . , xn)

 , (3)
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g(x) =


g1(x1)

g2(x1, x2)
...

gn−1(x1, . . . , xn−1)
gn(x1, . . . , xn)

 , h(x) = x1, (4)

where f(x), g(x) and h(x) are smooth vector fields and function, respectively. Further,
assume that f(x), g(x) are globally uniformly Lipschitz on a given subset Ω of Rn and
that Ω is forward invariant with respect to (1,2) for any admissible input. In the sequel,
(1,2) will be referred to as the so-called strictly triangular system (STS).

Definition 2.1. Asymptotic observer of the system (1) is the following system

ż(t) = A0z(t) + f(z) + g(z)u(t) + α(z, u, y)
z(t) = β(z, u, y), z ∈ Rn,

(5)

provided that ∀z0, x0 ∈ Rn and every bounded input u(t) it holds:

i) z0 = x0 =⇒ x(t, x0) = z(t, z0) for all t ≥ t0,
ii) limt→∞ ‖z(t, z0)− x(t, x0)‖ = 0.

Here, x(t, x0) stands for the solution of (1) with x(t0, x0) = x0 while z(t, z0) is the
solution of (5) with z(t0, z0) = z0. The corresponding observer is called as the global
one if the condition ii) holds for any z0, x0 and it is called as the exponential one if the
convergence in ii) is the exponential one. Where no confusion arises, we will write in the
sequel just x(t), z(t). The component z1 will be occasionally referred to as the output
of the observer (5).

For STS (1), the observer in the sense of Definition 2.1) is provided by the following

Theorem 2.2. Assume that all right hand side vector fields in (1) are globally uniformly
Lipschitz on Ω ⊂ Rn being forward invariant with respect to (1) for any bounded input
u(t), t ≥ t0. Then for any real gains l1, l2, . . . , ln, such that the matrix

Al =



l1 1 0 · · · 0

l2 0 1
. . .

...
...

...
. . . . . . 0

ln−1 0 · · · 0 1
ln 0 · · · 0 0

 (6)

is the Hurwitz one, there exists a real number r > 0 such that the following system

ż =


z2

z3

...
zn

0

+


f1(x1)

f2(x1, z2)
...

fn−1(x1, z2, . . . , zn−1)
fn(x1, z2, . . . , zn)

 (7)
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+


g1(x1)

g2(x1, z2)
...

gn−1(x1, z2, . . . , zn−1)
gn(x1, z2, . . . , zn)

u+


rl1
r2l2

...
rn−1ln−1

rnln

 (z1 − x1) (8)

is the exponential observer of (1), provided the system trajectory starts in the interior
of Ω while the initial observer estimate starts sufficiently close to it. If Ω = Rn, then
the corresponding observer is the global exponential one.

The results similar to the above theorem were already presented in the literature
before, see e. g.[14]. The novelty of the current paper is the alternative proof, presented
later on, which allows to obtain a reasonable value of the “high-gain parameter” r > 0,
including a constructive way how to determine it. Note also, that the observer presented
by Theorem 2.2 has the usual form of the copy of the system to be observed1 and the
injection of the output error evaluated as e1 = z1 − x1.

P r o o f . First, let us obtain the error dynamics for the estimation error e = z − x,
namely, subtracting (1) from (8) gives:

ė =


e2

e3

...
en

0

+


rl1
r2l2

...
rn−1ln−1

rnln

 e1 +


0

k2(x1, z2, u)− k2(x1, x2, u)
...

kn−1(x1, z2, . . . , zn−1, u)− kn−1(x1, . . . , xn−1, u)
kn(x1, z2, . . . , zn, u)− kn(x1, . . . , xn−1, xn, u)

 ,
(9)

where ki(·, u) = fi(·) + gi(·)u, i = 2, . . . , n. Equation (9) can be rewritten as follows

ė =



rl1 1 0 · · · 0

r2l2 0 1
. . .

...
...

...
. . . . . . 0

rn−1ln−1 0 · · · 0 1
rnln 0 · · · 0 0




e1

e2

e3

...
en

+ U(t)


e1

e2

e3

...
en

 . (10)

The matrix U(t) has by ej = zj − xj , j = 1, . . . , n, the following form

U(t) =



0 0 0 · · · 0

0 u22 0
. . .

...
...

...
...

. . . 0
0 un−1,2 · · · un−1,n−1 0
0 un2 · · · un,n−1 unn

 , (11)

ui,j(t) :=
ki(x1, . . . , xj−1, zj , . . . , zi, u)− ki(x1, . . . , xj , zj+1, . . . , zi, u)

zj − xj
, (12)

1The minor difference is that in the system copy on the observer (8) right hand side the component
z1 is replaced by the directly measured output of the system to be observed x1 which is realizable as
an additional output injection and it may obviously only help to improve the observer convergence.
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where i = 2, . . . , n, j = 2, . . . , i and zk, . . . , zl, should be replaced by the empty space if
k > l. Furthermore, let ‖ · ‖ stands for some suitable matrix norm compatible with the
Euclidean vector norm. By the uniform Lipschitz property assumption there obviously
exists a fixed suitable constant M > 0 such that

‖U(t)‖ ≤M, ∀t ≥ t0, (13)

provided both trajectory to be observed and the estimate stay inside the set where
the uniform Lipschitz property holds. In case of the global Lipschitz on Rn property
such a provision is obviously valid, while in case of Lipschitz property on Ω ⊂ Rn that
provision obviously holds if the error dynamics is exponentially stable and the initial
error is sufficiently small. Summarizing, both claims to be proved are indeed proved if
the above error dynamics is shown to be stable for some r > 0.

To proceed with, recall that the gains l1, . . . , ln were selected in such a way that Al

given by (6) is Hurwitz, therefore there exists matrix S = S> > 0 such that:

SAl +A>l S = −I (14)

and for any r > 0 introduce the matrix

S(r) := Θ−1(r)SΘ−1(r), Θ(r) = diag(1, r, . . . , rn−1). (15)

Notice, that for all r > 0 the matrix S(r) is also positively definite and symmetric as
Θ(r) is nonsingular and diagonal matrix. Next, introduce yet another notation

A(r) =



rl1 1 0 · · · 0

r2l2 0 1
. . .

...
...

...
. . . . . . 0

rn−1ln−1 0 · · · 0 1
rnln 0 · · · 0 0

 , (16)

in particular, A(0) = A0, A(1) = Al, Θ(1) = In, S(1) = S and for all r ≥ 1

Θ−1(r)A(r)Θ(r) = rAl, ‖S(r)‖ ≤ ‖S‖ ,
∥∥Θ−1(r)x

∥∥ ≤ ‖x‖ ,
which can be checked by straightforward computations. Note, that S(r) is, indeed,
symmetric as S is symmetric and

[
Θ−1(r)

]> = Θ−1(r) by the diagonality of Θ(r).
Moreover, S(r) is positive definite since ∀e 6= 0 it holds

e>S(r)e = e>Θ−1(r)SΘ−1(r)e =
[
Θ−1(r)e

]>
S
[
Θ−1(r)e

]
> 0,

where the last inequality is the consequence of the positive definiteness of S. Moreover,
by the lower triangularity of U(t), by the definition of Θ(r) in (15) and by (13) it holds

‖Θ−1(r)U(t)Θ(r)‖ ≤ ‖U(t)‖ ≤M, ∀t ≥ t0. (17)

Next, consider the parameterized Lyapunov function candidate

Vr(e) = e>S(r)e



Adaptive high gain observer in bioprocess monitoring 161

having the full time derivative along the trajectories of the error dynamics (9,10,11)

dVr(e)
dt

= e>
[
S(r)A(r) +A(r)>S(r)

]
e(t) + e>Ãre(t),

where Ãr(t) = S(r)U(t) + U(t)>S(r). Straightforward computations using (15) give

dVr(e)
dt = e>

[
Θ−1(r)SΘ−1(r)A(r) +A(r)>Θ−1(r)SΘ−1(r)

]
e(t) + e>Ãre(t),

dVr(e)
dt = e>Θ

[
SΘ−1(r)A(r)Θ(r) +

(
Θ−1(r)A(r)Θ(r)

)>
S
]
eΘ + e>Ãre(t) =

re>Θ[SAl +A>l S]eΘ + e>Θ[SΘ−1(r)U(t)Θ(r) + (Θ−1(r)U(t)Θ(r))>S]eΘ,

(18)

where eΘ = Θ−1(r)e and the last equality is again by (15) and by (14). Denote

Ar = SΘ−1(r)U(t)Θ(r) + (Θ−1(r)U(t)Θ(r))>S. (19)

Summarizing,

dVr(e)
dt

= −re>ΘeΘ + e>ΘAreΘ = −r ‖eΘ‖2 + e>ΘAreΘ. (20)

Furthermore, by (17) and by (19) it holds that∥∥Ar

∥∥ ≤ 2M ‖S‖ , ∀t ∈ R,∀r ≥ 1,

and therefore

dVr(e(t))
dt

≤ −r ‖eΘ‖2 + 2M ‖S‖ ‖eΘ‖2 = −(r − 2M ‖S‖) ‖eΘ‖2 .

This gives by eΘ = Θ−1(r)e that

dVr(e(t))
dt

≤ −(r − 2M ‖S‖)‖Θ−1(r)‖‖e‖2.

Finally, selecting any r > 2M ‖S‖ gives

dVr(e(t))
dt ≤ −K ‖e‖2 , K := (r − 2M ‖S‖)‖Θ−1(r)‖ > 0, (21)

so that the above introduced parameterized Lyapunov function candidate Vr(e) becomes
for the selected r > 2M ‖S‖ the Lyapunov function proving the exponential stability of
the error dynamics (9). �

Remark 2.3. The above proof shows that r can be, indeed, searched in a constructive
way, moreover, it is possible to attempt to optimize the value of r via the selection of the
matrix S and the gains l1, . . . , ln, mutually related by (14). Indeed, the adequate LMI
formulation of this problem would be straightforward. In such a vein, the sufficiency of
condition r > 2M ‖S‖ proves, in particular, that the observer design based on the LMI
optimization approach [30, 37] has a feasible solution.
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3. MAIN RESULTS

In general, the observer state estimation may be lost when system is subjected to exter-
nal unknown disturbances acting on the system unless these disturbances are properly
managed. Such a task and its solvability depends crucially on the class of these dis-
turbances. Here, the constant disturbances without known range are to be considered.
Namely, consider the following perturbed system given by

ẋ = A0x+ f(x) + g(x)u+ p(x)δ,
y = x1 = cx,
c = [1, 0, . . . , 0],

(22)

where f(x), g(x) are as in (1) while p(x) has the similar strictly triangular structure
as f, g do have there. Furthermore, x ∈ Rn is the state vector, while y, u, δ are the
scalar output, input and constant parameter perturbation, respectively. In the sequel,
we assume the same Lipschitzean properties as in Theorem 2.2.

First, for the sake of completeness let us repeat the well-known definition of the
persistent excitation and its consequences, see e. g. [27].

Definition 3.1. A bounded and piecewise continuous function ϕ(t) ∈ Rn is called as
persistently exciting (PE) if there exist α, β ∈ R, 0 < α ≤ β and T > 0 such that ∀t ≥ 0
it holds

α ≤
∫ t+T

t

ϕ>(t)ϕ(t) dτ ≤ β.

Lemma 3.2. Let ϕ(t) ∈ Rn be persistently exciting, then the system

η̇ = −ϕ>(t)ϕ(t) · η, η ∈ R,

is globally exponentially stable.

Now we are ready to state the main result of the paper being a combination of the high
gain design with dynamic adaptation similar to [25, 36]. High gain technique enables to
treat more general state space dependence structure as in these previous results. First,
let us state the following

Theorem 3.3. Consider system (22) with unknown constant δ ∈ R. Let f, g, p be
smooth and denote, respectively, by F (x), G(x), P (x) the Jacobians of f(x), g(x), p(x)
at x and let P (x) is globally bounded. Consider a state trajectory x(t) of (22) generated
by a finite input u(t) such that F (x(t)), G(x(t)) are uniformly bounded ∀t ≥ t0. Then,
for any n-tuple of gains l1, l2, . . . , ln such that the matrix Al defined in (6) is Hurwitz
and ∀k > 0 there exists r ≥ 1 and δ0 > 0 such that for all φ0 ∈ (δ − δ0, δ + δ0) the
following system

ż = A0z + f(z) + g(z)u+ [l1r, . . . , lnrn]>(z1 − x1) + p(z)φ+ γ(t)φ̇,

φ̇ = −kγ>(t)c>ce, φ(0) = φ0,

γ̇(t) = [A(r) + F (z) +G(z)u+ P (z)φ]γ(t) + p(z),

(23)

is the local (with respect to initial observation error) adaptive exponential observer of
the considered above trajectory x(t), t ≥ t0, of (22) provided that the signal γ>(t)c> is
the persistently exciting for all r ≥ 1.
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P r o o f . First, notice that the observer error e(·) = z(·)−x(·) has the following dynamics

ė = A(r)e+ [f(x+ e) + g(x+ e)u− f(x)− g(x)u]

+p(x+ e)φ− p(x)δ + γ(t)φ̇,
(24)

where A(r) is given by (16). Further, (24) can be obviously rearranged as follows

ė=A(r)e+ [f(x+ e) + g(x+ e)u− f(x)− g(x)u

+p(x+ e)δ − p(x)δ] + p(x+ e)(φ− δ) + γ(t)φ̇.
(25)

In the sequel, denote the error of the unknown parameter estimate as

ε := φ− δ. (26)

As the unknown parameter is a constant with respect to time, it clearly holds that

ε̇ = φ̇. (27)

Furthermore, introduce the so-called combined error variable ē as follows

ē = e− γ(t)ε. (28)

Using the system equations, the observer equations and those for adaptation one has

˙̄e = ė− γ̇(t)ε− γ(t)ε̇ = A(r)e
+[f(x+ e) + g(x+ e)u− f(x)− g(x)u+ p(x+ e)δ − p(x)δ]

+p(x+ e)(φ− δ) + γ(t)φ̇− γ̇(t)ε− γ(t)ε̇,
(29)

which gives by (27) that

˙̄e=A(r)e+ p(x+ e)(φ− δ)− γ̇(t)ε
+[f(x+ e) + g(x+ e)u+ p(x+ e)δ − f(x)− g(x)u− p(x)δ],

(30)

and, hence, by the third row of (23) and by (26)

˙̄e=A(r)e+ p(x+ e)ε

+[f(x+ e) + g(x+ e)u+ p(x+ e)δ − f(x)− g(x)u− p(x)δ]

−
[

[A(r) + F (x+ e) +G(x+ e)u+ P (x+ e)φ] γ(t) + p(x+ e)
]
ε.

(31)

Canceling some terms and using (26)

˙̄e = A(r)e−A(r)γε

+[f(x+ e) + g(x+ e)u+ p(x+ e)δ − f(x)− g(x)u− p(x)δ]

−[F (x+ e) +G(x+ e)u+ P (x+ e)δ]γ(t)ε+ P (x+ e)γ(t)ε2.

(32)

As a consequence, by (28) and by Taylor first order expansion of the first three terms in
the middle row of (32) with respect to a small e− ē = γε one has after the cancellation
of the terms with Jacobians F,G, P the following equation

˙̄e = A(r)ē+ [f(x+ ē) + g(x+ ē)u+ p(x+ ē)δ − f(x)− g(x)u− p(x)δ]

+P (x+ e)γ(t)ε2 + o(e− ē).
(33)
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Here, o(e − ē) = o(γε) stands for the higher order terms and using Taylor expansion
again one gets the following expression for the combined error time derivative

˙̄e = A(r)ē+ (F (x) +G(x)u+ P (x)δ)ē+ P (x+ e)γ(t)ε2 + o(ē) + o(e− ē). (34)

Summarizing, one has by e − ē = γε that o(e − ē) = o(γε) = o(ε) and by the theorem
assumption on global boundedness of P (·) that it holds

˙̄e = A(r)ē+ (F (x) +G(x)u+ P (x)δ))ē+ o([ē, ε]>). (35)

By the theorem assumptions on boundedness of F (·), G(·) along the trajectory to be
observed, which, in turn, is generated by the bounded input u(·), there obviously exists
a positive constant W such that:

‖(F (x) +G(x)u+ P (x)δ)‖ < W. (36)

Recalling the strict triangular structure of the system and choosing r sufficiently large
in a analogous way as during the proof of Theorem 2.2, namely, as

r > 2W ‖S‖ (37)

one has that ē(t) → 0 as t → ∞, exponentially for (35) when o([ε, ē]>) is neglected. In
turn, the middle adaptation equation for ε(·) given by (23) can be rewritten as

ε̇ = −kγ>(t)c>cγ(t)ε− kγ>(t)c>cē (38)

where the part
ε̇ = −kγ>(t)c>cγ(t)ε

is exponentially stable due to PE assumption and Lemma 3.2. Therefore, recalling
ē(t) → 0 as t → ∞, one has by straightforward arguments that linear approximation
of (35,38) is exponentially stable and therefore (35,38) is locally exponentially stable.
Then, by definition of ē also e and ε go exponentially to zero as t goes to infinity. �

Remark 3.4. It is generally well-known that the PE property is quite difficult to check
in a constructive way. Moreover, the PE property is required by the formulation of
Theorem 3.3 to be valid for all r ≥ 1. Nevertheless, the following interesting and useful
observation can be made based on the proof that has been just concluded. Indeed, note
that the “high gain” parameter r can be fixed as any value r > 2W‖S‖, i.e. r does not
need to go to infinity and PE property needs to be valid for limited value of parameter
r only. This aspect represents a clear advantage with respect to other approaches, like
[11] or [12].

Yet, the above PE assumptions is quite hard to be checked theoretically for a given
general system. Indeed, (23) defining γ is a linear equation with time dependent coef-
ficients and those time dependent coefficients depend on z and y obtained during the
particular observer course. So the PE property actually should be checked for each pos-
sible output and observer trajectory. On the other hand, it usually holds in practice and
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can be easily checked during the simulations for particular trajectories. Another draw-
back is the local character with respect to ε, so that initial error of unknown parameter
estimate should be reasonable small. Despite these facts, Theorem 3.3 seems to be the
only option how to treat the above more complex state space structure of the system
containing an unknown parameter.

In case that the unknown parameter perturbing vector field p(·) depends on the
output only, one can obtain even better version of the above theorem. Namely, consider
the system (22) as follows:

ẋ = A0x+ f(x) + g(x)u+ p(y)δ,

y = x1 = cx,

c = [1, 0, . . . , 0],

(39)

where the same triangular-like assumptions on the right-hand vector fields as before are
made. Then one has the following

Theorem 3.5. Consider system (39) with unknown constant δ ∈ R. Assume that p
is continuous, f, g are smooth and denote, respectively, by F (z), G(z) the Jacobians of
f(x), g(x) at x. Furthermore, let F (x(t)), G(x(t)), p(x(t)) are uniformly bounded ∀t ≥ t0
where x(t) is a given state trajectory of (22) to be observed and generated by a bounded
input u(t). Then, for any n-tuple of gains l1, l2, . . . , ln such that the matrix Al defined
in (6) is Hurwitz and some ∀k > 0 there exists r > 1 and δ0 > 0 such that for all
φ0 ∈ (δ − δ0, δ + δ0) the following system

ż = A0z + f(z) + g(z)u+ [l1r, . . . , lnrn]>(z1 − e1) + p(y)φ+ γ(t)φ̇,

φ̇ = −kγ>(t)c>ce, φ(0) = φ0,

γ̇(t) = [A(r) + F (z) +G(z)u]γ(t) + p(y),

(40)

is the adaptive exponential observer of the above given trajectory x(t), t ≥ t0, of (39)
provided that the signal γ>(t)c> is persistently exciting for all r ≥ 1.

Notice, that Theorem 3.5 is not a particular case of Theorem 3.3 as it is actually a
bit stronger result making more advantage of the simpler system structure.

P r o o f . Nevertheless, the proof of Theorem 3.5 follows very similar arguments as the
one of Theorem 3.3. Moreover, it is greatly simplified by the fact that all terms related
to p(·) and P (·) are not present during the combined error dynamics analysis. In other
words, one can repeat the steps (24-31) of the proof of Theorem 3.3 and then to realize
that all terms related to p(·) are eliminated in (31) as both p(x+e) and p(x) are replaced
everywhere by p(y). Moreover, P (·) is also not present in this proof adapted version
of (31) due to (40). So, one can easily finish the rest of the proof in the same way as
for Theorem 3.3 just erasing p(·) and P (·) everywhere. The latter enables to make the
same conclusions as in Theorem 3.3, but with the weaker assumptions of Theorem 3.5. �

Similar observations as in the case of Theorem 3.3 regarding the PE property are
valid again. Indeed, the PE property is difficult to check practically, it and can be just
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verified in the course of simulation for particular trajectories. Let us mention that the
case of systems of the form ẋ = Ax+ bu+ f(y, u, t) + pδ, y = cx, where p is a constant
vector, represents perhaps the most general case where PE can be checked through some
clear test. The analysis has been extended to the so-called state affine systems assuming
the existence of some nominal exponentially stable observer and the PE property, this
last is no more easy to test, see [5, 25, 36].

Finally, note that the above vector field p(y) multiplied by that unknown parameter
δ may be dependent on time and the input u, in addition to the dependence on the
output y, and all the above treatment would remain the same.

4. WASTE WATER SYSTEM TRANSFORMATION

In this section, the interest is focused on showing both the useful invariance property and
the waste water system transformation from the standard Monod bioprocess description
to the more convenient one. It is supposed that the constant dilution factor of the
substrate input is not known precisely. Nevertheless, this constant unknown dilution
factor may be conveniently complemented by some additive time-varying dilution factor
of the substrate input, the latter may be then naturally considered as the active control
input. In such a way, the constant unknown perturbation enters the system to be
controlled and observed through the same channel as the known and controlled input.

More specifically, a waste water system consists of a bioreactor where chemical and
biochemical reactions between alive organisms and substances occur. The process can
be anaerobic or aerobic and a great number of biotechnological process are formed by
such systems. One way of modeling a biological non structured process is by mass
balance where the rule for the rate of growth plays a fundamental role, [26]. Among
several possible formulations, the so-called Monod formula is one of the most popular
ones due to its simplicity and consistency with the saturation of growth due to substrate
availability.

To be more precise, let us denote the concentration the biomass x and the one of the
substrate s. Then the mass balance in a continuous culture is typically described by the
following model:

ẋ = xµ(s)− x(u+ δ)
ṡ = −a−1

3 xµ(s) + (a4 − s)(u+ δ), (41)

where the Monod rate of growth is given by

µ(s) =
a1s

a2 + s
. (42)

The parameter a1 is the maximal rate of growth, a2 represents the Monod saturation
constant, a3 is the yield coefficient and finally a4 is the input substrate concentration.
The control input is the rate of the dilution u(t) feeding the bioreactor and the input
channel is biased by the constant unknown dilution factor δ > 0.

Note, that system (41) is not in the strictly triangular form (1). Nevertheless, such
a form can be achieved after suitable coordinate change. Namely, introduce the smooth
state transformation introducing new variables x1,2 as follows

x1 = ln(x), x2 = µ(s). (43)
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Notice, that the new variable x1 ∈ R is defined for all x > 0, which is not restrictive due
to the biological interpretation of x. New variable x2 ranges in [0, a1] and it is defined
for s > 0 as well. In other words, the relation (43) defines a local diffeomorphism. These
new coordinates give the following transformed state equations

ẋ1 = x2 − u− δ,
ẋ2 = (a2 + a2x2

a1−x2
)−2
[
− x2 exp(x1)a1a2a

−1
3 + (a4 − a2x2

a1−x2
)a1a2(u+ δ)

]
,

(44)

that can be further simplified as follows

ẋ1 = x2 − u− δ,
ẋ2 = −a−1

1 a−1
2 a−1

3 exp(x1)x2(a1 − x2)2

+ a−1
1 a−1

2 (a4a1 − (a2 + a4)x2)(a1 − x2)(u+ δ).
(45)

Note, that the above simpler form avoids possible singularities. Its right hand side is
not globally Lipschitz on the whole R2, but for any bounded input and perturbation
trajectories stay bounded, cf. Proposition 4.1 bellow, so that system is globally Lipschitz
on its forward invariant set where it evolves. Therefore, one can use the high-gain
argument explained in the theoretical part of this paper.

The following proposition demonstrates the biological consistency of the model and
specify the forward invariant subset where system always evolves. Note, that for practical
reasons the substrate concentration in the tank should always be after some time less
than a4 as the latter is the input substrate concentration.

Proposition 4.1. Consider the system

ẋ = xµ(s)− x(u+ δ),
ṡ = −a−1

3 xµ(s) + (a4 − s)(u+ δ),
µ(s) = a1s

a2+a1s .

(46)

The following properties hold:

(i) The strip inside the positive orthant defined as O+ := {x > 0, a4 > s > 0}
is forward invariant with respect to the above system for every integrable input
signal u(t) and constant perturbation δ.

(ii) Every solution of the above system starting in O+ := {x > 0, a4 > s > 0} is
bounded for every integrable input signal u(t) and perturbation δ.

P r o o f . To prove (i) it is sufficient to check the right hand side on the boundary of
O+. Note, that x = 0 is invariant due to the first equation. Therefore, every trajectory
starting at x(0) > 0 should stay in the open right half-plane. Moreover, on the set s = 0
one has ṡ ≥ 0 while on s = a4 it holds ṡ ≤ 0.

To prove (ii), introduce new coordinates

x̃ = x+ a3s− a3a4, s̃ = s. (47)
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Then, equations are transformed into the following form

˙̃x = −(u+ δ)x̃,
˙̃s = −a−1

3 (x̃− a3s̃+ a3a4)µ(s̃) + (a4 − s̃)(u+ δ).
(48)

Now, consider function V = 1
2 x̃

2, then V̇ = −(u+ δ)x̃2. This means that any trajectory
starting at the point x̃0, s̃0 at t = 0 stays for t ≥ 0 inside the set where |x̃| ≤ x̃0 for every
integrable input and perturbation signals. The latter set is in the original coordinates
the strip formed by two lines parallel with the line x+ sa3 = 0. Note that intersection
of any such strip and positive orthant is obviously bounded for any a3 > 0, so that
boundedness of the trajectory follows by (i). �

5. OBSERVER DESIGN AND NUMERICAL SIMULATION

This section is devoted to the high gain adaptive observer design described in Theorem
3.3 for the particular system, namely, for the waste water treatment model described
in the previous section. Note that in this case the perturbation channel coincides with
the input one, therefore we may set in the sequel p(x) = g(x). We aim to perform the
adaptive observer design in the new coordinates description given by (24-25). In other
words, let us consider the system written in the following compact form

ẋ1 = x2 + g1(x)(u+ δ),
ẋ2 = f2(x) + g2(x)(u+ δ),

(49)

where
f1(x) = 0, f2(x) = −a−1

1 a−1
2 a−1

3 exp(x1)x2(a1 − x2)2,

g1(x) = −1, g2(x) = a−1
1 a−1

2 (a4a1 − (a2 + a4)x2)(a1 − x2).
(50)

In turn, according to (40) the observer dynamics is given by

ż1 = z2 + g1(z)(u+ φ) + rl1(z1 − x1) + γ1(t)φ̇,

ż2 = f2(z) + g2(z)(u+ φ) + r2l2(z1 − x1) + γ2(t)φ̇,
(51)

where the observed parameter dynamics obeys the expression

φ̇ = −κγ1(t)(z − x), κ > 0. (52)

Furthermore, the adaptive gains are expressed as

γ̇1 = rl1γ1 + γ2 + p1(z),

γ̇2 = r2l2γ1 + F21(z)γ1 + F22(z)γ2 +G22(z)(u+ φ)γ2 + p2(z),
(53)

where

p1(z) = g1(z) = −1, p2(z) = g2(z) = a−1
1 a−1

2 (a4a1 − (a2 + a4)z2)(a1 − z2),
F21(z) = −a−1

1 a−1
2 a−1

3 exp(z1)z2(a1 − z2)2,

F22(z) = −a−1
1 a−1

2 a−1
3 exp(z1)(a1 − z2)(a1 − 3z2),

G22(z) = −2a−1
1 a−1

2 [a4a1 − (a2 + a4)z2]− 1.

(54)
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The parameters of the nominal model were adjusted from the experimental data of
a batch culture of Spirulina maxima which is a blue green microalgae able to remove
some pollutants from the domestic and industrial activity like phosphates and nitrates,
see [6]. To be precise, nominal parameters, initial conditions, input (perturbed) dilution
rate u, initial state and the observer gains are:

1) Nominal parameters:

a1 a2 a3 a4

0.027 25 3.45 205

2) Initial conditions of the system and observer, observer gains:

x1(0) = z1(0) x2(0) z2(0) r l1 l2 k
6.4 0.019 0.021 1 −1 −0.25 5

3) Input and perturbations:

t(h) : 0− 500 t : 500− 1000 t : 1000− 1500
δ 0 0.003 -0.007

In what follows we shall consider the observation problem when the input u(t) is a
non-constant time function, given below. Indeed, when a constant input is applied, the
observation of both the state an perturbation δ is a trivial matter as can be computed in
a direct way from the equilibrium. The observed state z2 issued from both the standard
high gain observer and the adaptive version are presented in Figure 1. Notice that,
in the absence of perturbation, for t ∈ [0, 500h.], both observers are such that z2(t)
approaches asymptotically to x2(t); indeed the convergence of the high gain observer is
faster than the adaptive one, certainly adaptation takes longer due to dynamics of both
φ(·) and γ(·) (see, (52), (53)). However, when constant perturbation δ is present at time
intervals t ∈ [500h, 1000] and t ∈ [1000h, 1500h], the sole high gain observer is not able
to give a good estimate of x2(t), after a short transient a constant error would persist.
It can be further reduced by adjusting the high gain term, but it can not converge to
zero again not speaking about the well-known price for the gains too high. On the
contrary, the adaptive version of the high gain observers developed in the theoretical
part of this paper is able to deliver a good asymptotic estimate of x2(t) despite the
presence of perturbation δ. Actually, in Figure 2 is shown the observed “perturbed”
state φ according to eq. (52). Notice that, the external disturbance δ is asymptotically
found, indeed at the time when it is applied the estimation error goes to zero after a
short adaptation time. The speed of convergence can be modified with the gain k of
eq. (52); the actual unknown parameter points out the important issue of the unknown
parameter influence rejection and, actually, the unknown parameter identification.

As mentioned before, the PE condition can be verified only through the numerical
simulation. In Figure 3, one can see the demonstration of the PE property of func-
tion cγ(t) which is positive, so that Lemma 3.2 is applicable as the PE introduced by
Definition 3.1 is valid.
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Fig. 2. Input disturbance δ: unknown disturbance (continuous bold

line), estimated disturbance (dashed line) issued form high gain

adaptive observer.

Finally, in order to give a complete view of the simulation study, the measured output
y = x1 is given in Figure 4. The input function is reported in Figure 5, where a relatively
fast frequency of change is proposed to verify the performance of the observer given in
this work.

6. CONCLUSION

In this paper, the high-gain observers are extended to a new type of the structure incor-
porating the adaptive high-gain correction terms. A new proof of asymptotic stability
of the estimation error is given for the so-called strict triangular systems (STS), which
turned out to be instrumental for the adaptive version of the high-gain observers, allow-
ing to handle the unknown external disturbances later on. An interesting feature is the
lower bound of the so-called high-gain parameter which can be further optimized through
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the LMI approach and it also simplifies the analysis of the effect of such parameter on
the unavoidable PE property. In general, the usual high-gain nonlinear observers for
strictly triangular systems are not robust against constant input perturbations except
the special case when both the input and the perturbation has the maximal relative
degree, leading to constant substrate estimation errors in the bioreactor, for instance.
In this vein, it has been shown that the addition of the adaptive action, together with
the high-gain concept, allows the joint estimation of the state and the perturbation.
Disturbance estimation is an interesting issue on its own and may provide the efficient
solution of the problem of disturbance rejection by the adaptive observer techniques.
This last mentioned topic is actually a subject of our current research work.
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