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Automorphism liftable modules

Chelliah Selvaraj, Sudalaimuthu Santhakumar

Abstract. We introduce the notion of an automorphism liftable module and give
a characterization to it. We prove that category equivalence preserves auto-
morphism liftable. Furthermore, we characterize semisimple rings, perfect rings,
hereditary rings and quasi-Frobenius rings by properties of automorphism liftable
modules. Also, we study automorphism liftable modules with summand sum
property (SSP) and summand intersection property (SIP).

Keywords: dual automorphism invariant module; supplemented module; semi-
simple ring; perfect ring; summand sum property

Classification: 16L30, 16D40, 16W20

1. Introduction

Throughout this paper, R denotes an associative ring with identity and all
modules are assumed to be unital right R-modules unless otherwise stated. The
category of right (or left) R-modules denoted by MR or mod -R (RM or R-mod,
respectively).

A right R-module M is said to be an automorphism-extendable module if for
each submodule N in M , every automorphism of the module N can be extended
to an endomorphism of M . Such modules were introduced by Tuganbaev in [12].

A right R-module M is called an automorphism-invariant module if every iso-
morphism between two essential submodules of M extends to an automorphism
of M . Equivalently, M is an automorphism-invariant module if for any automor-
phism σ of E(M), σ(M) ⊆ M , where E(M) is the injective hull of M . A right
R-module M is called quasi-injective (or pseudo-injective) module if M is invari-
ant under any endomorphism (or monomorphism, respectively) of E(M). Clearly,
any automorphism-invariant module is automorphism-extendable.

The dual notion of automorphism-invariant modules was introduced by Singh
and Srivastava in [11] and they called such modules as dual automorphism invari-
ant modules. Further study on dual automorphism invariant modules was carried
out in [8] and [10]. An R-submodule N of an R-module M is said to be small in
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M if N +K 6= M for any proper submodule K of M and it is denoted by N ≪ M .
An epimorphism is said to be small epimorphism if its kernel is small. Given two
R-modules N and M , N is called M -projective (projective relative to M) if for
every submodule A of M , any R-homomorphism f : N → M/A can be lifted to
an R-homomorphism f ′ : N → M .

A right R-module M is called a dual automorphism invariant module if when-
ever K1 and K2 are small submodules of M , then any epimorphism η : M/K1 →
M/K2 with small kernel lifts to an endomorphism φ of M . Then φ is an isomor-
phism by [11].

A submodule K of M is said to be weak supplement of N if N + K = M and
N ∩K ≪ M . A module M is a weakly supplemented module if every submodule
of M has a weak supplement. A ring R-module M is said to be ADS∗-module if
for every decomposition M = S ⊕T of M and every weak supplement T ′ of S we
have M = S ⊕ T ′.

In this paper we introduce the notion of an automorphism liftable module
and give a characterization to it. We prove that category equivalence preserves
automorphism liftable. Furthermore, we characterize semisimple rings, perfect
rings, hereditary rings and quasi-Frobenius rings by properties of automorphism
liftable modules. Also, we study automorphism liftable modules with summand
sum property (SSP) and summand intersection property (SIP).

2. Automorphism liftable modules

In this section we introduce the notion of an automorphism liftable module,
which is the dual notion of automorphism extendable and generalization of quasi-
projective. Also, here we discuss some basic properties of automorphism liftable
modules.

Definition 2.1. An R-module M is said to be an automorphism liftable module

if for each R-submodule N of M , every automorphism of the factor module M/N
can be lifted to an endomorphism of M .

In the following proposition we will prove the category of automorphism liftable
modules closed under direct summand.

Proposition 2.2. Any direct summand of an automorphism liftable module is
automorphism liftable.

Proof: Let M = M1 ⊕ M2 be an R-module, N1 be a submodule of M1 and
f : M1/N → M1/N be an automorphism. Then f ′ = f ⊕ IM2

: M1/N ⊕ M2 →
M1/N ⊕ M2, where IM2

is the identity map on M2, is an isomorphism. Then by
hypothesis there exists an endomorphism g : M → M , which is a lifting of f ′. Let
g =

{ g11 g12

g21 g22

}

. Clearly, g11 : M1 → M1 is a lifting of f . �

Remark. The direct sum of two automorphism liftable modules need not be
automorphism liftable.
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For example, Z2 and Z4 are automorphism liftable Z-modules. Consider the
submodule N = {0⊕ 0, 0⊕ 2} of M = Z2 ⊕Z4 and an automorphism f : M/N →
M/N defined by

{

0 ⊕ 0 → 0 ⊕ 0, 0 ⊕ 1 → 1 ⊕ 1, 1 ⊕ 0 → 0 ⊕ 1, 1 ⊕ 1 → 1 ⊕ 0
}

.
Clearly, f has no lifting to M . Hence M = Z2 ⊕ Z4 is not an automorphism
liftable Z-module.

Lemma 2.3. Let M be a weakly supplemented R-module, Then M is automor-
phism liftable module if and only if for any small R-submodule S of M , every
automorphism of the factor module M/S can be lifted to an endomorphism of M .

Proof: Let N1 be an R-submodule of M and f : M/N1 → M/N1 be an automor-
phism. Since M is weakly supplemented, there exists an R-submodule N2 of M
such that N1+N2 = M and N1∩N2 ≪ M . Then N1/(N1∩N2)⊕N2/(N1∩N2) =
M/(N1 ∩ N2) and N2/(N1 ∩ N2) ∼= M/N1. Let g : N2/(N1 ∩ N2) → M/N1 be an
isomorphism defined by g(n2+(N1∩N2)) = n2+N1. Then we get an isomorphism
φ = I1 ⊕φ′ : (N1/(N1 ∩N2)⊕N2/(N1 ∩N2)) → (N1/(N1 ∩N2)⊕N2/(N1 ∩N2)),
where I1 is the identity map on N1/(N1∩N2) and φ′ = g−1 ◦f ◦g. By hypothesis,
there exists an endomorphism f ′ : M → M which is a lifting of φ.

We shall prove that f ′ is a lifting of f . Let m ∈ M and m = m1 + m2, where
m1 ∈ N1 and m2 ∈ N2. Because of (N1 ∩ N2) ⊆ N1 and I1(m1) ∈ N1, we have

f ′(m) + N1 = φ′(m2) + I1(m1) + N1

= φ′(m2) + N1

= g−1fg(m2) + N1

= f(m2) + N1.

Suppose m ∈ N1, f ′(m) + N1 = 0 + N1 and suppose m ∈ N2, f ′(m) + N1 =
f(m) + N1. Hence f ′ is a lifting of f . This completes the proof. �

From [11] dual automorphism invariant module is also a generalization of quasi-
projective module. This motivates us to rise the question: “Is there any relation
between dual automorphism invariant module and automorphism liftable mo-
dule?”. This motivation directs us to the following proposition.

Proposition 2.4. Let M be a weakly supplemented dual automorphism invariant
R-module, then M is an automorphism liftable module.

Proof: It follows from Lemma 2.3. �

Recall that an R-module M is said to be pseudo-projective if for every submo-
dule N of M every epimorphism f : M → M/N can be lifted to an endomorphism
g : M → M .

Proposition 2.5. Any pseudo-projective module is automorphism liftable.

Proof: Let N be an R-submodule of a pseudo-projective R-module M and
f : M/N → M/N be an automorphism. Then f ′ = f ◦ n : M → M/N is an
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epimorphism, where n is the natural projection from M to M/N . By pseudo-
projectivity of M , f ′ can be lifted to g : M → M . Clearly, g is a lifting of f . �

Theorem 2.6. Let M be a module of finite length. Then M is automorphism
liftable if and only if for every submodule N of M , every automorphism of the
factor module M/N can be lifted to an automorphism of M .

Proof: Suppose that M is an automorphism liftable module. Let N be a sub-
module of M and f1 be an automorphism of the factor module M/N . We need
to prove that f1 can be lifted to an automorphism of M .

Since M is a module of finite length, M is a supplemented R-module. Then
there exists an R-submodule N ′ of M such that N + N ′ = M and N ∩N ′ ≪ M .
Therefore N/(N ∩N ′)⊕N ′/(N ∩N ′) = M/(N ∩N ′) and N ′/(N ∩N ′) ∼=g M/N .
Thus the isomorphism IN/(N∩N ′) ⊕ (g ◦ f1 ◦ g−1) is a lifting of f1. Hence we can
assume that N is a small submodule of M .

Let W be the set of all pairs (M/S′, f ′) such that M/S′ is a quotient of M ,
where S′ is a small submodule of M contains in N , f ′ is an automorphism of
M/S′ and f ′ is a lifting of f1. Define a partial order relation “≤ ” on W such that
(M/S′

1, f
′
1) ≤ (M/S′

2, f
′
2) ⇔ S′

2 ⊆ S′
1 and f ′

2 is a lifting of f ′
1. Let (M/S′

1, f
′
1) ≤

(M/S′
2, f

′
2) ≤ . . . (M/S′

n, f ′
n) ≤ . . . be a chain in W . Since M is artinian, the

descending chain . . . S′
n ⊆ · · · ⊆ S′

2 ⊆ S′
1 is stationary. Therefore every chain of

W has a maximal element in W . Hence M has a maximal element (M/S, f).
Clearly, S′ ⊇ S and f ′ has f as a lifting.

Suppose S = 0, then f is a required automorphism of M .
Let S 6= 0. Then S has a maximal element and the nonzero Jacobson radical

J(S). Let g be a lifting of f . Since Im(g) + S = M , S is small in M . Hence
Im(g) = M , i.e., g is an epimorphism. In addition, J(S) is invariant under g. So
we get an epimorphism h : M/J(S) → M/J(S). Clearly, h is a lifting of f1.

We need to prove that h is one-one. It is enough to prove that h|S/J(S) is
one-one. Since S/J(S) is semisimple and finitely generated, h|S/J(S) is one-one.
Hence h is automorphism, which is a contradiction to (M/S, f) being maximal.
Hence f1 can be lifted to an automorphism of M .

The converse part is trivial. �

Theorem 2.7. Let M1, M2 be right R-modules. If M = M1 ⊕ M2 is automor-
phism liftable, then M1 is M2-projective and M2 is M1-projective.

Proof: Let f : M1 → M2/N be an R-homomorphism. It induces an R-homo-
morphism σ : M/N → M/N given by σ(x1 + x2 + N) = x1 + f(x1) + (x2 + N)
for x1 ∈ M1, x2 ∈ M2. Let x1 ∈ M1, x2 ∈ M2, m1 ∈ M1 and m2 ∈ M2,
x1 + x2 + N ∈ M/N and m1 + m2 + N ∈ M/N . To prove injectivity of σ, we
suppose that

σ(x1 + x2 + N) = σ(m1 + m2 + N), i.e.,

x1 + f(x1) + (x2 + N) = m1 + f(m1) + (m2 + N).

Then x1 = m1, f(x1) = f(m1). Thus x2 + N = m2 + N .
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To prove ontoness of σ, consider x1+x2+N ∈ M/N , then x1+x2−f(x1)+N ∈
M/N maps to x1 + x2 + N ∈ M/N under the R-homomorphism σ. Hence σ is
an isomorphism. Since M is automorphism liftable, σ lifts to an endomorphism
η of M . Let x1 ∈ M1 and η(x1 + 0) = u1 + u2, where u1 ∈ M1, u2 ∈ M2. Then
u1 + u2 + N = x1 + f(x1) ∈ M1 ⊕ M2/N , u2 + N = f(x1).

Let φ2 : M → M2 be the natural projection. Then φ2 ◦ η|M1
: M1 → M2 is

a lifting of f . Hence M1 is M2-projective. Similarly, it can be shown that M2 is
M1-projective. �

Corollary 2.8. Let M1, M2 be right R-modules and M = M1 ⊕ M2 is a weakly
supplemented dual automorphism invariant R-module, then M1 is M2-projective
and M2 is M1-projective.

Proof: This follows from Proposition 2.4 and Theorem 2.7. �

Corollary 2.9. Every automorphism liftable module is ADS∗-module.

Proof: It follows from Theorem 2.7 and the proof of Theorem 2.1 in [13]. �

Corollary 2.10. A sufficient condition for an epimorphism λ : N → M to split
is that N ⊕ M is automorphism liftable.

Proof: By Theorem 2.7, N and M are mutually projective. Then there exists an
epimorphism α : M → N such that λα = IM . Hence λ is a splitting epimorphism.

�

Theorem 2.11. Let R be a ring, M be an automorphism liftable right R-module,
and let X and Y be two submodules in M with X +Y = M . If f : M/Y → M/X
is an R-homomorphism, then there exists an endomorphism g of the module M
that is a lifting of f .

Proof: Let f : M/Y → M/X be an R-homomorphism. Consider the isomor-
phisms α1 : X/(X ∩ Y ) → M/Y and α2 : Y/(X ∩ Y ) → M/X defined by α1(x +
X ∩ Y ) = x + Y and α2(y + X ∩ Y ) = y + X , respectively. Then we get an
R-homomorphism f1 = α−1

2 ◦ f ◦ α1 : X/(X ∩ Y ) → Y/(X ∩ Y ).
We define an endomorphism α of the module M/(X∩Y ) by the relation α(x+

y + X ∩ Y ) = x + f1(x + X ∩ Y ) + y + X ∩ Y for all x ∈ X and y ∈ Y . Then

α(x + y + X ∩ Y ) = 0 + X ∩ Y

⇒ x + f1(x + X ∩ Y ) + y + X ∩ Y = 0 + X ∩ Y

⇒ x + f1(x + X ∩ Y ) + y ∈ X ∩ Y

⇒ x ∈ Y [f1(x + X ∩ Y ) + y ∈ Y ]

⇒ f1(x + X ∩ Y ) = 0

⇒ x + y + X ∩ Y = 0 + X ∩ Y.

Hence α is a monomorphism.
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Let x+y+X∩Y ∈ M/X∩Y . Take x+y−f1(x+X∩Y )+X∩Y ∈ M/X∩Y ,
then

α(x + y − f1(x + Y ) + X ∩ Y ) = x + y + X ∩ Y.

Hence α is an isomorphism.
Since M is automorphism liftable, α can be lifted to g. Clearly, g is a lifting

of f . �

Let R and S be two rings, a covariant functor T : MR → MS is said to be
category equivalence if there exists a covariant functor T ′ : MS → MR such that
T ′T and TT ′ are naturally equivalent to the identities IMR

: MR → MR and
IMS

: MS → MS , respectively. In the following theorem we prove that category
equivalence preserves the automorphism liftable module.

Theorem 2.12. Let R and S be two rings and T : MR → MS be a category
equivalence. Then M is automorphism liftable if and only if T (M) is automor-
phism liftable.

Proof: The proof is trivial. �

By [6] for any ring R and its matrix ring Rn (the set of all n×n matrix over R)
are category equivalence by the functors T : MR → MRn

defined by

T (M) = Mn (the set of all n × n matrix over M)

and T ′ : MRn
→ MR defined by

T ′(Mn) = (e11U),

where e11 ∈ S is a matrix with 1R in the (1, 1)th position and zero elsewhere.

Corollary 2.13. Let R be a ring and S = Rn. Then

(1) M is automorphism liftable over R if and only if Mn is automorphism
liftable over S;

(2) U is automorphism liftable over S if and only if (e11U) is automorphism
liftable over R.

By [6], let R be a ring and I be an ideal of R contained in the annihilator of
a module M , then MR and MR/I are category equivalent. Hence we have the
following.

Corollary 2.14. Let M be a right R-module and I a two-sided ideal of R
contained in the annihilator of M . Then M is automorphism liftable over R
if and only if it is automorphism liftable over R/I.

3. Characterization of rings using automorphism liftable modules

In this section we characterize some special rings using automorphism liftable
modules.
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Proposition 3.1. If every 2-generated R-module is automorphism liftable, then
R is a semisimple ring.

Proof: Let M be a simple R-module and let f : R → M be an epimorphism
defined by f(r) = rm for all r ∈ R and for any m ∈ M . Consider the module
N = R ⊕ M . Hence by hypothesis N is an automorphism liftable module. By
Theorem 2.7, M and R are relatively projective to each other. Then the map f
is split. Therefore M is projective and hence by [9] R is a semisimple ring. �

Corollary 3.2. For any ring R the following are equivalent:

(1) any automorphism liftable module is projective;
(2) direct sum of automorphism liftable modules is automorphism liftable;
(3) R ⊕ M is automorphism liftable module for any simple module M ;
(4) every finitely generated R-module is automorphism liftable;
(5) every 2-generated R-module is automorphism liftable;
(6) R is semisimple.

Proof: (1) ⇒ (2), (2) ⇒ (3) and (6) ⇒ (1) are trivial. By the proof of Propo-
sition 3.1, we have (3) ⇒ (6). (4) ⇒ (5) and (6) ⇒ (4) are trivial. By Proposi-
tion 3.1, (5) ⇒ (6). �

Note. In [11, Theorem 5], Singh and Srivastava proved that a ring such that
every finitely generated right R-module is dual automorphism invariant is a V -
ring. By Proposition 3.1, dual automorphism invariant module need not be an
automorphism liftable module.

In the sense of Bass [2], a ring R satisfies the descending chain condition on
principal right ideals means that for every sequence 〈ai〉 of elements of R there
exists an m such that a1 · · · amR = a1 · · ·am+kR for all k ≤ 0. The proof of the
following theorem is based on [5, Theorem 3.1].

Theorem 3.3. The ring R is left perfect if and only if every flat left R-module
is an automorphism liftable left R-module.

Proof: The ring R is left perfect implies that every flat left R-module is an
automorphism liftable left R-module which follows from [5, Theorem 3.1]. By [2,
Theorem P], we have to show that R satisfies the descending chain condition on
principal right ideals. Let F =

⊕∞

i=1 Rxi be a countably-generated free module
and define Gn =

⊕∞

i=1 R(xi −aixi+1), n = 1, 2, . . . ,∞. Then F/Gn is free (hence
flat) for all n < ∞ and so F/G = lim→ F/Gn is the direct limit of flat left R-
modules and so is flat. A module F itself is flat and hence so is F ⊕ F/G. By
hypothesis F ⊕ F/G is an automorphism liftable left R-module and hence G is
a direct summand of F . By [2, Lemma 1.3], we have done the proof. �

We will adopt the following notations from [7]. Let G be an injective cogener-
ator over the ring Z of integers and let χ = HomZ(−, G) be the G-character func-
tor. Then χ can be considered as a faithful exact contravariant functor R-mod →
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mod -R (or mod -R → R-mod) which commutes with finite direct sums. Further-
more, for any R-module M we have a canonical embedding M → χ2(M). The
module χ(M) is called the character module of M (with respect to G).

Theorem 3.4. The following are equivalent for a ring R:

(1) R is completely reducible;
(2) χ(M) is automorphism liftable for every right (left) R-module M ;
(3) χ2(M) is automorphism liftable for every left (right) R-module M .

Proof: Let χ(M) be an automorphism liftable for all M . Since χ commutes
with finite direct sums, χ(M) ⊕ χ(M) ∼= χ(M ⊕ M). Then χ(M) ⊕ χ(M) is
automorphism liftable and hence χ(M) is quasi-projective. Similarly, χ2(M) is
automorphism liftable for all M implies χ2(M) is quasi-projective for all M .
Hence the proof follows from [7, Theorem B]. �

Recall that, a ring R is said to be quasi-Frobenius if every projective module
is injective. Equivalently, every injective module is projective. In the following
theorem we give some other equivalent conditions for quasi-Frobenius ring.

Theorem 3.5. The following are equivalent for a ring R:

(1) R is quasi-Frobenius;
(2) every injective module is automorphism liftable;
(3) every projective module is automorphism extendable.

Proof: Let M be an injective (projective) module. Then M ⊕ M is injective
(projective). Therefore M⊕M is automorphism liftable (extendable) and hence M
is quasi-injective (quasi-projective). By [3, Corollary 2.3], R is a quasi-Frobenius
ring.

(1) ⇒ (2) and (1) ⇒ (3) are the trivial implication. �

Recall that a ring R is called (semi)hereditary if all (finitely generated) sub-
modules of projective modules are again projective.

Theorem 3.6. A ring R is (semi)hereditary if and only if every (finitely gener-
ated) submodule of a projective module is automorphism liftable.

Proof: Let M be a (finitely generated) submodule of a projective module P ,
M ⊕ M is a (finitely generated) submodule of a projective module P ⊕ P . Then
M ⊕M is an automorphism liftable module and hence M is quasi-projective. By
[6, Theorem 4.3], R is (semi)hereditary if and only if every (finitely generated)
submodule of a projective module is automorphism liftable. �

4. Automorphism-liftable module with SSP and SIP

Recall that a module M has the summand sum property (SSP) if the sum
of two direct summands is a direct summand of M . Also, a module M has the
summand intersection property (SIP) if the intersection of two direct summands
is a direct summand of M .
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Lemma 4.1 ([1]). A module M has the summand sum property if and only if
for every decomposition M = A⊕B and every R-homomorphism f : A → B, the
image of f is a direct summand of B.

Lemma 4.2 ([1]). A module M has the summand intersection property if and
only if for every decomposition M = A⊕B and every R-homomorphism f : A →B,
the kernel of f is a direct summand of A.

Recall that an R-module M has C3 condition, if A and B are direct summands
of M with A ∩ B = {0}, then A + B is a direct summand of M .

Also an R-module M has D3 condition, if A and B are direct summands of M
with A + B = M , then A ∩ B is a direct summand of M .

Theorem 4.3. An automorphism-liftable module M has the summand sum prop-
erty if and only if M has C3 condition and summand intersection property.

Proof: Let M = A ⊕ B for some modules A and B. Let f : A → B be an
R-homomorphism. Since the module M has the summand sum property, by
Lemma 4.1, Imf is a direct summand of B and A ⊕ Imf is a direct summand
of M . Then A ⊕ Imf is automorphism-liftable. By Theorem 2.7 A and Im p|A
are relatively projective to each other. Therefore the epimorphism f : A → Imf
is split. Hence kerp|A is a direct summand of A. Then by Lemma 4.2, M has
the summand intersection property. If an R-module M has the summand sum
property, then M satisfies the C3 condition.

Conversely, suppose M has C3 condition and summand intersection property,
then by [1, Lemma 19], M has the summand sum property. �

Dually, we can prove the following theorem for an automorphism-extendable
module.

Theorem 4.4. An automorphism-extendable module M has the summand inter-
section property if and only if M has D3 condition and summand sum property.

Proof: The proof is dual to the proof of Theorem 4.3. �

Corollary 4.5. Let M be an R-module and S = End(M). Then

(1) if M is an automorphism-liftable module, then M has the summand sum
property if and only if S has the summand sum property;

(2) if M is an automorphism-extendable module, then M has the summand
intersection property if and only if S has the summand sum property.

Proof: By [4, Theorem 2.3], S has the summand sum property. �

In [4], Garcia proved the following theorem for quasi-projective and quasi-
injective modules. Here we generalize it to automorphism-liftable and automor-
phism-extendable modules.

Proposition 4.6. Let M be an R-module and S = End(M). Then

(1) if M is an automorphism-liftable module, then M ⊕M has the summand
sum property if and only if S is regular;
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(2) if M is an automorphism-extendable module, then M ⊕M has the sum-
mand intersection property if and only if S is regular.

Proof: The proof is similar to that of [4, Theorem 2.8]. Let M be an automor-
phism-liftable module and assume that M ⊕ M has the SSP. Then M has both
the SSP and SIP by Theorem 4.3. So that the kernel and the image of each endo-
morphism of M are direct summands of M by Lemma 4.1 and Lemma 4.2, and
so S is regular by [14, Lemma 3.1]. Conversely, if S is regular, then End(M ⊕M)
is also regular and M ⊕M has the SSP by [4, Corollary 2.4]. The automorphism-
extendable case is similar. �

Acknowledgment. The authors are very grateful to the referee for several sug-
gestions and comments that greatly improved the paper.
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