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On a class of abstract degenerate fractional

differential equations of parabolic type

Marko Kostić

Abstract. In this paper, we investigate a class of abstract degenerate fractional
differential equations with Caputo derivatives. We consider subordinated frac-
tional resolvent families generated by multivalued linear operators, which do have
removable singularities at the origin. Semi-linear degenerate fractional Cauchy
problems are also considered in this context.

Keywords: abstract degenerate fractional differential equations; infinitely differ-
entiable fractional resolvent families; multivalued linear operators; semi-linear
degenerate fractional Cauchy problems; Caputo fractional derivatives

Classification: 47D03, 47D06, 47D62, 47D99, 47G20

1. Introduction and preliminaries

In [12, Chapter III], A. Favini and A. Yagi have considered a class of infinitely
differentiable semigroups generated by the multivalued linear operators satisfying
the following condition:

(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ := {λ ∈ C : ℜλ ≥ −c(|ℑλ| + 1)} ⊆ ρ(A)

and

‖R(λ : A)‖ ≤ M(1 + |λ|)−β , λ ∈ Ψ.

In this paper, we consider fractional resolvent families subordinated to these semi-
groups and apply our results in the analysis of existence and uniqueness of solu-
tions for a class of abstract degenerate (semilinear) fractional differential equa-
tions with Caputo derivatives. As mentioned in the abstract, fractional resolvent
families under our consideration have removable singularities at the origin.

Following the methods proposed in the doctoral dissertation of E. Bazhlekova,
see [2] and the monograph [12], we extend the results of R.-N. Wang, D.-H. Chen
and T.-J. Xiao, see [38], to abstract degenerate fractional differential equations.
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Even in single-valued case, we establish proper extensions of [38, Theorem 3.3 (ii),
Theorem 3.4 (iii), Theorem 4.1]; we can freely say that this is the major novelty
of our work. Besides that, we present a great number of new analytical properties
of subordinated fractional resolvent families and transfer the results of F. Periago
in [29] to abstract degenerate semilinear (fractional) differential equations.

We use the standard terminology throughout the paper. Unless specified other-
wise, we assume henceforth that (E, ‖·‖) is a complex Banach space. In the case
that X is also a complex Banach space, then we denote by L(E, X) the space
consisting of all continuous linear mappings from E into X ; L(E) ≡ L(E, E). If
A is a closed linear operator acting on E, then the domain, kernel space and range
of A will be denoted by D(A), N(A) and R(A), respectively. Since no confusion
seems likely, we will identify A with its graph.

Given s ∈ R in advance, set ⌈s⌉ := inf{l ∈ Z : s ≤ l}. Define Σα := {z ∈
C \ {0} : | arg(z)| < α}, α ∈ (0, π]. The Gamma function is denoted by Γ(·)
and the principal branch is always used to take the powers; the convolution like

mapping ∗ is given by f ∗ g(t) :=
∫ t

0
f(t − s)g(s) ds. Set gζ(t) := tζ−1/Γ(ζ),

0ζ := 0, ζ > 0, t > 0, and g0(t) := the Dirac δ-distribution.
Let 0 < τ ≤ ∞, let m ∈ N, and let I = (0, τ). Then the Sobolev space

Wm,1(I : E) can be introduced in the following way (see e.g. [2, page 7]):

Wm,1(I : E) :=

{

f : ∃ϕ ∈ L1(I : E) ∃ck ∈ C, 0 ≤ k ≤ m − 1,

f(t) =
m−1
∑

k=0

ckgk+1(t) + (gm ∗ ϕ)(t) for a.e. t ∈ (0, τ)

}

.

Then ϕ(t) = f (m)(t) in distributional sense, and ck = f (k)(0), 0 ≤ k ≤ m − 1.
We refer the reader to [7], [12], [26] and [36] for the basic source of information

on abstract degenerate differential equations with integer order derivatives.
Fairly complete information about fractional calculus and fractional differential

equations can be obtained by consulting [2], [8], [16]–[17] and [31]–[34]. In this
paper, we will use the following notion of Caputo fractional derivatives of order
γ ∈ (0, 1). The Caputo fractional derivative D

γ
t u(t) is defined for those functions

u : [0, T ] → E for which u|(0,T ](·) ∈ C((0, T ] : E), u(·)− u(0) ∈ L1((0, T ) : E) and

g1−γ ∗ (u(·) − u(0)) ∈ W 1,1((0, T ) : E), by

D
γ
t u(t) =

d

dt
[ g1−γ ∗ (u(·) − u(0))](t), t ∈ (0, T ].

The Wright function Φγ(z) is defined by

Φγ(z) :=

∞
∑

n=0

(−z)n

n!Γ(1 − γ − nγ)
, z ∈ C, γ ∈ (0, 1).
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Let us recall that Φγ(t) ≥ 0, t ≥ 0, and that the following identity holds:

(a1)
∫∞

0
trΦγ(t) dt = Γ(1+r)

Γ(1+γr) , r > −1.

The asymptotic expansion of the Wright function Φγ(z), as |z| → ∞ in the sector
| arg(z)| ≤ min((1 − γ)3π/2, π)− ǫ, is given by

(1) Φγ(z) = Y γ−1/2e−Y

(

M−1
∑

m=0

AmY −M + O
(

|Y |−M
)

)

,

where Y = (1 − γ)(γγz)1/(1−γ), M ∈ N and Am are certain real constants.
We refer the reader to [1], [39, Chapter 1], [17, Section 1.2] and [22] for further

information concerning the vector-valued Laplace transform. In this paper, we
are working in the setting of complex Banach spaces and we are following the
usually considered approach from [1].

2. Multivalued linear operators

A multivalued map (multimap) A : E → P (E) is said to be a multivalued linear
operator (MLO in E, or simply, MLO) if and only if the following holds:

(i) D(A) := {x ∈ X : Ax 6= ∅} is a linear subspace of E;
(ii) Ax + Ay ⊆ A(x + y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

An almost immediate consequence of definition is that for every x, y ∈ D(A)
and for every λ, η ∈ C with |λ|+ |η| 6= 0, we have λAx+ηAy = A(λx+ηy). If A is
an MLO, then A0 is a linear manifold in Y and Ax = f+A0 for any x ∈ D(A) and
f ∈ Ax. Set R(A) := {Ax : x ∈ D(A)}. The set A−10 = {x ∈ D(A) : 0 ∈ Ax} is
called the kernel of A and it is denoted by N(A). The inverse A−1 of an MLO is
defined by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}. It is checked at
once that A−1 is an MLO in E, as well as that N(A−1) = A0 and (A−1)−1 = A.
If N(A) = {0}, i.e., if A−1 is single-valued, then A is said to be injective. It is
worth noting that Ax = Ay for some two elements x and y ∈ D(A), if and only
if Ax ∩ Ay 6= ∅; moreover, if A is injective, then the equality Ax = Ay holds if
and only if x = y (for more details about multivalued linear operators, we refer
the reader to the monographs [6] and [12]).

If A, B are two MLOs, then we define its sum A+B by D(A+B) := D(A)∩D(B)
and (A+ B)x := Ax +Bx, x ∈ D(A+ B). It is clear that A+B is an MLO. The
product of A and B is defined by D(BA) := {x ∈ D(A) : D(B) ∩ Ax 6= ∅} and
BAx := B(D(B) ∩ Ax). Then BA is an MLO in E and (BA)−1 = A−1B−1. We
write A ⊆ B if and only if D(A) ⊆ D(B) and Ax ⊆ Bx for all x ∈ D(A).

The scalar multiplication of an MLO A with the number z ∈ C, zA for short,
is defined by D(zA) := D(A) and (zA)(x) := zAx, x ∈ D(A). It is clear that zA
is an MLO and (ωz)A = ω(zA) = z(ωA), z, ω ∈ C.

Assume now that a linear single-valued operator S : D(S) ⊆ E → E has domain
D(S) = D(A) and S ⊆ A, where A is an MLO in E. Then S is called a section
of A; if this is the case, we have Ax = Sx+A0, x ∈ D(A) and R(A) = R(S)+A0.
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We say that an MLO operator A is closed if for any nets (xτ ) in D(A) and (yτ )
in E such that yτ ∈ Axτ for all τ ∈ I we have that the suppositions limτ→∞ xτ = x
and limτ→∞ yτ = y imply x ∈ D(A) and y ∈ Ax. If the MLO A is not closed,
then we can simply prove that its closure A, defined as usual, is a closed MLO
in E.

Denote by Ω a locally compact and separable metric space and by µ we denote
a locally finite Borel measure defined on Ω. Then we have the following ([20]):

Lemma 2.1. Suppose that A is a closed MLO in E. Let f : Ω → E and g :
Ω → E be µ-integrable, and let g(x) ∈ Af(x), x ∈ Ω. Then

∫

Ω f dµ ∈ D(A) and
∫

Ω
g dµ ∈ A

∫

Ω
f dµ.

In the remaining part of this section, we will consider the resolvent sets of
MLOs. Our standing assumptions will be that A is an MLO in E. Then the
resolvent set of A, ρ(A) for short, is defined as the union of those complex numbers
λ ∈ C for which

(i) R(λ −A) = E;
(ii) R(λ : A) ≡ (λ −A)−1 is a single-valued bounded operator on E.

It is well known that ρ(A) is an open subset of C. The operator λ 7→ R(λ : A) is
called the resolvent of A, λ ∈ ρ(A). If ρ(A) 6= ∅, then A is closed and for every
λ ∈ ρ(A) we have A0 = N((λI −A)−1).

We need the following useful lemma (see [12]).

Lemma 2.2. We have

(λ −A)−1A ⊆ λ(λ −A)−1 − I ⊆ A(λ −A)−1, λ ∈ ρ(A).

The operator (λ−A)−1A is single-valued on D(A) and (λ−A)−1Ax = (λ−A)−1y,

whenever y ∈ Ax and λ ∈ ρ(A).

2.1 Fractional powers. In this subsection, we assume that (−∞, 0] ⊆ ρ(A) as
well as that there exist finite numbers M ≥ 1 and β ∈ (0, 1] such that

‖R(λ : A)‖ ≤ M(1 + |λ|)−β , λ ≤ 0.

Then the resolvent set of A contains an open region Ω of complex plane around
the nonpositive half-line (−∞, 0], and we are in position to define the fractional
power

A−θ :=
1

2πi

∫

Γ

λ−θ(λ −A)−1 dλ ∈ L(E)

for θ > 1− β, where Γ is an appropriately chosen contour belonging to Ω (cf. [12,
page 25] for more details). Set Aθ := (A−θ)−1, θ > 1 − β. Then the semigroup
properties A−θ1A−θ2 = A−(θ1+θ2) and Aθ1Aθ2 = Aθ1+θ2 hold for θ1, θ2 > 1 − β
(it is worth noting here that the fractional power Aθ need not be injective and
that the meaning of Aθ is understood in the MLO sense for θ > 1 − β).
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We endow the vector space D(A) with the norm

‖·‖[D(A)] := inf
y∈A·

‖y‖.

Then (D(A), ‖·‖[D(A)]) is a Banach space and, since 0 ∈ ρ(A), the norm
‖·‖[D(A)] is equivalent with the following one ‖·‖ + ‖·‖[D(A)] (cf. the proof of

[12, Proposition 1.1]). Since 0 ∈ ρ(Aθ), (D(Aθ), ‖·‖[D(Aθ)]) is likewise a Banach
space and we have the equivalence of norms ‖·‖[D(Aθ)] and ‖·‖ + ‖·‖[D(Aθ)] for
θ > 1 − β. In our further work, we will use the fact that (see e.g. [10, (3.3)])

(2) A−θx =
sin(θπ)

π

∫ ∞

0

s−θ(s + A)−1xds, 1 > θ > 1 − β, x ∈ E.

For any θ ∈ (0, 1), the vector space

Eθ
A :=

{

x ∈ E : sup
ξ>0

ξθ‖ξ(ξ + A)−1x − x‖ < ∞
}

becomes one of Banach’s when endowed with the norm

‖·‖Eθ
A := ‖·‖ + sup

ξ>0
ξθ‖ξ(ξ + A)−1 · − · ‖.

It is clear that Eθ
A is continuously embedded in E. For more details about frac-

tional powers of multivalued linear operators, the interpolation spaces and their
mutual relations, we refer the reader to [10] (see, especially, the equations [10,
(1.2)–(1.5)]), [12, Section 1.4], [25] and [27].

3. Subordinated fractional resolvent families with removable singular-

ities at the origin

In this section we investigate the subordinated fractional resolvent families with
removable singularities at zero. Unless stated otherwise, we assume that c, M > 0,
β ∈ (0, 1], A is an MLO and the condition (P) holds.

Let the contour Γ := {λ = −c(|η| + 1) + iη : η ∈ R} be oriented so that ℑλ
increases along Γ. Set T (0) := I and

T (t)x :=
1

2πi

∫

Γ

etλ(λ −A)−1xdλ, t > 0, x ∈ E.

Then (T (t))t≥0 ⊆ L(E) is a semigroup on E, and we have the following estimate

(3) ‖T (t)‖ = O(tβ−1), t > 0;

furthermore for every θ ∈ (0, 1)

(4) ‖T (t)‖L(E,Eθ
A

) = O(tβ−θ−1), t > 0.
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Concerning the strong continuity of (T (t))t≥0 at zero, it is necessary to remind
ourselves of the fact that ([12]):

(C) T (t)x → x, t → 0+ for any x ∈ E belonging to the space D((−A)θ) with
θ > 1 − β (x ∈ Eθ

A with 1 > θ > 1 − β).

By [10, Lemma 3.9], we have that

(5) R(λ : A)x =

∫ ∞

0

e−λtT (t)xdt, ℜλ > 0, x ∈ E.

From now on, we assume that 0 < γ < 1. Set for every ν > −β

(6) Tγ,ν(t)x := t−γ

∫ ∞

0

sνΦγ(st−γ)T (s)xds, t > 0, x ∈ E and Tγ,0(0) := I.

Since

(7) Tγ,ν(t)x = tγν

∫ ∞

0

sνΦγ(s)T (stγ)xds, t > 0, x ∈ E,

the estimates (3)–(4) combined with (a1) imply that the integral which defines
the operator Tγ,ν(t) is absolutely convergent as well as that

‖Tγ,ν(t)‖ = O(tγ(ν+β−1)), t > 0,

and that for every θ ∈ (0, 1) and ν > θ − β

(8) ‖Tγ,ν(t)‖L(E,Eθ
A

) = O(tγ(ν+β−θ−1)), t > 0.

Further on, (7) taken together with (a1) implies that for every ν > −β

(9)
Tγ,ν(t)

tγν
x −

Γ(1 + ν)

Γ(1 + γν)
x =

∫ ∞

0

sνΦγ(s)[ T (stγ)x − x] ds, t > 0, x ∈ E.

Using the dominated convergence theorem, (a1), (3), (9) and (C), we can de-
duce the following:

(b1)
Tγ,ν(t)

tγν x → Γ(1+ν)
Γ(1+γν)x, t → 0+ provided that θ > 1− β and x ∈ D((−A)θ),

or that 1 > θ > 1 − β and x ∈ Eθ
A, ν > −β.

By the proof of [2, Theorem 3.1] and an elementary argumentation involving (5),
we get that:

(b2)
∫∞

0 e−λtTγ,0(t)xdt = λγ−1
∫∞

0 e−λγtT (t)xdt = λγ−1(λγ−A)−1x, ℜλ > 0,
x ∈ E.

Owing to [12, Theorem 3.5], (a1) and (9), we have that:

(b3)
∥

∥

∥

Tγ,ν(t)
tγν x − Γ(1+ν)

Γ(1+γν)x
∥

∥

∥
= O(tγ(β+θ−1)‖x‖[D((−A)θ)]), t > 0, provided 1 >

θ > 1−β, x ∈ D((−A)θ) and
∥

∥

∥

Tγ,ν(t)
tγν x− Γ(1+ν)

Γ(1+γν)x
∥

∥

∥
= O

(

tγ(β+θ−1)‖x‖Eθ
A

)

,

t > 0, provided 1 > θ > 1 − β, x ∈ Eθ
A, ν > −β.
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Set ξ := min((1/γ − 1)π/2, π). It is worth noting that the proof of [2, Theo-
rem 3.3 (i)–(ii)] implies that for every ν > −β the mapping t 7→ Tγ,ν(t)x, t > 0
can be analytically extended to the sector Σξ (we will denote this extension by
the same symbol) and that for every θ ∈ (0, 1), ǫ ∈ (0, ξ) and ν > −β,

(b4) ‖Tγ,ν(z)‖ = O(|z|γ(ν+β−1)), z ∈ Σξ−ǫ,

as well as that, for every θ ∈ (0, 1), ǫ ∈ (0, ξ) and ν > θ − β,

(b5) ‖Tγ,ν(z)‖L(E,Eθ
A

) = O(|z|γ(ν+β−1−θ)), z ∈ Σξ−ǫ.

Keeping in mind (b4)–(b5) and the Cauchy integral formula, it is very simple to
prove that for every θ ∈ (0, 1), ǫ ∈ (0, ξ), ν > −β and n ∈ N,

(b4)’ ‖(dn/dzn)Tγ,ν(z)‖ = O(|z|γ(ν+β−1)−n), z ∈ Σξ−ǫ,

as well as that for every θ ∈ (0, 1), ǫ ∈ (0, ξ), ν > θ − β and n ∈ N,

(b5)’ ‖(dn/dzn)Tγ,ν(z)‖L(E,Eθ
A

) = O(|z|γ(ν+β−1−θ)−n), z ∈ Σξ−ǫ.

In the case that ǫ ∈ (0, ξ) and z ∈ Σξ−ǫ, then the uniqueness theorem for ana-
lytic functions, (a1) and the asymptotic expansion formula for the Wright func-
tions (1) (cf. also the first part of proof of [2, Theorem 3.3]) together imply that
∫∞

0
z−γ(1+ν)sνΦγ(sz−γ) ds = Γ(1+r)

Γ(1+γr) , r > −1; hence,

Tγ,ν(z)

zγν
x −

Γ(1 + ν)

Γ(1 + γν)
x =

∫ ∞

0

sνΦγ(seiϕ)[ T (s|z|γ)x − x] ds,

where ϕ = −γ arg(z). Keeping in mind this identity, (C), [12, Theorem 3.5]
and the proof of [2, Theorem 3.3], we can deduce the following extension of [38,
Theorem 3.4 (i)] and the properties (b1), (b3):

(b1)’ Suppose that ǫ ∈ (0, ξ) and δ = ξ − ǫ. Then limz→0,z∈Σδ

Tγ,ν(z)
zγν x =

Γ(1+ν)
Γ(1+γν)x, provided that θ > 1−β and x ∈ D((−A)θ), or that 1 > θ > 1−β

and x ∈ Eθ
A, ν > −β.

(b3)’ Suppose that ǫ ∈ (0, ξ) and δ = ξ − ǫ. Then
∥

∥

∥

Tγ,ν(z)
zγν x − Γ(1+ν)

Γ(1+γν)x
∥

∥

∥
=

O
(

|z|γ(β+θ−1)‖x‖[D((−A)θ)]

)

, z ∈ Σδ, provided 1 > θ > 1 − β, x ∈

D((−A)θ), and
∥

∥

∥

Tγ,ν(z)
zγν x − Γ(1+ν)

Γ(1+γν)x
∥

∥

∥
= O

(

|z|γ(β+θ−1)‖x‖Eθ
A

)

, z ∈ Σδ,

provided 1 > θ > 1 − β, x ∈ D((−A)θ).

Remark. In some cases, the angle of analyticity of considered operator families
can be increased depending on the concrete value of constant c > 0 from the
condition (P). Here we will not discuss this question in more detail.

Following E. Bazhlekova in [2] and R.-N. Wang, D.-H. Chen and T.-J. Xiao
in [38], we define

Sγ(z) := Tγ,0(z) and Pγ(z) := γTγ,1(z)/zγ, z ∈ Σξ;

cf. the proof of [38, Theorem 3.1], where the corresponding operators have been
denoted by Sγ(z) and Pγ(z). The analysis contained in the proof of property (b4)
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enables one to see that the estimate [38, (3.1)] holds on closed subsectors of Σπ/2−ω

(cf. the formulation of [38, Theorem 3.1]). It is clear that the first statement of
[38, Theorem 3.2] holds since the operators Sγ(z) and Pγ(z) depend analytically,
in the uniform operator topology, on the complex parameter z belonging to an
appropriate sector containing (0,∞). Furthermore, due to (b4)’–(b5)’, we have
that for each ǫ ∈ (0, ξ) the following holds: ‖(d/dz)Tγ,ν(z)‖ = O(|z|γ(ν+β−1)−1),

z ∈ Σξ−ǫ and ‖(d/dz)Pγ(z)‖ = O(|z|γ(ν+β−1)−1), z ∈ Σξ−ǫ. By the Darboux
inequality and an analyticity argument, it readily follows that for every R > 0
the mappings z 7→ Sγ(z) ∈ L(E), z ∈ Σξ−ǫ \ BR, and z 7→ Pγ(z) ∈ L(E),
z ∈ Σξ−ǫ \BR, are uniformly continuous. Arguing in such a way, we have proved
an extension of the second statement in [38, Theorem 3.2] for degenerate fractional
differential equations.

It is clear that Tγ,ν(z)x = z−γ
∫∞

0
sνΦγ(sz−γ)T (s)xds, z ∈ Σξ, x ∈ E and

s 7→ (2πi)−1
∫

Γ

(

−λ)θesλ(λ −A)−1 dλ is a bounded linear section of the operator

(−A)θT (s) for θ > 1−β and s ≥ 0 (cf. [12, Proposition 3.2, pages 48–49]). Along
with Lemma 2.1, definition of Pγ(·) and above-mentioned proposition, the above
implies:

(10)

Pγ,θ(z)x :=
γz−2γ

2πi

∫ ∞

0

sΦγ(sz−γ)

×

[
∫

Γ

(

−λ)θesλ(λ −A)−1xdλ

]

ds ∈ (−A)θPγ(z)x

for all z ∈ Σξ and x ∈ E, as well as that (Pγ,θ(z))z∈Σξ
⊆ L(E) for θ > 1 − β. By

the foregoing, we have that:

(11) ‖Pγ,θ(z)‖ = O(|z|γ(β−θ−1)), z ∈ Σξ−ǫ, ǫ ∈ (0, ξ).

Differentiating (7), it is not difficult to prove that

d

dz
Sγ(z)x =

γz−γ−1

2πi

∫ ∞

0

s Φγ(sz−γ)T ′(s)xds, z ∈ Σξ, x ∈ E.(12)

Applying (10) with θ = 1, and (12), we get that:

d

dz
Sγ(z)x = −zγ−1Pγ,1(z)x ∈ zγ−1APγ(z)x, z ∈ Σξ, x ∈ E.(13)

Further on, Lemma 2.1 and Lemma 2.2 can serve one to prove that the assump-
tion y ∈ Ax implies Sγ(z)y ∈ ASγ(z)x and Pγ(z)y ∈ APγ(z)x, z ∈ Σξ, so that
the mapping t 7→ (d/dt)Sγ(t)x, t > 0 is locally integrable for any x ∈ D(A)
by (13). Keeping in mind (b4), we have proved an extension of [38, Theo-
rem 3.3] to degenerate fractional differential equations. Before proceeding fur-
ther, we would like to point out that for every x ∈ D((−A)θ) ∩ Eθ

A the mapping

z 7→ (d/dz)Sγ(z)x = (d/dz)[Sγ(z)x − x] is bounded by |z|γ(β+θ−1)−1 on subsec-
tors of Σξ, 1 > θ > 1 − β; this follows from the Cauchy integral formula and the
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property (b3)’ with ν = 0. In particular, the mapping t 7→ (d/dt)Sγ(t)x, t > 0, is
locally integrable for any x ∈ D((−A)θ) ∩ Eθ

A, where 1 > θ > 1 − β.
Suppose that (x, y) ∈ A. Then an elementary application of Cauchy formula,

combined with Lemma 2.2 and definition of T (·), implies that T (s)y = T ′(s)x,
s > 0. Having in mind (6) with ν = 1, and definition of Pγ(·), it readily follows
that Pγ(z)y = −Pγ,1(z)x, z ∈ Σξ; therefore, (d/dz)Sγ(z)x = zγ−1Pγ(z)y, pro-
vided z ∈ Σξ and (x, y) ∈ A. After integration, we obtain that, under the same
conditions, Sγ(z)x − x =

∫ z

0
λγ−1Pγ(λ)y dλ. This extends the assertion of [38,

Theorem 3.4 (ii)].
Suppose again that (x, y) ∈ A. Performing the Laplace transform, we obtain

with the help of (b2) and Lemma 2.2 that (g1−γ ∗ [Sγ(·)x− x])(t) =
∫ t

0 Sγ(s)y ds,
t ≥ 0. This immediately implies that D

γ
t Sγ(t)x = Sγ(t)y ∈ ASγ(t)x, t > 0, which

extends the assertion of [38, Theorem 3.4 (iii)]. The original proof of this result,
much more complicated than ours, is based on the use of functional calculus for
almost sectorial operators established by F. Periago and B. Straub in [30] (it is
very difficult to develop a similar calculus for almost sectorial multivalued lin-
ear operators). Furthermore, we want to observe that this result is not optimal.
Speaking matter-of-factly, let 1 > θ > 1− β and let x ∈ D((−A)θ)∩Eθ

A be fixed.
Then the mapping t 7→ F (t) := (g1−γ ∗ [Sγ(·)x−x])(t), t ≥ 0, is continuous and its
restriction on (0,∞) can be analytically extended to the sector Σξ, with the esti-

mate ‖F (z)‖ = O(|z|γ(β+θ−2)+1) on any proper subsector of Σξ (cf. (b3)’). By the

Cauchy integral formula, we obtain that ‖F ′(z)‖ = O(|z|γ(β+θ−2)) on proper sub-
sectors of Σξ. In particular, the Caputo fractional derivative D

γ
t Sγ(t)x is defined.

On the other hand, Lemma 2.1 in combination with [12, Proposition 3.2, 3.4] im-
plies that

t 7→ Fγ(t)x :=
1

2πi

∫ ∞

0

t−γΦγ(st−γ)

[
∫

Γ

λeλsR(λ : A)xdλ

]

ds, t > 0,

is a continuous section of the multivalued mapping ASγ(t)x, t > 0, with the clear

meaning. Then T (t)x − x =
∫ t

0 T ′(s)xds, t ≥ 0, and T ′(t)x = (2πi)−1
∫

Γ λeλtR ×
(λ : A)xdλ, t > 0, which simply implies by (5) that

(14)

∫ ∞

0

e−ztT ′(t)xdt = zR(z : A)x − x

=

∫ ∞

0

e−zt

[

1

2πi

∫

Γ

λeλtR(λ : A)xdλ

]

dz, z > 0.

Using Fubini theorem, definition of Fγ(·) and the identity [2, (3.10)], we get that

∫ ∞

0

e−ztFγ(t)xdz = zγ−1

∫ ∞

0

e−zγt

[

1

2πi

∫

Γ

λeλtR(λ : A)xdλ

]

dz, z > 0,
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which clearly implies with the help of (14) that:

∫ ∞

0

e−zt

∫ t

0

Fγ(s)xds dz = zγ−2

∫ ∞

0

e−zγt

[

1

2πi

∫

Γ

λeλtR(λ : A)xdλ

]

dz

= zγ−2[zγR(zγ : A)x − x], z > 0.

Using this equation, (b2) and the uniqueness theorem for Laplace transform, it
readily follows that

(g1−γ ∗ [Sγ(·)x − x])(t) =

∫ t

0

Fγ(s)xds, t ≥ 0.

Now it becomes clear that:

(15) D
γ
t Sγ(t)x = Fγ(t)x ∈ ASγ(t)x,

t > 0, x ∈ D((−A)θ) ∩ Eθ
A, 1 > θ > 1 − β.

The identity [2, (3.10)] almost immediately implies that

∫ ∞

0

e−λtt−γ−1Φγ(st−γ) dt =
1

γs
e−λγs, s > 0, λ > 0.

Keeping in mind this equality and (5), we get that

∫ ∞

0

∫ ∞

0

γsT (s)x[e−λtt−γ−1Φγ(st−γ) dt] ds = (λγ −A)−1x, λ > 0, x ∈ E.

Using Fubini theorem and definition of Tγ,1(·), the above yields

∫ ∞

0

e−λttγ−1Pγ(t)xdt = (λγ −A)−1x, λ > 0, x ∈ E.

By (b2) and the uniqueness theorem for Laplace transform, we obtain finally the
following generalization of [38, Theorem 3.4 (iv)]:

(16) Sγ(t)x = (g1−γ ∗ [·γ−1Pγ(·)x])(t), t > 0, x ∈ E.

This identity continues to hold on sector Σξ.
Arguing as in non-degenerate case (cf. [38, Lemma 3.1, Theorem 3.5]), we

can prove that the compactness of R(λ : A) for some λ ∈ ρ(A) implies the
compactness of operators Sγ(t) and Pγ(t) for all t > 0.

The consideration carried out in [38, Lemma 4.1] is completely meaningful for
abstract degenerate fractional differential equations and gives rise us to introduce
the following definition (cf. [38, Definition 4.1, Definition 4.2] and compare to [12,
Definition, page 53]):
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Definition 3.1. Let T ∈ (0,∞) and f ∈ L1((0, T ) : E). Consider the following
abstract degenerate fractional inclusion:

(DFP)f :

{

D
γ
t u(t) ∈ Au(t) + f(t), t ∈ (0, T ],

u(0) = u0.

(i) By a mild solution of (DFP)f , we mean a function

u(t) = Sγ(t)u0 +

∫ t

0

(t − s)γ−1Pγ(t − s)f(s) ds, t ∈ (0, T ].

(ii) By a classical solution of (DFP)f , we mean any function u ∈ C([0, T ] : E)
satisfying that the function D

γ
t u(t) is well-defined and belongs to the

space C((0, T ] : E), as well as that u(0) = u0 and D
γ
t u(t) − f(t) ∈ Au(t)

for t ∈ (0, T ].

A mild solution u(t) of problem (DFP)f is automatically continuous on (0, T ].
If x ∈ D((−A)θ) ∩ Eθ

A, where 1 > θ > 1 − β, then (15) implies that the mapping
u(t) = Sγ(t)x is a classical solution of (DFP)f with f ≡ 0.

The following theorem is an important extension of [38, Theorem 4.1], even for
non-degenerate fractional differential equations with almost sectorial operators.

Theorem 3.1. Suppose T ∈ (0,∞), 1 > θ > 1− β, u0 ∈ D((−A)θ), or u0 ∈ Eθ
A,

there exist constants σ > γ(1 − β) and M ≥ 1 such that

(17) ‖f(t) − f(s)‖ ≤ M |t − s|σ, 0 < t, s ≤ T,

and

f ∈ L∞((0, T ) : [D((−A)θ)]), or f ∈ L∞((0, T ) : Eθ
A).

Then there exists a unique classical solution of problem (DFP)f .

Proof: We will prove the theorem only in the case that u0 ∈ D((−A)θ). The
uniqueness of classical solutions of problem (DFP)f is an immediate consequence
of Ljubich uniqueness type theorem [20, Theorem 3.1.6] and, by the foregoing
arguments, it suffices to show that the function

ω(t) :=

∫ t

0

(t − s)γ−1Pγ(t − s)f(s) ds, 0 ≤ t ≤ T,

enjoys the following properties:

(i) ω(t) is continuous at the point t = 0;

(ii) D
γ
t ω(t) = ω1(t) :=

∫ t

0
S′

γ(t − s)f(s) ds + f(t), 0 < t ≤ T , and ω1(t) is
continuous on (0, T ];

(iii) ω2(t) := ω1(t) − f(t) =
∫ t

0 S′
γ(t − s)f(s) ds ∈ Aω(t), 0 < t ≤ T .
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The statement (i) follows from the Hölder continuity of f(·) (cf. (17)) and a simple
computation involving the estimate ‖Pγ(t)‖ = O(tγ(β−1)), t > 0. For the proof
of (ii), we will have to observe that (12) in combination with contour represen-
tation of T ′(·) and [12, Proposition 3.2, Proposition 3.4] implies that there exist
constants Cθ > 0 and C′

θ > 0 such that for every 0 < s ≤ T and 0 < ω ≤ T ,

(18)

‖S′
γ(ω)f(s)‖ =

∥

∥

∥

∥

γ

2πi

∫ ∞

0

vωγ−1Φγ(v)T ′(vωγ)f(s) dv

∥

∥

∥

∥

≤ Cθ
γ

2π
‖f(s)‖[D((−A)θ)]

∫ ∞

0

vωγ−1Φγ(v)(vωγ)β+θ−2 dv

= Cθ
γ

2π
‖f(s)‖[D((−A)θ)]ω

γ(β+θ−1)−1

∫ ∞

0

vβ+θ−1Φγ(v) dv

= C′
θ‖f(s)‖[D((−A)θ)]ω

γ(β+θ−1)−1.

Using this estimate with ω = t − s, where 0 < s < t ≤ T , and integrating the
obtained estimate along the interval [0, T ] in variable s, we get that there exists
a constant C′′

θ > 0 such that for every 0 < t ≤ T

(19)

∥

∥

∥

∥

∫ t

0

S′
γ(t − s)f(s) ds

∥

∥

∥

∥

≤ C′′
θ

∫ t

0

(t − s)γ(β+θ−1)−1‖f(s)‖[D((−A)θ)] ds

≤
C′′

θ

γ(β + θ − 1)
tγ(β+θ−1)‖f(·)‖L∞((0,T ):[D((−A)θ)]).

Let h > 0 and let h ≤ T − t for some fixed 0 < t < T . Making use of (18) and
dominated convergence theorem, we obtain that

(20) lim
h→0+

∫ t

0

Sγ(t + h − s) − Sγ(t − s)

h
f(s) ds =

∫ t

0

S′
γ(t − s)f(s) ds;

here it is only worth noting that (18) and the mean value theorem together imply
that for every s ∈ (0, t)

∥

∥

∥

Sγ(t + h − s) − Sγ(t − s)

h
f(s)

∥

∥

∥
≤

1

h

∫ t+h−s

t−s

‖S′
γ(r)f(s)‖ dr

≤
‖f(·)‖L∞((0,T ):[D((−A)θ)])

h

∫ t+h−s

t−s

rγ(β+θ−1)−1 dr

≤ Const.[(t − s)γ(β+θ−1)−1 + (t + 1 − s)γ(β+θ−1)−1].

Having in mind the estimate ‖Sγ(t)‖ = O(tγ(β−1)), t > 0, the strong continuity
of operator family Sγ(·) on D((−A)θ) and the Hölder continuity of f(·), we can
repeat almost literally the arguments from the corresponding part of proof of [38,
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Theorem 4.1] in order to see that

(21) lim
h→0+

1

h

∫ t+h

t

Sγ(t + h − s)f(s) ds = f(t).

Due to (20)–(21), we have that the mapping t 7→
∫ t

0 Sγ(t − s)f(s) ds, 0 < t < T ,
is differentiable from the right; we can similarly prove the differentiability of this
mapping from the left for 0 < t ≤ T so that

d

dt

∫ t

0

Sγ(t − s)f(s) ds =

∫ t

0

S′
γ(t − s)f(s) ds + f(t), 0 < t ≤ T.

Now it is not difficult to prove with the help of (16) and (19) that D
γ
t ω(t) exists

and equals to ω1(t), as claimed. Now we will prove that the mapping t 7→
∫ t

0 S′
γ ×

(t − s)f(s) ds, 0 < t ≤ T , is continuous (observe here that this mapping is
continuous for t = 0; cf. (19)). As in the proof of [38, Theorem 4.1], we have
∫ t

0
S′

γ(t− s)f(s) ds = I1(t) + I2(t), where I1(t) :=
∫ t

0
S′

γ(t− s)[f(s)− f(t)] ds and

I2(t) :=
∫ t

0
S′

γ(t − s)f(t) ds. By (b3), we have that I2(t + h) → I2(t) as h → 0
for 0 < t ≤ T and the meaning is clear. To complete the whole proof, it suffices

to show that the mapping I1(t) :=
∫ t

0 S′
γ(t − s)[f(s) − f(t)] ds, 0 < t ≤ T , is

continuous. For the sake of brevity, we will only prove that the above mapping is
continuous from the right for 0 < t < T . Suppose, as above, h > 0 and h ≤ T − t.
Then

I1(t + h) − I1(t) = h1(t) + h2(t) + h3(t),

where

h1(t) :=

∫ t

0

(S′
γ(t + h − s) − S′

γ(t − s))[f(s) − f(t)] ds,

h2(t) :=

∫ t

0

S′
γ(t + h − s)[f(t) − f(t + h)] ds

and

h3(t) :=

∫ t+h

t

S′
γ(t + h − s)[f(s) − f(t + h)] ds.

We can prove that h1(t) → 0 as h → 0+ by using the dominated convergence
theorem and the following estimates (cf. (18)–(19)):

∥

∥

∥

∥

∫ t

0

S′
γ(t + h − s)[f(s) − f(t)] ds

∥

∥

∥

∥

≤ Const.(t + h − s)γ(β+θ−1)−1‖f(s) − f(t)‖
[D((−A)θ)]

≤ Const. ‖f(·)‖L∞((0,T ):[D((−A)θ)])[(t − s)γ(β+θ−1)−1 + (t + 1 − s)γ(β+θ−1)−1]
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and

∥

∥

∥

∫ t

0

S′
γ(t − s)[f(s) − f(t)] ds

∥

∥

∥
≤

2C′′
θ

γ(β + θ − 1)
tγ(β+θ−1)‖f(·)‖L∞((0,T ):[D((−A)θ)]).

On the other hand, we may conclude that h2(t) → 0 as h → 0+ by using the
estimate ‖S′

γ(t)‖ = O(tγ(β−1)−1), t > 0, the Hölder continuity of f(·) and our
standing assumption σ > γ(1 − β):

‖h2(t)‖ ≤ Const.

∫ t

0

(t + h − s)γ(β−1)−1hσ ds

≤ Const. hσ[(t + h)γ(β−1) − hγ(β−1)] → 0 as h → 0+.

Finally, an application of (18) yields:

‖h3(t)‖ ≤ Const.

∫ t+h

t

(t + h − s)γ(β+θ−1)−1‖f(s) − f(t + h)‖
[D((−A)θ )]

ds

≤ Const. ‖f(·)‖L∞((0,T ):[D((−A)θ)])h
γ(β+θ−1) → 0 as h → 0+.

This completes the proof of (ii). The proof of (iii) follows by applying (13), (19)
and Lemma 2.1. �

Remark. It is clear that the validity of condition (17) implies that the se-
quence (fn(t))n∈N ⊆ C([0, T ] : E), where fn(t) := f(t) for t ∈ [1/n, T ] and
fn(t) := f(1/n) for t ∈ [0, 1/n], is a Cauchy sequence in C([0, T ] : E) and there-
fore convergent. Hence, there exists limt→0+ f(t) in E and f(t) can be extended
to a Hölder continuous function from the space Cσ([0, T ] : E). This implies that
the Caputo fractional derivative D

γ
t ω(t) (cf. (ii)) is defined in the strong sense [2,

page 11, line −3] and that (ii) holds, in fact, for 0 ≤ t ≤ T .

Theorem 3.1 can be applied in the analysis of a large class of relaxation de-
generate differential equations that are subordinated to degenerate differential
equations of first order that have been already considered in [12, Section 3.7]. For
example, Theorem 3.1 can be almost straightforwardly applied in the analysis of
the following inhomogeneous fractional Poisson heat equation in the space Lp(Ω):

(P)γ :











D
γ
t [m(x)v(t, x)] = ∆v − bv + f(t, x), t ≥ 0, x ∈ Ω,

v(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω,

m(x)v(0, x) = u0(x), x ∈ Ω,

where Ω is a bounded domain in Rn, b > 0, m(x) ≥ 0 a.e. x ∈ Ω, m ∈ L∞(Ω),
1 < p < ∞ and 0 < γ < 1. As already mentioned, Theorem 3.1 is new even for
non-degenerate fractional differential equations with almost sectorial operators, so
that we can consider the wellposedness results for abstract relaxation degenerate
differential equations with higher order elliptic differential operators with variable
coefficients in Hölder spaces (cf. [37] for more details).
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4. Semilinear degenerate Cauchy inclusions

Assume that the condition (P) holds. In this section, we consider the following
semilinear degenerate fractional Cauchy inclusion:

(DFP)f,s,γ :

{

D
γ
t u(t) ∈ Au(t) + f(t, u(t)), t ∈ (0, T ],

u(0) = u0,

where T ∈ (0,∞) and 0 < γ ≤ 1 (for more details about abstract semilinear
degenerate Cauchy problems with integer order derivatives, we refer the reader
to [3]–[5], [11]–[15], [19], [33] and [35]). We will use the terminology from the
previous section.

Suppose first that 0 < γ < 1. By a mild solution u(t) := u(t; u0) of problem
(DFP)f,s,γ , we mean any function u ∈ C((0, T ] : E) such that

u(t) = Sγ(t)u0 +

∫ t

0

(t − s)γ−1Pγ(t − s)f(s, u(s)) ds, t ∈ (0, T ].

As in linear case, a classical solution of (DFP)f is any function u ∈ C([0, T ] : E)
satisfying that the function D

γ
t u(t) is well-defined and belongs to the space

C((0, T ] : E), as well as that u(0) = u0 and D
γ
t u(t) − f(t, u(t)) ∈ Au(t) for

t ∈ (0, T ]. In [38, Theorem 5.1, Theorem 5.3, Corollary 5.1], the authors have
applied various types of fixed point theorems in the study of existence and unique-
ness of mild solutions of problem (DFP)f,s,γ , provided that the operator A is
single-valued, linear and almost sectorial. In contrast to the assertions of [38,
Theorem 5.2, Theorem 5.4], the above-mentioned results can be immediately ex-
tended to semilinear degenerate fractional Cauchy inclusion (DFP)f,s,γ . Situation
is the same with the assertions of [18, Theorem 2.1] and [23, Theorem 3.1] (in the
last mentioned theorem, F. Li has considered the existence of mild solutions for
a class of delay semilinear fractional differential equations).

Following T. Dlotko [9], we can similarly define the notions of mild and classical
solutions of semilinear degenerate Cauchy inclusion (DFP)f,s,1 of first order γ = 1,
that is, any function u ∈ C((0, T ] : E) such that

u(t) = T (t)u0 +

∫ t

0

T (t − s)f(s, u(s)) ds, t ∈ (0, T ]

is said to be a mild solution of problem (DFP)f,s,1. By a classical solution, we
mean any function u ∈ C([0, T ] : E) ∩ C1((0, T ] : E) such that u(t) ∈ D(A),
t ∈ (0, T ], u(0) = u0 and u′(t) ∈ Au(t) + f(t, u(t)), t ∈ (0, T ]. The extensions of
[9, Theorem 1, Proposition 2] for semilinear degenerate Cauchy inclusions of first
order can be simply proved.

In the remaining part of paper, we will reconsider the assertions of [29, Theo-
rem 3.1, Theorem 3.2] for semilinear degenerate Cauchy inclusions; cf. [28, The-
orem 1.4, page 185] for a pioneering result in this direction.
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As the next two theorems show, Theorem 3.1 and Theorem 3.2 of [29] can be
fully generalized to semilinear degenerate Cauchy inclusions of first order.

Theorem 4.1. Let T > 0, and let γ = 1. Suppose that the following condition

holds.

(H): the mapping f : [0, T ] × E → E is continuous in t on [0, T ] and for each

t0 > 0 and K > 0 there exists a constant L(t0, K) > 0 such that ‖f(t, x)−
f(t, y)‖ ≤ L(t0, K)‖x − y‖, provided 0 < t < t0, x, y ∈ E and ‖x‖,
‖y‖ ≤ K.

Denote by Ω the domain of continuity of semigroup (T (t))t≥0; that is, Ω =
{x ∈ E : limt→0+ T (t)x = x}. Then, for every u0 ∈ Ω, there exist a number

τmax = τmax(u0) > 0 and a unique mild solution u ∈ C([0, τmax) : E) of problem

(DFP)f,s,1. If

(i) f(t, x) ∈ D(A) for all t > 0 and x ∈ Ω;

(ii) for each t0 > 0 and K > 0 there exists a constant C = C(t0, K) > 0 such

that

(22) ‖f(t, x)‖[D(A)] ≤ C for all x ∈ Ω with ‖x‖ ≤ C and 0 < t < t0;

(iii) there exists a function g ∈ L∞
loc((0,∞) : R) such that

‖f(t, x)‖ ≤ g(t)‖x‖ a.e. t ≥ 0 and x ∈ Ω,

then τmax = ∞.

Proof: The proof is almost the same as that of [29, Theorem 3.1]; here we only
want to observe that the term

∫ t

0

∥

∥[T (τmax − s) − T (τmax − s)]f(s, u(s))
∥

∥ds,

appearing on [29, page 418, l. 11], can be estimated with the help of mean value
theorem, (22) and [12, Proposition 3.2, 3.4], as follows:

∫ t

0

∥

∥[T (τmax − s) − T (τmax − s)]f(s, u(s))
∥

∥ds ≤ (τmax − t)C1Ctβ/β,

where C is the constant from (22) and C1 is the constant from the formulation of
[12, Proposition 3.4]. �

For the sequel, we need the following. Suppose that y ∈ (−A)θx, where 1 >
θ > 1 − β. Then (2) and the obvious equality (s −A)−1T (t)y = T (t)(s −A)−1y,
t, s > 0 together imply

(−A)−θT (t)y =
sin(θπ)

π

∫ ∞

0

s−θ(s −A)−1T (t)y ds

= T (t)
sin(θπ)

π

∫ ∞

0

s−θ(s −A)−1y ds
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= T (t)(−A)−θy = T (t)x, t > 0.

Hence,

(23) T (t)(−A)θ ⊆ (−A)θT (t), t > 0, 1 > θ > 1 − β.

Owing to (23), we can estimate the term ‖u(t; u0) − u(t; u1)‖[D((−A)θ)] (cf.
line 11 of Step 2, page 420, the proof of [29, Theorem 3.2]) as in non-degenerate
case; furthermore, on the same page of proof, we can use [12, Theorem 3.5] ([12,
Proposition 3.2]) in place of [30, Theorem 3.9 (vii)] ([30, Theorem 3.9 (iii)]).
Keeping in mind these observations, we can formulate the following extension of
[29, Theorem 3.2] for abstract degenerate Cauchy inclusions of first order.

Theorem 4.2. Let γ = 1, and let condition (H) hold. Suppose that β > θ > 1−β
and 0 < t < τmax(u0). Then there exist r > 0 and K > 0 such that the assumption

u1 ∈ Bθ,r(u0) := {u ∈ D((−A)θ) : ‖u−u0‖[D((−A)θ)] ≤ r} implies that there exists

a unique mild solution u(t; u1) ∈ C([0, τmax(u1)) : E) of problem (DFP)f,s,1 with

τmax(u1) ≥ τ . Moreover,

‖u(t; u0) − u(t; u1)‖ ≤ K‖u0 − u1‖[D((−A)θ)], 0 ≤ t ≤ τ,

and for every ǫ ∈ (0, τ) there exists a constant Cǫ > 0 such that

‖u(t; u0) − u(t; u1)‖[D((−A)θ)] ≤ Cǫ‖u0 − u1‖[D((−A)θ)], ǫ ≤ t ≤ τ.

The situation is much more complicated if we consider abstract degenerate
fractional Cauchy inclusion (DFP)f,s,γ of order γ ∈ (0, 1). Concerning [29, The-
orem 3.1], we would like to point out that we cannot use, in fractional case, the
well-known procedure for construction of a mild solution of problem (DFP)f,s,γ de-
fined in a maximal time interval (see e.g. the integral equation [30, (8), page 417]).
The best we can do is to prove the local existence and uniqueness of mild solutions
of problem (DFP)f,s,γ , as it has been explained in [38, Remark 4.1].

Concerning [29, Theorem 3.2], we can prove the following:

Theorem 4.3. Let γ ∈ (0, 1), and let condition (H) hold. Suppose that β > θ >
1−β. Then there exist r > 0, τ > 0 and K > 0 such that, for every u1 ∈ Bθ,r(u0),
there exists a unique mild solution u(t; u1) ∈ C([0, τ ] : E) of problem (DFP)f,s,γ .

Moreover,

‖u(t; u0) − u(t; u1)‖ ≤ K‖u0 − u1‖[D((−A)θ)], 0 ≤ t ≤ τ,

and there exists a constant C > 0 such that for every ǫ ∈ (0, τ) we have

‖u(t; u0) − u(t; u1)‖[D((−A)θ)] ≤ Cǫγ(β−1)‖u0 − u1‖[D((−A)θ)], ǫ ≤ t ≤ τ.

Proof: We will only outline the most relevant details of proof in degenerate case.
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(1) Line 6 of Step 1, page 419, the proof of [29, Theorem 3.2]: Due to (18),
we have that

‖Sγ(t)x − x‖ =

∥

∥

∥

∥

∫ t

0

S′
γ(s)xds

∥

∥

∥

∥

≤ C′
θt

γ(β+θ−1)‖x‖[D((−A)θ)], t > 0;

therefore, limt→0+ ‖Sγ(t)u1 − u1‖ = 0 uniformly on the ball Bθ,r(u0).
(2) Line 1, [29, page 420]: Here we may apply (b3) in order to get the existence

of a constant cθ > 0 such that

‖Sγ(t)(u1 − u0)‖ ≤ cθt
γ(β+θ−1)‖u1 − u0‖[D((−A)θ)], t > 0.

(3) By (23), Lemma 2.1 and definition of Sγ(·), we have that

(24) Sγ(t)(−A)θ ⊆ (−A)θSγ(t), t > 0, 1 > θ > 1 − β.

From this, we may conclude that

(25)
‖Sγ(t)x‖[D((−A)θ)] ≤ ‖Sγ(t)‖‖x‖[D((−A)θ)]

= O(tγ(β−1)‖x‖[D((−A)θ)]), t > 0.

On the other hand, (10) and Lemma 2.1 imply that

γ

2πi

∫ t

0

(t − s)−γ−1

∫ ∞

0

rΦγ(r(t − s)−γ)

×

[
∫

Γ

(−λ)θerλ(λ −A)−1f(s, u(s; u1)) dλ

]

dr ds(26)

∈ (−A)θ

∫ t

0

(t − s)γ−1Pγ(t − s)f(s, u(s; u1)) ds, t > 0, 0 < s ≤ τ,

since β > θ and the norm of integrand in the first line by (11) does not exceed
(t − s)γ(β−θ−1)‖f(s, u(s; u1))‖. Hence, u(t; u1) ∈ D((−A)θ) for all t ∈ [0, τ ] and
u1 ∈ Bθ,r(u0). For a fixed element u1 ∈ Bθ,r(u0), the continuity of mapping
t 7→ u(t; u1) ∈ [D((−A)θ)], t ∈ (0, τ ], follows from (25), the analyticity of Sγ(·),
the expression (26) and the dominated convergence theorem. The remaining part
of proof of [29, Theorem 3.2] can be repeated verbatim. �

Observe that Theorem 4.2 and Theorem 4.3 continue to hold if we consider
the space Eθ

A in place of [D((−A)θ)]. These theorems, as well some theorems
previously considered in this section, require the condition β > 1/2, which seems
to be restrictive in degenerate case (in a great number of examples from [12,
Chapter III], the condition (P) holds with β = 1/2). For example, in the case
of consideration of semilinear analogons of problem (P )γ , Theorem 4.2 and The-
orem 4.3 can be applied provided the additional condition [12, (3.42)] on the
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function m(x), which ensures us to get the better exponent β = 1/(2− ρ) in (P),
with 0 < ρ ≤ 1.

During the peer-review process, the author has reconsidered and slightly im-
proved the results of this paper for abstract degenerate fractional differential
inclusions with multivalued linear operators satisfying the following condition (cf.
[21] for more details):

(QP): There exist finite numbers 0 < β ≤ 1, 0 < d ≤ 1, M > 0 and 0 < η′ <
η′′ < 1 such that

Ψ := {λ ∈ C : |λ| ≤ d or λ ∈ Σπη′′/2} ⊆ ρ(A)

and

‖R(λ : A)‖ ≤ M(1 + |λ|)−β , λ ∈ Ψ.

We close the paper with the observation that we have not been able to improve
the assertion of Theorem 4.3 for multivalued linear operators satisfying the con-
dition (QP).
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