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Some versions of second countability of metric

spaces in ZF and their role to compactness

Kyriakos Keremedis

Abstract. In the realm of metric spaces we show in ZF that:
(i) A metric space is compact if and only if it is countably compact and for

every ε > 0, every cover by open balls of radius ε has a countable subcover.
(ii) Every second countable metric space has a countable base consisting of

open balls if and only if the axiom of countable choice restricted to subsets of R

holds true.
(iii) A countably compact metric space is separable if and only if it is second

countable.

Keywords: axiom of choice; compact space; countably compact space; totally
bounded space; Lindelöf space; separable space, second countable metric space

Classification: 54E35, 54E45

1. Notation and terminology

Let X = (X, d) be a metric space and U be an open cover of X. We say that
U has a Lebesgue number δ > 0 if for every A ⊆ X with diameter δ(A) < δ there
exists U ∈ U with A ⊆ U .

Given ε > 0, a subset D of X is called ε-dense if for every x ∈ X , B(x, ε) ∩
D 6= ∅. A finite ε-dense set D of X is called ε-net.

The space X is said to be almost separable, AS for abbreviation if for every
ε > 0 there is a countable ε-subset D of X .

The space X is quasi separable, QS for abbreviation (or ω-QS for ω-quasi

separable) if X has a dense subset which is expressible as a countable union of
finite (or at most countable, respectively) sets.

The space X is quasi second countable, QSC for abbreviation (or ω-QSC for
ω-quasi second countable) if X has a base B which can be written as a countable
union of finite (or countably infinite, respectively) sets.

The space X is called almost second countable, ASC for abbreviation if for
every n ∈ N, there is a countable family Bn of open balls of X such that for every
open set O in X, for every x ∈ O with d(x, Oc) ≥ 1/n there is a B ∈ Bn with
x ∈ B ⊆ O. The family Bn is called 1/n-almost base of X.
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The space X is said to be strongly almost second countable, SASC for abbre-
viation if and only if it admits a sequence (Bn)n∈N such that for every n ∈ N, Bn

is a 1/n-almost base for X. Clearly, B =
⋃

{Bn : n ∈ N} is a base for X.
The space X is called almost Lindelöf, AL for abbreviation if for every ε > 0,

every open cover of X consisting of open balls of radius ε has a countable subcover.
The space X is said to be preLindelöf if and only if for every ε > 0, X can be

covered by countably many open discs of radius ε.
We call attention to the fact that for a metric space X to be preLindelöf, it is

enough that for every given ε > 0, the cover of all open balls of X of radius ε has
a countable subcover. On the other hand, in order for X to be almost Lindelöf
we require that for every ε > 0, every open cover of X consisting of open balls of
radius ε has a countable subcover. Likewise, in order for X to be almost second
countable it is enough that for every n ∈ N, X has a 1/n-almost base whereas,
for X to be strongly almost second countable, we require, in addition, that the
family An = {B is a 1/n-almost base of X}, n ∈ N has a choice set.

The rest of the topological notions used in this paper are standard and can be
found in any textbook of general topology such as [13].

An infinite set X is said to be:

◦ Dedekind-infinite, denoted by DI(X), if X contains a countably infinite
subset. Otherwise is said to be Dedekind-finite.
◦ Weakly Dedekind-infinite, denoted by WDI(X), if P(X) contains a count-

ably infinite set. Otherwise is said to be weakly Dedekind-finite.

By universal quantifying over X , DI(X) gives rise to the choice principle IDI
for all X (X infinite → DI(X)) that is, “every infinite set is Dedekind-infinite”.
Similarly one defines IWDI.

CAC will denote the countable axiom of choice, CACfin (or CAC(R), CACω(R))
will stand for the restriction of CAC to finite sets (or subsets of R, countable
subsets of R, respectively). Finally, CMCω will stand for the proposition: Every
countable family A = {Ai : i ∈ ω} of countable sets has a multiple choice set, i.e.,
a family B = {Bi : i ∈ ω} of nonempty finite sets such that for all i ∈ ω, Bi ⊆ Ai.

2. Introduction and some preliminary and known results

Ordinarily topology is dealt with in the setting of ZFC, i.e.,
Zermelo-Fraenkel set theory including AC, the axiom of choice.
Although AC is neither evidently true nor evidently false, this
adherence to AC seems to be based on a general belief that adop-
tion of AC enables topologists to prove more and better theorems.
Aside from the trivial observation that no theorem T in ZFC is
lost in ZF (Zermelo-Fraenkel set theory without AC), — it simply
turns into the implication AC → T which often enough can be
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even improved to an equivalence WC ↔ T for a suitable weak
form WC of AC.
Horst Herrlich1

In this paper, the intended context for reasoning and statements of theorems
will be ZF unless otherwise noted. In order to stress that a result is proved in ZF
(or ZF+CAC) we shall write in the beginning of the statements of the theorems
and propositions (ZF) (or (ZF + CAC), respectively).

There are several forms of compactness of metric spaces which are equivalent to
Heine-Borel compactness (open covers have finite subcovers) in ZFC but not in ZF.
The following theorem from [11] gives some additional properties of metric spaces
under which certain weak forms of compactness of metric spaces are equivalent
to Heine-Borel compactness.

Theorem 1 (ZF [11]). (i) Every separable, complete and totally bounded metric
space is compact.
(ii) Every quasi separable, limit point compact metric space is compact.
(iii) Every ω-quasi separable, countably compact metric space is compact.

Each of the following is a potential property of metric spaces under which
a countably compact metric space is compact: AL, 2C (abbreviates second count-
ability), ASC, SASC, QSC, ω-QSC, S, QS and ω-QS. It is easy to see that in
ZF + CAC each of the latter properties is equivalent to separability. The forth-
coming Table 1 shows that they are all distinct in ZF.

Since the axioms of countability play a prominent role in the theory of met-
ric spaces we believe that studying their set theoretic strength as well as the
interrelations between them in the absence of AC is important so that we may
conceive better our limitations without AC within this part of topology. As an
illuminating example we note that in contrast to second countable metric spaces
a quasi second countable (or quasi separable) metric space need not have size less
than or equal to |R|. Indeed, if A = {An : n ∈ N} is a family of finite nonempty
sets without a choice set then X =

⋃

A endowed with the discrete metric d is
an example of a quasi second countable (or quasi separable) metric space which
fails to have size less than or equal to |R| or greater than or equal to |R| as in
the opposite case {min(An) : n ∈ N} would be a choice set for A. Hence, the
statement: “Every quasi second countable (or quasi separable) metric space has
size less than or equal to |R|” implies CACfin a statement which is not provable
in ZF.

The following ZF implications

S→ 2C, S→ QS, S→ ω-QS, 2C→ QSC, 2C→ ω-QSC,

QS→ QSC, ω-QS→ ω-QSC, SASC→ ASC

are straightforward and are left as a warm up exercise for the reader.

1See [5].



122 Keremedis K.

Remark 1. We would like to remark here that if for some property
p ∈ {AL, 2C, ASC, SASC, QSC, ω-QSC, S, QS, ω-QS},

QS 9 p (or ω-QS 9 p, SASC 9 p)

then QSC 9 p (or ω−QSC 9 p, ASC 9 p, respectively).

and,

if p 9 QSC (or p 9 ω-QSC, p 9 ASC)

then p 9 QS (or p 9 ω-QS, p 9 SASC).

We recall that in the basic Cohen modelM1 in [8] the set A of all added Cohen
reals is a dense Dedekind finite subset of R. We observe that:

1) Since R is second countable, the restriction of any countable base of R to A is
a countable base for the subspace A of R. Hence, inM1, A has all the properties
listed in B = {2C, QSC, ω-QSC}. Since A is Dedekind finite, it follows that A
is not quasi separable, ω-quasi separable, almost second countable and strongly
almost second countable. (If B is a countable 1/n-almost base for A for some
n ∈ N, then since A is dense in R, every ball in B has a unique center. Hence,
A has a countably infinite subset contradicting the fact that it is Dedekind finite).
Furthermore, the open cover U = {(a − 1/2, a + 1/2) ∩ A : a ∈ A} of A has no
countable subcover. Indeed, if V = {Vn : n ∈ N} is a countable subcover of U
then {an : n ∈ N} where for every n ∈ N, an is the center of the ball Vn (each Vn

has a unique center) is a countably infinite subset of A contradicting the fact that
A is Dedekind finite. Hence, A is not almost Lindelöf. Thus, all non implications
p 9 q, p ∈ B, q ∈ {AL, ASC, SASC, QS, ω-QS} are consistent with ZF.

2) InM1, the subspace X, X = A∪Q of R is separable hence, quasi separable
and ω-quasi separable. In addition, X is strongly almost second countable (for
every n ∈ N, Bn = {B(q, 1/m) : m > n, q ∈ Q} is easily seen to be a 1/n-
almost base for X). However, X is not almost Lindelöf as the open cover U =
{(a − 1/2, a + 1/2): a ∈ A} of X has no countable subcover. Hence, the non
implications QS 9 AL, ω-QS 9 AL, ASC 9 AL and SASC 9 AL are consistent
with ZF.

3) Subspaces of separable (or quasi separable, ω-quasi separable) metric spaces
need not be separable (or quasi separable, ω-quasi separable, respectively). (In
the model M1, R is separable hence, quasi separable and ω-quasi separable also
but its subspace A has none of the latter properties.) The interested reader can
easily verify that “every subspace of a separable metric space is separable” is
equivalent to CAC(R), “every subspace of an ω-quasi separable metric space is ω-
quasi separable” implies IDI(R) and, “every subspace of a quasi separable metric
space is quasi separable” implies CAC(R).

Since S → 2C and 2C → S if and only if CAC(R), see e.g. [4], we shall be
concentrated mainly on the following seven properties: AL, ASC, SASC, QSC,
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ω-QSC, QS and ω-QS. The following Table 1 records the ZF implications\non
implications between these properties obtained in this project.

AL ASC SASC QSC ω-QSC QS ω-QS
AL → 9 9 9 9 9 9

ASC 9 → 9 9 9 9 9

SASC 9 → → 9 9 9 9

QSC 9 9 9 → 9 9 9

ω-QSC 9 9 9 9 → 9 9

QS 9 9 9 → → → 9

ω-QS 9 9 9 9 → 9 →

Table 1.

The non implications in Table 1 are obtained by using the forthcoming Propo-
sition 6, Theorems 9, 10 and 11 respectively and Remark 1.

Theorem 2 ([6]). In ZF the following conditions are equivalent:

(i) N is a Lindelöf space;
(ii) every second countable metric space is Lindelöf;
(iii) CAC(R).

Clearly in ZF, a second countable (or Lindelöf) metric space is countably com-
pact if and only if it is compact. In view of Theorem 2, and Example 1.6 from
[1] (a ZF example of Lindelöf metric space which fails to be second countable) it
follows that the properties being second countable and Lindelöf are independent
of each other in ZF. In view of this and Theorem 1 it is plausible to ask:

Question 1. Are there any other properties p of metric spaces weaker than
Lindelöfness (or second countability) such that every countably compact metric
space having the property p is compact?

Regarding Question 1, one may think that in view of part (b) of the following
theorem separability might be an answer.

Theorem 3. Let X = (X, d) be a metric space. Then:

(a) (See [9], ZF + CAC.) The following are equivalent:
(i) The space X is compact.
(ii) The space X is sequentially compact.
(iii) The space X is countably compact.

(b) (See [9], ZF.) If X is separable then (i)–(iii) are equivalent.
(c) (See [13], ZF.) The space X is compact if and only it is totally bounded

and Lebesgue.
(d) (See [10], ZF.) If X is countably compact then it is Lebesgue.
(e) (See [13], ZF.) The space X is sequentially compact if and only it is

complete and every sequence in X admits a Cauchy subsequence (X is
sequentially bounded).
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However, separability of metric spaces is stronger than second countability
in ZF. (In the model M1 the subspace A of R is second countable but not
separable.)

Theorem 4. Let X = (X, d) be a metric space. The following are equivalent.
(i) The space X is totally bounded.
(ii) For every n ∈ N, there exists a finite family of open balls Bn such that for

every x ∈ X there is a Bx ∈ Bn with x ∈ Bx ⊆ B(x, 1/n).
(iii) For every n ∈ N, there exists a finite family of open sets Bn such that for

every x ∈ X there is a Bx ∈ Bn with x ∈ Bx ⊆ B(x, 1/n).

Proof: (i) → (ii) Fix k ∈ N and let, by our hypothesis, S = {xi : i ≤ m}
be a 1/3k-net of X. We claim that Bk = {B(xi, 1/3k) : i ≤ m} satisfies: For
every x ∈ X there is a Bx ∈ Bk with x ∈ Bx ⊆ B(x, 1/k). Fix x ∈ X . Since
d(x, S) < 1/3k there exists i ≤ m such that d(x, xi) < 1/3k. We claim that
x ∈ B(xi, 1/3k) ⊆ B(x, 1/k). Indeed, if y ∈ B(xi, 1/3k) then d(x, y) ≤ d(x, xi) +
d(xi, y) < 1/3k + 1/3k < 1/k. Hence, x ∈ B(xi, 1/3k) ⊆ B(x, 1/k) as claimed.

(ii) → (iii) This is straightforward.
(iii) → (i) Fix n ∈ N. We show that X has 1/n-nets. By our hypothesis, there

exists a finite family of open sets Bn of X such that for every x ∈ X there is
a Bx ∈ Bn with x ∈ Bx ⊆ B(x, 1/n). For every B ∈ Bn fix xB ∈ X such that
B ⊆ B(xB , 1/n). Clearly, {xB : B ∈ Bn} is a 1/n-net of X. Hence X is totally
bounded as required. �

Theorem 5. Every second countable metric space has a countable base consisting
of open balls if and only if CAC(R).

Proof: (←) This is straightforward, in view of the fact that second countable
metric spaces have size less than or equal to |R| (if B is a countable base for the
metric space X = (X, d) then the mapping x→ {B ∈ B : x ∈ B} from X to P(B)
is one-to-one).

(→) Fix A = {An : n ∈ N} a disjoint family of nonempty dense subsets of R.
Since for every x, y ∈ R, x < y a homeomorphism f : R → (x, y) can be defined
in ZF, we may assume that for all n ∈ N, An ⊆ (1/(n + 1), 1/n) is dense in the
subspace (1/(n + 1), 1/n) of R. Let X =

⋃

{An : n ∈ N} and d : X × X → R

be the restriction of the usual metric of R to X . Since R is second countable,
it follows that X is also second countable. Fix, by our hypothesis, a countable
base B of X consisting of open balls. Since for every n ∈ N, An is open, we
may assume that each member B of B is included in some An. Since each An is
dense in (1/(n + 1), 1/n) it follows easily that each member B of B has a unique
center dB. On the basis of D = {dB : B ∈ B} we can readily define a choice set
for A. �
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3. Countable compactness, almost Lindelöfness and second countabi-

lity like properties of metric spaces

In our first result in this section we observe, via construction of ZF examples
of metric spaces, that the following ZF implications:

◦ second countable→ quasi second countable → ω-quasi second countable;
◦ ω-quasi separable → ω-quasi second countable, strongly almost second

countable → ω-quasi second countable; and
◦ Lindelöf → almost Lindelöf

are not reversible in ZF. In addition, the properties ω-quasi separable and second
countable are independent of each other in ZF.

Proposition 6. (i) “Every quasi separable (or ω-quasi separable) metric space
is second countable” implies CACfin (or CUT, respectively).

(ii) “Every second countable metric space is ω-quasi separable” implies IDI(R).
In particular, “every subspace of R is ω-quasi separable” implies IDI(R).

(iii) “Every quasi second countable (or ω-quasi second countable) metric space
is second countable” implies CACfin (or CUT, respectively).

(iv) “Every ω-quasi separable metric space is quasi second countable” im-
plies CMCω.

(v) “Every almost Lindelöf metric space is Lindelöf” implies CAC(R).
(vi) “Every ω-quasi second countable metric space is ω-quasi separable” im-

plies IDI(R).
(vii) “Every ω-quasi separable metric space is almost second countable” im-

plies CUT.
(viii) Each of the statements “Every quasi separable metric space is ω-quasi

second countable” and “every quasi separable metric space is ω-quasi separable”
implies CACfin.

(ix) “Every almost Lindelöf metric space is ω-quasi separable” implies
CACfin.

(x) “Every strongly almost second countable metric space is quasi second count-
able” implies CMCω and CACω(R).

(xi) “Every strongly almost second countable metric space is ω-quasi second
countable” implies CACfin.

Proof: (i) Fix A = {An : n ∈ N} a disjoint family of finite (or countable) sets.
Put X =

⋃

A and let d be the discrete metric on X . Clearly, X is quasi separable
(or ω-quasi separable). By our hypothesis, X has a countable base B. Since,
{{x} : x ∈ X} ⊆ B it follows that X is countable.

(ii) Assume the contrary and fix a Dedekind finite subset X of R. Clearly, the
subspace X of R is second countable but not ω-quasi separable, contradicting our
hypothesis.

(iii) This can be proved as in (i).
(iv) FixA = {An : n ∈ N} a disjoint family of countable sets and let X and d be

as in the proof of part (i). Clearly, X is ω-quasi separable (X =
⋃

{An : n ∈ N}
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is dense in X). By our hypothesis X has a base Q which can be written as
⋃

{Qn : n ∈ N} where for every n ∈ N, Qn is finite. Since B = {{x} : x ∈ X} ⊆ Q
it follows that B, and consequently X , can be expressed as a countable union of
finite sets. Using this information we can easily define a multiple choice set for A.

(v) This follows from Theorem 2 (N is almost Lindelöf).
(vi) This can be proved as in (ii).
(vii) Fix A = {An : n ∈ N} a disjoint family of countable sets. Let X =

⋃

A
and d be the discrete metric on X . Since X is ω-quasi separable, it follows by our
hypothesis that X has a countable 1/2-almost base C. Since, for every x ∈ X ,
d(x, {x}c) = 1, we see that there exists an open ball C ∈ C with x ∈ C ⊆ {x}.
Hence, C = {x} and B = {{x} : x ∈ X} ⊆ C. Thus, B and consequently X is
countable.

(viii) Fix a familyA = {An : n ∈ N} of disjoint nonempty finite sets. Let X and
d be as in the proof of (i). Fix, by our hypothesis, a base B =

⋃

{Bn : n ∈ N} for
X such that for every n ∈ N, Bn is countably infinite. Since every element of X
is isolated it follows that {{x} : x ∈ X} ⊆ B. Thus X is Dedekind infinite and
CACfin holds true as required.

The second assertion can be proved similarly.
(ix) Assume the contrary and fix A as in (viii). Put X =

⋃

A∪ {∞} for some
element ∞ /∈

⋃

A and let d : X ×X → R be the metric given by

(1) d(x, y) =



















0 if x = y,
1

n
if x ∈ An, y ∈ Av and n ≤ v,

1

n
if x ∈ An and y =∞.

Since X is compact, it follows that it is almost Lindelöf as well. Fix, by our
hypothesis, a dense set D =

⋃

{Dn : n ∈ N} of X such that for every n ∈ N, Dn

is countably infinite. It follows that Y =
⋃

A is Dedekind infinite. Hence A has
a partial choice set as required.

(x) Fix A = {An : n ∈ N} a disjoint family of countable sets and let X =
⋃

A.
Let d : X ×X → R be the metric given by:

(2) d(x, y) =







0 if x = y,
1

n
if x ∈ An, y ∈ Am and n ≤ m.

We claim that for every n ∈ N, Bn = {{x} : x ∈
⋃

{Ai : i ≤ n}}∪ {
⋃

{Ai : i > n}}
is a 1/n-almost base for X. To see this, fix an open set O of X and let x ∈ O be
such that d(x, Oc) ≥ 1/n. We consider the following two cases:

(1) x ∈ Ak for some k ≤ n. Clearly, {x} ⊆ B(x, 1/n) ⊆ B(x, 1/k) = {x} ∈ Bn.
Hence, x ∈ B(x, 1/n) ⊆ O.

(2) x ∈ Ak for some k > n. Since, B(x, 1/n) =
⋃

{Ai : i > n} ∈ B it follows
that x ∈ B(x, 1/n) ⊆ O.
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From cases (1) and (2) it follows that for every n ∈ N, Bn is a 1/n-almost
base for X. Hence, X is strongly almost second countable. Therefore, by our
hypothesis, there exists a base B for X which is expressible as a countable union
of finite sets. Since d produces the discrete topology on X , it follows that {{x} :
x ∈ X} ⊆ B. On the basis of B we can define a multiple choice set for A.

(xi) Fix a disjoint family A = {An : n ∈ N} of finite nonempty sets. We show
that A has a partial choice set. To this end, it suffices to show that X =

⋃

A is
Dedekind infinite. Let d : X ×X → R be the metric given by (2). By the proof
of (x), X is strongly almost second countable. Hence, by our hypothesis, X has
a base B which can be written as

⋃

{Bn : n ∈ N}, where for every n ∈ N, Bn is
countably infinite. Since {{x} : x ∈ X} ⊆ B it follows X is Dedekind infinite as
required. �

By Proposition 6, ω-quasi separability is strictly weaker than second countabi-
lity. Hence, by Theorem 1 ω-quasi separability is an answer to Question 1. Next,
in view of Proposition 6, we observe that the properties ω-quasi second countable
and almost Lindelöf are also answers to Question 1.

Proposition 7. (i) Let X = (X, d) be an ω-quasi second countable metric space.
Then X is compact if and only if it is countably compact.

(ii) Let X = (X, d) be an almost Lindelöf metric space. Then X is compact if
and only if it is countably compact.

(iii) Let X = (X, d) be an almost second countable metric space. Then X is
compact if and only if it is countably compact.

Proof: (i) (→) This is straightforward.
(←) Fix a countably compact metric space X and let B =

⋃

{Bn : n ∈ N} be
a base for X such that for every n ∈ N, Bn is countable. We show that every
cover U ⊆ B of X has a finite subcover. For every n ∈ N, let On =

⋃

U ∩ Bn.
Clearly, W = {On : n ∈ N} is a countable open cover of X. By our hypothesis
W has a finite subcover V = {Oni

: i ≤ k}. Since, Q =
⋃

{U ∩ Bni
: i ≤ k} is

clearly a countable subcover of U it follows by the countable compactness of X

that Q has a finite subcover G. Clearly, G is a subcover of U and X is compact
as required.

(ii) (→) This is obvious.
(←) Fix a countably compact and almost Lindelöf metric space X. By The-

orem 3 (c) and (d) it is enough to show that X is totally bounded. Fix ε > 0
and let U = {B(x, ε) : x ∈ X}. Since X is almost Lindelöf, U has a countable
subcover V . Since X is countably compact V has a finite subcover, meaning that
X is totally bounded as required.

(iii) Fix X = (X, d) an almost second countable and countably compact metric
space. In order to show that X is compact it suffices in view of Theorem 3 to prove
that X is totally bounded. Fix n ∈ N and let Bn be a countable 1/n-base of X.
Clearly, for every x ∈ X , there exist Bx ∈ Bn such that x ∈ Bx ⊆ B(x, 1/n).
Since X is countably compact it follows that finitely many members of Bn cover X .
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Hence, there exist xi ∈ X , i ≤ k such that
⋃

{B(xi, 1/n) : i ≤ k} = X . Thus, X

is totally bounded as required. �

Even though second countability is strictly weaker than separability in ZF, we
show next that in the class of countably compact metric spaces S↔ 2C.

Theorem 8. Let X = (X, d) be a countably compact metric space. Then X is
separable if and only if it is second countable.

Proof: (→) This is straightforward.
(←) Let B = {Bn : n ∈ N} be a base for X. Without loss of generality we may

assume that the members of B are bounded. For every n ∈ N, via a straightfor-
ward induction, we construct a strictly descending chain (Bnk

)k∈N ⊆ B such that
for every k ∈ N,

Bnk+1
⊂ Bnk

⊆ Bn and δ(Bnk+1
) <

1

2
δ(Bnk

).

It follows by the countable compactness of X that ∅ 6=
⋂

{Bnk
: k ∈ N} ⊆ Bn.

Since δ(
⋂

{Bnk
: k ∈ N}) = 0, it follows that

⋂

{Bnk
: k ∈ N} is a singleton of X ,

say {dn}. Then D = {dn : n ∈ N} is a countable dense subset of X and X is
separable as required. �

Remark 2. We would like to remark here that if A = {An : n ∈ N} is a disjoint
family of finite nonempty sets without a choice set, X =

⋃

A ∪ {∞}, ∞ /∈
⋃

A,
and d : X × X → R is the metric given by (1) then X is compact, quasi second
countable and quasi separable but not separable. Thus, in the class of countably
compact metric spaces quasi second countability and quasi separability are strictly
weaker than second countability.

If X = (X, d) is a countably compact and ω-quasi separable metric space then
by Theorem 1 X is compact, hence almost Lindelöf as well. So, in the class of
countably compact metric spaces ω-quasi separability implies almost Lindelöfness
and one may ask if the latter implication is reversible. We show next that the
answer is no.

Theorem 9. (i) The negation of the statement: “Every countably compact and
almost Lindelöf metric space is quasi separable (or ω-quasi separable)” is con-
sistent with ZF. In particular, in the class of countably compact metric spaces
almost Lindelöfness is strictly weaker than ω-quasi separability.

(ii) “Every quasi separable (or ω-quasi separable) metric space is almost Lin-
delöf” implies IDI(R).

Proof: (i) We recall the concentric circles permutation model N given in [12].
The set of atoms A is expressed as

⋃

{An : n ∈ N}, where for all n ∈ N,

An =
{

anx : x ∈ S
(

0,
1

2

)}

and S(0, 1/n) is the circle of the Euclidean plane (R2, ̺) of radius 1/n centered
at 0. The group of permutations G is the group of all permutations on A which
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rotate the An’s by an angle θn ∈ R and supports are finite. In [12] it has been
shown that the family {An : n ∈ N} does not have a multiple choice set. It is not
hard to see that {An : n ∈ N} has also no Kinna-Wagner choice set, i.e., a family
{Bn : n ∈ ω} of nonempty sets such that for all n ∈ ω, Bn ⊆ An and Bn 6= An.

Let X = A ∪ {∞}, ∞ /∈ A. Clearly, the function d : X ×X → R given by the
rule: d(anx,∞) = 1/n and,

d(anx, amy) =







̺(x, y) if n = m,
1

n
if n < m,

is a metric on X such that X is compact. Hence, X is almost Lindelöf. However,
X is neither quasi separable nor ω-quasi separable as otherwise {An : n ∈ N}
would have a multiple choice set and a Kinna-Wagner choice set respectively.

The model N is a ZF0 (= ZF minus the axiom of regularity) model but the
ZF versionM of N has been constructed in [14].

(ii) Assume the contrary and fix A an infinite Dedekind finite subset of R.
N. Brunner has shown in [2] that if there exists a Dedekind finite subset of R

then there exists a dense one also. So we may assume that A is dense in R.
Clearly the subspace X, X = A ∪ Q of R is separable hence, quasi separable
and ω-quasi separable. However, X is not almost Lindelöf as the open cover
U = {(a−1/2, a+1/2): a ∈ A} of X has no countable subcover. This contradicts
our hypothesis. �

Remark 3. From Theorem 9 it follows that the properties of being almost Lin-
delöf and quasi separability (or ω-quasi separability) are independent of each other
in ZF. However in ZF + CAC, almost Lindelöf = Lindelöf = separable = quasi
separable = ω-quasi separable.

4. More on second countability like properties of metric spaces

In this section we are going to eliminate some more question marks from Table 1
by constructing more ZF examples of metric spaces having a certain property p
but not the property q from Table 1.

Theorem 10. (i) “Every almost Lindelöf (or strongly almost second count-
able) metric space is second countable” implies CUT and, “every almost Lin-
delöf metric space (or ω-quasi separable, respectively) is quasi second countable”
implies CMCω.

(ii) “Every almost Lindelöf (or strongly almost second countable) metric space
is separable” implies CUT.

(iii) “Every almost Lindelöf (or ω-quasi separable) metric space is almost sec-
ond countable” implies CUT.

(iv) “Every quasi separable metric space is almost second countable” im-
plies CACfin.
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Proof: (i) Fix A = {An : n ∈ N} a disjoint family of countable sets. Let X =
⋃

{An : n ∈ N} and d : X ×X → R be the metric given by (2). We claim that X

is:
(a) Almost Lindelöf. Fix ε > 0 and let U be an open cover of X consisting of

open balls of radius ε. We show that U has a countable subcover. Let

K = {x ∈ X : x is a center of some U ∈ U}.

If K ⊆
⋃

{Ai : i ≤ m} for some m ∈ N then U is countable and there is nothing to
show. So assume that K ∩Am 6= ∅ for infinitely many m ∈ N. Let m ∈ N satisfy
1/m < ε, K ∩ Am 6= ∅ and fix x ∈ K ∩ Am. Clearly,

⋃

{An : n > m} ∪ {x} =
B(x, 1/m) ⊆ B(x, ε). Since, C =

⋃

{An : n ≤ m} is countable, it follows that
we need countably many more members of U to cover C. Hence, X is almost
Lindelöf as claimed.

(b) Strongly almost second countable. This has been established in the proof
of part (x) of Proposition 6.

Fix, by our hypothesis, a countable base B for X. Since d produces the discrete
topology on X it follows that {{x} : x ∈ X} ⊆ B. Hence, X is a countable set
and CUT holds true as required.

For the second assertion we note that X in addition to being almost Lindelöf,
is ω-quasi separable as well. Fix, by our hypothesis, a countable base B for X

such that B =
⋃

{Bn : n ∈ N}, where for every n ∈ N, Bn is a finite set. Since
d produces the discrete topology on X, it follows that {{x} : x ∈ X} ⊆ B. It is
easy to see that A has a multiple choice set. In fact, something stronger holds
true here. Namely,

⋃

A can be expressed as a countable union of finite sets.
(ii) This in view of the proof of (i) is straightforward.
(iii) Fix A = {An : n ∈ N} a disjoint family of countable sets. For every n ∈ N,

let Xn = An ∪ {n}. Without loss of generality we may assume that n /∈ An. Let
dn : Xn ×Xn → R be the metric given by

dn(x, y) =















0 if x = y,
1

n
if x, y ∈ An,

1 if x ∈ An and y = n.

Put X =
∏

n∈N
Xn and let d : X ×X → R be the sup metric, i.e.,

d(x, y) = sup{dn(x(n), y(n)) : n ∈ N}.

We claim that
(a) X is almost Lindelöf. To see this, fix n ∈ N. Clearly, for every x, y ∈ X

with x(i) = y(i) for all i ≤ n, B(x, 1/n) = B(y, 1/n). Since Yn =
∏

i≤n Xi is
countable, it follows that there are at most countably many open discs of radius
1/n and consequently X is almost Lindelöf as claimed.
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(b) X is ω-quasi separable. Clearly, for every n ∈ N

Dn =
∏

i≤n

Xi ×
∏

i>n

{i}

is a countable set. To complete the claim it suffices to show that D =
⋃

{Dn :
n ∈ N} is dense in X. To see this fix x ∈ X\D and consider the open ball
B(x, 1/n). Let z ∈ X be the element given by:

z | n + 1 = x | n + 1 and z(i) = i for all i > n.

Clearly, z ∈ D ∩B(x, 1/n) meaning that D is dense in X.
Let, by our hypothesis, B be a countable 1-almost base for X. Without loss of

generality we may assume that for every B ∈ B, B = B(x, 1/m) for some x ∈ X
and m ∈ N. For every n ∈ N, let

On =
∏

i≤n

Ai ×
∏

i>n

Xi.

Clearly, for every x ∈ On is d(x, Oc
n) = 1. Hence, there exists B ∈ B such that

x ∈ B ⊆ On. Let Bx be the first such ball of B. We claim that Bx = B(x, 1/m)
for some m ≥ n. Clearly, Bx = B(y, 1/m) for some m ∈ N and y ∈ X . If m < n
then the element z ∈ X given by: z(m + 1) = m + 1 and for all i ∈ N, i 6= m + 1,
z(i) = y(i) is in Bx\On contradicting the fact that Bx ⊆ On. Thus, m ≥ n.
Since x ∈ B(y, 1/m) it follows that d(x, y) = sup{dn(x(n), y(n)) : n ∈ N} < 1/m.
Therefore, for all n ≤ m, dn(x(n), y(n)) < 1/m. If for some n ≤ m, x(n) 6= y(n)
then 1/n = dn(x(n), y(n)) < 1/m ≤ 1/n which is a contradiction. Thus, for all
n ≤ m, x(n) 6= y(n) and consequently Bx = B(y, 1/m) = B(x, 1/m) as claimed.

For every n ∈ N, let Wn =
∏

i≤n Ai ×
∏

i>n{i}. Clearly, for every n ∈ N and

x, y ∈ Wn with x 6= y there exists i ≤ n such that x(i) 6= y(i). Hence, Bx 6= By

and consequently for every n ∈ N, the function fn : Wn → B, fn(x) = Bx is one-
to-one. Thus W =

⋃

{Wn : n ∈ N} (or H =
⋃

{
∏

i≤n Ai : n ∈ N
}

) is a countable

set. On the basis of H one can readily define a one-to-one function f :
⋃

A → H
meaning that

⋃

A is countable as required.
(iv) This, in view of the proof of (iii), is straightforward. So, we leave the proof

as an easy exercise for the reader. �

Theorem 11. (i) The negation of the statement: “Every almost second countable
metric space is strongly almost second countable” is consistent with ZF.

(ii) The negation of the statement: “Every almost second countable met-
ric space is quasi second countable (or ω-quasi second countable)” is consistent
with ZF.

Proof: We recall that the Good/Tree/Watson Model IIN in [8] is a permutation
model constructed as follows: The set of atoms A is

⋃

{An : n ∈ N}, where for
every n ∈ N, An = {an,x : x ∈ R}. The group of permutations G is the group of all
permutations π on A such that for every n ∈ N, π is the identity of An, or there
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exists r ∈ R such that for every x ∈ R, π(an,x) = an,x+r, i.e., π is a translation
on An. Supports are finite. The ZF version of the model N has been constructed
in [3] and the ZF0 was used in [7]. The fact that it is easier in general to work
with permutation models explains our preference for the permutation version of
the model. For every n ∈ N, let dn : An ×An → R be the metric given by:

dn(an,x, an,y) = |x− y|.

Clearly, the set D = {dn : n ∈ N} has empty support. Hence, D ∈ N . Let d be
the metric on A which is defined by the rule:

d(an,x, am,y) =











min
{ 1

n
, dn(an,x, an,y)

}

if n = m,

1

n
if n ≤ m.

We claim that A = (A, d) is almost second countable. To see this, fix k ∈ N.
Clearly, for every i = 1, 2, . . . , k, Bi = {B(ai,r, 1/2k) : r ∈ Q} is a countable 1/k-
almost base for the (open) subspace Ai of A. Indeed, if O is an open subset
of Ai and ai,x ∈ O is such that B(ai,x, 1/k) ⊆ O then for every q ∈ Q with
|q − x| < 1/2k we have B(ai,q, 1/2k) ⊆ B(ai,x, 1/k). (If ai,p ∈ B(ai,q, 1/2k)
then d(ai,p, ai,x) ≤ d(ai,p, ai,q) + d(ai,q, ai,x) < 1/2k + 1/2k = 1/k.) Hence,
B(ai,q, 1/2k) ⊆ O as required. We claim that

B =
⋃

{Bi : i ≤ k} ∪

{

⋃

{Ai : i > k}

}

is a countable 1/k-almost base for A. The fact that B is countable is obvious. To
see that B is a 1/k-almost base for A, we fix an open set O in A and ai,x ∈ O
such that B(ai,x, 1/k) ⊆ O. We consider the following two cases:

(1) i ≤ k. Since B(ai,x, 1/k) ⊆ O ∩Ai, it follows that there exists B ∈ Bi ⊆ B
with ai,x ∈ B ⊆ B(ai,x, 1/k) ⊆ O ∩Ai ⊆ O.

(2) i > k. In this case we have B(ai,x, 1/k) =
⋃

{Ai : i > k} ∈ B. Hence, there
exists B ∈ B with ai,x ∈ B ⊆ B(ai,x, 1/k) ⊆ O.

From (1) and (2) it follows that B is a 1/k-almost base for A as claimed.
Since any finite subset E of A meeting non-trivially each Ai, i = 1, 2, . . . , k is

a support of B it follows that B ∈ N . Hence, A is almost second countable as
required.

(i) We claim that A is not strongly almost second countable. To see this, we
assume the contrary and let B =

⋃

{Bn : n ∈ N}, where for every n ∈ N, Bn is
a countable 1/n-almost base for A. Clearly, for every n ∈ N, An is an open subset
such that for every x ∈ R there exists an open ball B ∈ Bn+1 with an,x ∈ B ⊆ An.
Let

Cn = {an,x ∈ An : an,x is a center of an open ball B ∈ Bn+1 with B ⊆ An}.
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Since the members of every Bn may be viewed as open finite intervals of R, they
have unique centers. Hence, C = {Cn : n ∈ N} is a family of countable sets in N
such that for every n ∈ N, Cn ⊆ An. Let E be a support for C and fix n ∈ N

such that E ∩ An = ∅. Fix an,y ∈ An\Cn, an,z ∈ Cn and let r = y − z. Let π
be the permutation of A which is the identity on each Ai, i 6= n and for every
an,x ∈ An, π(an,x) = an,x+r. We have C = π(C) = {π(Ci) : i ∈ N}. Hence,
Cn = π(Cn). Since π(an,z) = an,z+y−z = an,y ∈ π(Cn) it follows that an,y ∈ Cn

which contradicts the fact that an,y ∈ An\Cn. Hence, A is not strongly almost
second countable as claimed.

(ii) Assume, aiming for a contradiction, that A is quasi second countable (or
ω-quasi second countable) and fix a base B =

⋃

{Bn : n ∈ N} for A such that for
every n ∈ N, Bn is finite (or countably infinite, respectively). Without loss of
generality we may assume that for every B ∈ B, there exists n ∈ N with B ⊆ An

and B 6= An. Let E be a support for B. For every n ∈ N, let

kn = min{m ∈ N : B ⊆ An for some B ∈ Bm}

and put Wn = {B ∈ Bkn
: B ⊆ An}. Clearly, E is a support for each Wn,

n ∈ N. Since for every n ∈ N, fn : R → An, fn(x) = an,x is a homeomorphism,
it follows that An is connected and consequently each B ∈ Wn has countably
many components, i.e., maximal connected subsets. Since the components of open
subsets of R are countably many open intervals, it follows that for every n ∈ N,
the set Cn of all endpoints of the components of members of Wn is countable.
Indeed, for every n ∈ N, |An| = |R| and R is well orderable in every permutation
model. So An is well orderable and the union of countably many countable sets
in An is countable. Clearly, E is a support of C = {Cn : n ∈ N}. So, C ∈ N .
Working as in part (i) we can show that C /∈ N . This leads to a contradiction
and finishes the proof of (ii). �
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Math. Univ. Carolin. 43, (2002), no. 2, 319–333.

[6] Herrlich H., Strecker G. E., When is N Lindelöf ? Comment. Math. Univ. Carolin. 38
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