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Abstract. This article focuses on heat radiation intensity optimization on the surface of a
shell metal mould. Such moulds are used in the automotive industry in the artificial leather
production (the artificial leather is used, e.g., on car dashboards). The mould is heated
by infrared heaters. After the required temperature is attained, the inner mould surface is
sprinkled with special PVC powder. The powder melts and after cooling down it forms the
artificial leather. A homogeneous temperature field of the mould is a necessary prerequisite
for obtaining a uniform colour shade and material structure of the artificial leather. The
article includes a description of a mathematical model that allows to calculate the heat
radiation intensity on the outer mould surface for each fixed positioning of the infrared
heaters. Next, we use this mathematical model to optimize the locations of the heaters to
provide approximately the same heat radiation intensity on the whole outer mould surface
during the heating process. The heat radiation intensity optimization is a complex task,
because the cost function may have many local minima. Therefore, using gradient methods
to solve this problem is not suitable. A differential evolution algorithm is applied during
the optimization process. Asymptotic convergence of the algorithm is shown. The article
contains a practical example including graphical outputs. The calculations were performed
by means of Matlab code written by the authors.

Keywords: heat radiation; heat conduction; optimization; differential evolution algo-
rithm; mathematical model; parallel programming
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1. Introduction

Procedures and calculations described in this article form part of technology of

artificial leather production. The leather is used for surfacing of car interiors (dash-

boards, inside parts of car doors). The producer utilizes the production process
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based on heating of relatively thin shell metal moulds by means of infrared heaters.

Infrared heaters are used, since this way of heating is characterized by approximately

30% lower energy consumption compared to oil heating, hot air heating or hot sand

heating. When infrared heating is used, it is necessary to ensure a uniform heat

radiation intensity (within a given tolerance) on the whole outer mould surface to

attain the same colour shade and material structure of the artificial leather. The

uniform heat radiation can be achieved by finding suitable locations of the heaters.

Figure 1. Shell metal moulds.

Shell moulds (of aluminium or nickel alloys) of constant thickness 6–8mm which

usually have complicated shapes and weigh from 100 to 300 kg are used in the pro-

duction (see Fig. 1). The infrared heaters have a tubular form and their length is

approximately 20 cm. Each heater is equipped with a mirror located above the radi-

ation tube that reflects the heat radiation in the set direction (see the right part of

Fig. 2).
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S—centre of the heater

d—length of the heater

o—heater axis

r—unit vector of the heater axis direction

u—unit vector of the radiation direction

Figure 2. Schematic representation of the infrared heater (on the left) and Philips infrared
heater with 1000W capacity (on the right).

We have been cooperating with the producer of artificial leather approximately

for 10 years and conceived a mathematical model of heating of the mould. The model
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has been improved gradually during this period. The aim of the model is to optimize

the heat radiation incident onto the mould surface. We presented in the meantime

partial results and developed procedures used in the production technology. In this

article we provide a comprehensive survey of the procedures and calculations that

proved most successful and that make part of the current production technology.

The heating optimization is relatively complicated. The moulds have usually com-

plex shapes—see Fig. 1 and the cost function may have many local minima. In ad-

dition, possible collisions between two heaters as well as collisions between a heater

and the mould have to be avoided during the optimization process.

Therefore, the application of gradient methods is unsuitable. Instead, we have

used evolution optimization algorithms (see [12], [1]). First, genetic algorithms were

tested. The obtained results were further improved by a Hill Climbing procedure

(see [9]). However, better optimized positions of the heaters were found by differen-

tial evolution algorithms. Finally, we modified the differential evolution algorithm

known as DE/rand/1/bin (for details see [11]) and obtained the best results. The

modified algorithm is hereafter denoted by MDEA. When using MDEA, the asymp-

totic convergence to the global minimum of the cost function can be proved.

2. Mathematical model of the heat radiation

In this chapter the mathematical model of the heat radiation is described. The

heaters and the heated mould are considered in the Euclidean space E3 with the

Cartesian coordinate system (O, x1, x2, x3) with basis vectors e1 = (1, 0, 0), e2 =

(0, 1, 0) and e3 = (0, 0, 1).

2.1. Heater representation. Each heater is represented by a straight line seg-

ment of length d (see the left part of Fig. 2). The position of the heater can be

described by the following parameters:

(i) The coordinates of the heater centre S = [s1, s2, s3].

(ii) The unit vector u = (u1, u2, u3) of the heat radiation direction. We can suppose

that the component u3 < 0, which means that the heater always radiates (at

least partially) “downward”.

(iii) The unit vector r = (r1, r2, r3) of the heater longitudinal axis o.

In this case we would have nine quantities describing the heater position. But some

of these quatities are dependent. For instance the vectors u and r are orthogonal. In

mechanics it is a well known fact that six parameters are sufficient to fully determine

a body position in a space. So, we have to reduce the number of quantities charac-

terizing the heater position. It is suitable to use just the first two coordinates u1, u2

of the vector u. The vector r can then be described just by one quantity, for instance
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by the angle ϕ between the vertical projection of the vector r onto the x1x2-plane

and the positive part of axis x1 (0 6 ϕ < π). The position of each heater Z can then

be defined by 6 parameters

(2.1) Z = (s1, s2, s3, u1, u2, ϕ).

Since we consider heating by M heaters, we have 6M parameters that describe the

positions of all heaters.

2.2. Mould representation. The outer mould surface P is described by elemen-

tary surfaces pj, where 1 6 j 6 N , such that P =
⋃
pj and int pi ∩ int pj = ∅ for

i 6= j, 1 6 i, j 6 N . Each elementary surface pj can be determined by the following

parameters:

(i) Its centroid Tj = [tj1, t
j
2, t

j
3].

(ii) The unit vector of the outer normal vj = (vj1, v
j
2, v

j
3) at the point Tj (we can

suppose vj faces “upwards” and therefore it is defined through the first two

components vj1 and vj2).

(iii) The area cj of the elementary surface.

Each elementary surface pj can then be defined by 6 parameters

(2.2) pj = (tj1, t
j
2, t

j
3, v

j
1, v

j
2, cj).

2.3. Calculation of the heat radiation intensity on an elementary sur-

face. To be able to calculate the heat radiation intensity incident on an elementary

surface we need to know how the heat radiation intensity is distributed in the heater

neighbourhood. The heaters manufacturer did not provide this distribution of the

heat radiation in space and we had to measure it experimentally. First, we describe

the experimental measuring of the heat radiation intensity in the heater neighbour-

hood for the heater in the “basic position”. Next, we show a suitable transformation

of the measured values to determine the heat radiation intensity for the heater in

a general position.

2.3.1. Experimental measurement of the heat radiation intensity. We

set up the experimental measurement of the heat radiation intensity for the loca-

tion of the heater Z = (0, 0, 0, 0, 0, 0) in accordance with relation (2.1). It means

that the centre S of the heater is at the origin of the Cartesian coordinate system

(O, x1, x2, x3), the unit radiation vector has coordinates u = (0, 0,−1) and the vector

of the heater axis has coordinates r = (1, 0, 0). Only points under the heater are

relevant. The heat radiation is symmetric with respect to the plane going through

axis o and vector u located in the centre of the heater S (see the left part of Fig. 2)
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and the plane going through the centre S and perpendicular to the heater axis o.

Therefore, it is sufficient to carry out the experimental measurement of the heat

radiation in one octant (determined by the two planes and the ground plane). The

experimental measurements were carried out at grid points of a regular rectangu-

lar mesh in several horizontal planes parallel to the ground plane by means of the

robot KUKA 8.2 equipped with a sensor (see Fig. 3). The specific arrangement of

the experimental measurements of the heat radiation intensity around the infrared

heater is described in detail in [8]. The subsequent processing utilizes the linear

interpolation of a function of five variables to interpolate the measured values (for

details see [2]).

Figure 3. Experimental measurement of the heat radiation intensity using the robot
KUKA 8.2.

2.3.2. General case of a heater and an elementary surface locations. Now,

we focus on a case when a heater and an elementary mould surface pj are in general

positions. We can assume that the heat radiation intensity on the whole elementary

surface pj is the same as at its centroid Tj since the elementary surface is small. The

heat radiation intensity at Tj depends on the position of this point (determined by the

first three parameters of the elementary surface pj given by (2.2)), on the direction

of the outer normal vector vj at the point Tj (determined by the fourth and fifth

parameters of the elementary surface pj given by (2.2)) and on the location of the

heater. For a heater in a general position, we briefly describe the transformation

of the previous Cartesian coordinate system (O, e1, e2, e3) into a positively oriented

Cartesian system (S, r, n,−u), where S is the centre of the heater, r is the vector

of the heater axis, and u is the direction vector of the heat radiation. The vector n
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is determined by the vector product of the vectors −u and r (i.e. n = (−u) × r,

for more details see [3], [13]). The vectors r, u, and n are normalized to have the

unit length. Then we can define an orthogonal transformation matrix A. If S is

the triple of parameters representing (in (O, e1, e2, e3)) the centre of the heater that

determines the coordinate system (S, r, n,−u), then Tj and vj are transformed as

(T ′

j)
T = A

T(Tj − S)T and (v′j)
T = A

TvTj ; A =




r1 n1 −u1

r2 n2 −u2

r3 n3 −u3



 ,

where T ′

j and v′j are the coordinates in (S, r, n,−u). In this way, we transform the

general case of the heater location to the experimentally measured case described at

the beginning of this subsection.

2.4. Total heat radiation intensity and uniformity of its distribution.

Now, we describe the numerical computation of the total heat radiation intensity on

the mould surface. Let us suppose that all the heaters are located in fixed positions.

We denote by Lj the set of all heaters radiating onto the jth elementary surface pj

(1 6 j 6 N). By Ijl we denote the heat radiation intensity from the lth heater

incident on the pj elementary surface. Then the total radiation intensity Ij on the

elementary surface pj is given by (see [4])

(2.3) Ij =
∑

l∈Lj

Ijl.

The producer of artificial leather recommends a constant value of the heat radiation

intensity on the mould. Let us denote this constant value by Irec. This specific

value is hardly attainable with a limited number of heaters. The goal is to achieve

approximately uniform intensity close to the recommended value on the whole outer

mould surface. We can define functions F and F̃ that quantify the deviation of the

intensity from the recommended value Irec by

(2.4) F =
1

W

N∑

j=1

|Ij − Irec|cj , F̃ =

Ã

1

W

N∑

j=1

(Ij − Irec)2cj ,

whereW =
N∑
j=1

cj . Let us recall that cj denotes the area of the elementary surface pj .

The arguments of the deviation functions are the 6M parameters describing the

positions of all heaters in compliance with (2.1). We need to find such locations of

the heaters that minimize the value of the deviation function F (alternatively the

value of the deviation function F̃ ).
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3. Optimization of the locations of the heaters

When we use optimization terminology, the functions F and F̃ defined in (2.4)

can be called cost functions and we need to minimize them. These functions may

have many local minima. This means that gradient methods are in this case not

appropriate. If we applied them, we would find with high probability only a local

minimum. Instead, we use MDEA to identify the global minimum of the correspond-

ing cost function. We use the notation of parameters usual in the area of differential

evolution algorithms (see e.g. [11], [14]). The position of each heater is defined in

accordance with the relation (2.1) by 6 parameters. Therefore, 6M parameters are

necessary to define the positions of all M heaters. One individual in MDEA repre-

sents one possible configuration of all M heaters. In the algorithm we successively

construct generations of many individuals. Each generation includes NP individuals,

where each individual is a potential solution of the problem. We seek an individual

ymin ∈ C satisfying the condition

(3.1) F (ymin) = min{F (y); y ∈ C},

where C ⊂ E6M is a search space of all possible heaters positions. Each element of C

is a set of 6M admissible parameters and defines one configuration of the heaters

above the mould. In practice, we may not be able to find the individual ymin defined

by (3.1). Nonetheless, we are able to determine an optimized solution yopt.

3.1. Modified differential evolution algorithm (MDEA). In this part we

briefly describe the operation of MDEA.

First, we define a specimen SPEC which determines a type and value ranges of

each parameter of the individual y ∈ C. Then SPEC can be expressed in the form

(3.2) SPEC = {{type1, Lo1, Hg1}; {type2, Lo2, Hg2}; . . . ; {type6, Lo6, Hg6}}.

Here typem specifies the type of the mth parameter in relation (2.1) (in this case

typem is a real parameter), the values Lom and Hgm determine its lower and upper

limit, where 1 6 m 6 6. The specimen determines the admissible parameter values

for one heater. It is used for position limitations of all M heaters in each individual.

In this way the relation (3.2) determines the domain of the cost function F or F̃

defined by relation (2.4). One suitable way of forming the initial generation of

individuals is

(3.3) yi,j := Loj + rand(0, 1) · (Hgj − Loj),
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where index j determines the jth component of the ith individual (1 6 i 6 NP ,

1 6 j 6 6M). The function rand(0, 1) randomly generates a value from a closed

interval 〈0, 1〉.

We create a series of generations G(k), where k denotes the generation number.

Each generation consists of individuals y and we look for an individual with the

smallest value F (y). Four individuals of the current generation participate in the

creation of an individual of the next generation. The generated individuals are saved

in a matrix B ∈ R
NP×(6M+1). Each row of this matrix represents one individual y

and its evaluation F (y).

During the creation of individuals it is necessary to ensure that the components

of each generated individual are in conformity with relation (3.2), and to eliminate

possible collisions between heaters and between heaters and the mould. Only such

individuals are formed when no two heaters are in a collision. Specifically, each two

heaters have a defined minimal distance and each heater has a minimal distance from

the upper part of the mould. Now, we briefly describe the MDEA algorithm.

Input: Generation size NP , crossover probability CR, mutation factor f , the num-

ber of calculated generations NG, lower limits Lom and upper limits Hgm in rela-

tion (3.2), 1 6 m 6 6. The dimension of individuals is 6M (where M is the number

of heaters).

Computation:

1. Create the initial generation (k = 0) of NP individuals y
k
i , 1 6 i 6 NP (e.g. by

use of relation (3.3)).

2. a) Evaluate all the individuals yki of the kth generation (calculate F (yki ) for

each individual yki ).

b) Store the individuals yki and their evaluations F (yki ) in the matrix B.

3. while k 6 NG

a) for i := 1 step 1 to NP do

collision := true

repeat

(i) randomly select index mi ∈ {1, 2, . . . , 6M},

(ii) randomly select indices ̺1, ̺2, ̺3 ∈ {1, 2, . . . , NP },

where ̺t 6= i for 1 6 t 6 3 and

̺1 6= ̺2, ̺1 6= ̺3, ̺2 6= ̺3;

(iii) for j := 1 step 1 to 6M do

if (rand(0, 1) 6 CR or j = mi) then ytriali,j := yk̺3,j
+f(yk̺1,j

−yk̺2,j
)

else ytriali,j := yki,j
end if

end for (j)
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(iv) Testing of possible collisions between the heaters determined by ytriali .

if ytriali does not include collisions and ytriali satisfies (3.2) then

collision := false

until collision = false

end repeat

(v) if F (ytriali ) 6 F (yki ) then yk+1
i := ytriali

else yk+1
i := yki

end if

end for (i),

b) Store individuals yk+1
i and their evaluations F (yk+1

i ) (1 6 i 6 NP ) of the

new (k + 1)st generation in the matrix B, k := k + 1.

c) Find index n which satisfies the condition F (ykn) > F (yki ), 1 6 i 6 NP ,

ykn := yrand, where yrand satisfies (3.2)

end while (k).

Output: The row of matrix B that contains the corresponding value min{F (yki ) ;

yki ∈ B} represents the best found individual yopt.

Note: Unlike the while condition cycle, the repeat until condition cycle is always

executed at least once, since the controlling condition is checked at the end of the

cycle.

The notation yki,j means the jth component of the individual y
k
i in the kth gen-

eration. The notation yrand means a randomly generated individual from the search

space C. The individual yopt is the final optimized solution and includes information

about the location of each heater in the form (2.1).

The MDEA differs from the original algorithm standardly named DE/rand/1/bin

in the supplemented part 3.c) of the algorithm. After creating a new generation of

individuals, the individual with the highest value of the cost function is replaced

by a randomly generated individual. The asymptotic convergence of the algorithm

MDEA is ensured by this adjustment. The asymptotic convergence is proved in the

next subsection.

In general, differential evolution algorithms are characterized by higher compu-

tational demands and slower convergence. The parallel programming tools can be

applied to accelerate the calculation process (see [10]).

3.2. Convergence of the modified differential evolution algorithm

(MDEA). Generally, the convergence of a differential evolution algorithm DE/rand/

1/bin is not guaranteed. In this subsection we focus on the asymptotic convergence

of MDEA. The function F (and similarly the function F̃ ) defined by relations (2.4)
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is a continuous function of 6M variables. These functions may have many local

minima in the search space C. We introduce the optimal solution set

C∗ = {ymin ∈ C; F (ymin) = min{F (y) ; y ∈ C}}.

That is, ymin represents the global minimum of the cost function F . Further, we

consider an expanded optimal solution set

C∗

ε = {y ∈ C ; |F (ymin)− F (y)| < ε},

where ε is a small positive number. We suppose that µ(C∗

ε ) > 0 for each ε, where µ

denotes the Lebesgue measure. In the following definition we introduce the term

convergence in probability (see [5]).

Definition. Let {G(k), k = 0, 1, 2, . . .} be the generation sequence created by

MDEA to solve the optimization problem (3.1). We say that the MDEA converges

to the expanded optimal solution set C∗

ε in probability if

(3.4) lim
k→∞

p{G(k) ∩ C∗

ε 6= ∅} = 1,

where p denotes the probability of an event.

Now let us consider using MDEA to solve the optimization problem (3.1). Then

the following theorem holds.

Theorem 3.1. MDEA converges in probability to the expanded optimal solution

set C∗

ε , i.e., the relation (3.4) holds.

P r o o f. Recall that the individual yrand ∈ C is randomly generated in each gen-

eration G(k) of MDEA. We understand the probability in geometric sense and put

p{yrand ∈ C∗

ε } =
µ(C∗

ε )

µ(C)
= α,

where 0 < α < 1. The relation p{yrand /∈ C∗

ε } = 1−α holds for each generation G(k).

Thus the inequality p{G(k) ∩ C∗

ε = ∅} 6 1 − α is true for each generation G(k).

Therefore, the upper estimate of the probability that the first k generations do not

include an individual y ∈ C∗

ε is given by the relation

k∏

i=1

p{G(i) ∩C∗

ε = ∅} 6 (1− α)k.
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Based on the construction of individuals in generation G(k) in the algorithm MDEA

described in Subsection 3.1 (the best individual in generation G(k) has the same or

better evaluation than the best individual from all previous generations) it is true

that

lim
k→∞

p{G(k) ∩ C∗

ε 6= ∅} = 1− lim
k→∞

p{G(k) ∩ C∗

ε = ∅} > 1− lim
k→∞

(1− α)k = 1,

which completes the proof. �

Convergence in probability of the generalized problem of the modified differential

algorithm DE/rand/1/binwith random choice of more individuals in each generation

is proved in article [6].

4. Practical example

Now, we describe a practical example of the heating of an aluminium mould.

The dimensions of the mould are 0.8m × 0.4m × 0.15m (see Fig. 4), the number

of elementary surfaces N = 2064. The heat radiation intensity recommended by

the producer of artificial leather is Irec = 47 kW/m2. We use 16 infrared heaters

(M = 16) of the same type (producer Philips, heating capacity 1600W, length

15 cm, width 4 cm). For the specification of values defined in relation (3.2), we need

to determine the position of the mould in the Cartesian coordinate system. The front

left mould corner lies at the origin of the coordinate system, the longer front lower

edge of the mould lies in the positive half-axis x and the shorter lower edge lies in

the positive half-axis y. Then the upper and lower limits of individual components

in relation (3.2) are: Lo1 = −0.3m, Hg1 = 1.1m; Lo2 = −0.3m, Hg2 = 0.7m;

Lo3 = 0.05m, Hg3 = 0.65m; Lo4 = −0.9m, Hg4 = 0.9m; Lo5 = −0.9m, Hg5 =

0.9m; Lo6 = 0.0, Hg6 = π. In the first step we calculate the value F (y1), where the

initial individual y1 corresponds to the locations of the heaters as in the left part

of Fig. 4. The centres of the heaters lie in the plane parallel to the x1x2-plane at

a distance of 10 cm from the centroid Tj of the elementary surface pj with the highest

value tj3 (1 6 j 6 N). In the initial position, all the heaters have r = (1, 0, 0) and

u = (0, 0,−1). It means that all the heaters radiate downwards and are parallel to

the axis x1. Then the cost function value is F (y1) = 20.74.

Subsequently, we use MDEA described in Subsection 3.1 to optimize the locations

of the heaters. The parameters of the algorithm are: generation size NP = 192,

crossover probability CR = 0.60, mutation factor f = 0.98 and the number of gen-

erations NG = 4000. Fig. 4 shows a graphical representation of the heat radiation

on the mould surface (where the levels of radiation intensity in kW/m2 correspond
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to different colour shades) and the locations of the heaters. The right part shows

the optimized locations of the heaters (individual yopt, F (yopt) = 2.02) after 4000

generations of MDEA.

Figure 4. Heat radiation intensity in kW/m2 on the mould surface and the locations of the
heaters, F (y1) = 20.74 and F (yopt) = 2.02.

Furthermore, to run the optimization from a different starting point, we took ỹ1,

an initial individual corresponding to the locations of the heaters recommended as

optimal by manufacturing technicians. The corresponding cost function value is

F (ỹ1) = 11.2204. We obtained again the same optimized individual ỹopt with the

value F (ỹopt) = 2.02 after 4000 generations of MDEA. The dependence of the devi-

ation F (ỹopt) on the number of generations is shown in Fig. 5.

Figure 5. Dependence of F (ỹopt) on the number of generations.

Another possibility how to decrease the value F (ỹopt) is to increase the number

of heaters. The heaters would be in general farther from the mould and we would

obtain a more uniform heat radiation intensity on the mould surface. But this would

lead to higher energy consumption which is not feasible for the manufacturer.
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It is possible to calculate the time dependent temperature field (during the heating

of the mould) on the inner surface of the mould (where artificial leather is produced)

for the found optimized locations of the heaters. The partial differential parabolic

equation of the heat conduction in the mould with an initial condition and boundary

conditions including the own heat radiation of the mould determined by the Stefan-

Boltzmann law by the finite element method using the ANSYS software package is

presented in [7].

5. Conclusions

Based on numerical calculations, we get an optimized solution for the locations

of the heaters over the mould. The results obtained by MDEA are better than

the results produced by classic differential or genetic algorithms. The quality of

the solution can be measured by evaluating the function F for the given optimized

solution.

The locations of the heaters based on the experience of qualified technicians pro-

duce significantly worse results compared to the numerical computation. In addition,

the manual approach is much more time consuming (approximately two to three

weeks depending on the mould size and the number of heaters). Furthermore, the

calculated optimization of the locations of the heaters is more accurate than the

optimization based on experience. Besides, the described optimization process is

economically feasible for the producer and induces virtually no additional costs.
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