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Abstract. The notion of cumulative past inaccuracy (CPI) measure has recently been
proposed in the literature as a generalization of cumulative past entropy (CPE) in univariate
as well as bivariate setup. In this paper, we introduce the notion of CPI of order α and study
the proposed measure for conditionally specified models of two components failed at different
time instants, called generalized conditional CPI (GCCPI). Several properties, including the
effect of monotone transformation and bounds of GCCPI are discussed. Furthermore, we
characterize some bivariate distributions under the assumption of conditional proportional
reversed hazard rate model. Finally, the role of GCCPI in reliability modeling has also been
investigated for a real-life problem.
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1. Introduction

Information theory, a unifying theory with profound intersections with probabil-

ity, statistics, physics, economics, statistical mechanics, computer science, and many

other fields, continues to set the stage for the development of communications, data

storage and processing, and other information technologies. Information theory has

its roots in Shannon’s [41] pioneering work on communication which provides a math-

ematical definition of information dubbed as Shannon entropy. Since its inception,

numerous entropy and information indices have been developed in the literature

in both the parametric and nonparametric points of view and used extensively in

The financial support (Ref. No. 2/48(4)/2015/NBHM(R.P.)/R&D II/14130) rendered by
the NBHM, Department of Atomic Energy, Government of India is acknowledged with
thanks by C.Kundu for carrying out this research work.

DOI: 10.21136/AM.2018.0170-17 167

http://dx.doi.org/10.21136/AM.2018.0170-17


various disciplines. One important development in this direction is Kerridge [21]

inaccuracy measure which can be thought of as a non-parametric generalization of

Shannon entropy. It is worth mentioning that the continuous version of the inaccu-

racy is closely related to Fraser information [12] which was extensively used by Kent

[19], [20], Ebrahimi et al. [11] and several others in terms of the “information gain”

about a parameter.

Let X and Y be two absolutely continuous nonnegative random variables with

cumulative distribution functions (cdf ’s) F , G and probability distribution functions

(pdf ’s) f , g, respectively. If F is the actual distribution corresponding to the obser-

vations and G is the distribution assigned by the experimenter, then the inaccuracy

measure of X and Y (also known as cross entropy of Y on X or relative distance

between X and Y ) is given by

(1.1) KX,Y = −

∫ ∞

0

f(x) ln g(x) dx,

which has wide range of applications in statistical inference, estimation and coding

theory. In statistical inference, (1.1) is enormously used to measure the deviation

of a distribution of interest from a reference distribution. The inaccuracy mea-

sure/cross entropy is proportional to the Kullback-Leibler divergence [23] and it is

useful in comparing different probabilistic models when we do not know the actual

probability distribution that generated some data. It allows the experimenter to as-

sign a distribution which is an approximation to the true distribution. The assigned

distribution will be more accurate to the true distribution as much as closer (1.1)

will be to the Shannon entropy. Thus, the difference between the inaccuracy and the

entropy is a measure of how accurate a model is.

There have been various attempts for the parametric generalizations of these in-

formation measures which make them sensitive to different shapes of probability

distributions. It was Renyi [37] who embodied the idea of parametric generalization

by introducing entropy of order α, called Renyi’s entropy, which has a paramount

importance in different areas such as physics, electronics, engineering, ecology, and

statistics as a measure of uncertainty and diversity. In this direction, Nath [30]

defined inaccuracy measure of order α as

(1.2) Kα
X,Y =

1

1− α
ln

∫ ∞

0

f(x)(g(x))α−1 dx,

where 0 < α 6= 1. As α → 1, (1.2) reduces to inaccuracy measure (1.1). Due to

presence of an extra parameter, the proposed measure is more flexible than (1.1)

and with help of this parameter α, one can make it more or less sensitive to the

shape of probability distribution.
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It is well known that the distribution function is more regular than the density

function. Moreover, in practice what is of interest and/or measurable is the distribu-

tion function. To this aim, many researchers have shown a great interest to discover

a new/novel measure of information based on the probability distribution function

of a random variable rather than its density function. Rao et al. [36] introduced an

alternating measure of uncertainty, called cumulative residual entropy (CRE), which

is mathematically more rigorous and also overcomes several drawbacks of Shannon

entropy. It is reasonable to presume that in many realistic situations uncertainty is

not necessarily related to the future but can also refer to the past. Based on this

idea Di Crescenzo and Longobardi [8] have studied a dual concept of CRE called

cumulative past entropy (CPE) defined as

(1.3) ε(X) = −

∫ ∞

0

F (x) lnF (x) dx.

For more properties, applications and recent developments of CRE and CPE, one

may refer to Wang et al. [45], Cahill et al. [6], Di Crescenzo and Longobardi [8]; [9],

Navarro et al. [31], Sunoj and Linu [43], Shi et al. [42], Park and Kim [33], Kundu

and Nanda [27], Psarrakos and Toomaj [35], and Toomaj et al. [44].

Motivated by the wide applicability of CPE, Kundu et al. [24] introduced the

concept of cumulative past inaccuracy (CPI) which is defined as

(1.4) KX,Y = −

∫ ∞

0

F (x) lnG(x) dx.

The basic idea is to replace the density function by the distribution function in

Kerridge inaccuracy measure defined in (1.1). Thus, (1.4) can be viewed as a suitable

extension of the Kerridge inaccuracy measure to the cumulative distribution function.

In analogy with cumulative residual inaccuracy (cf. Kundu et al., [24]), CPI can also

be considered as a measure of inaccuracy for past lifetimes. We also recall that the

cumulative Kullback-Leibler (CKL) information (cf. Park et al., [34]) of X and Y is

defined as

(1.5) IX,Y =

∫ ∞

0

F (x) ln
F (x)

G(x)
dx+ E(X)− E(Y ),

where E(X) and E(Y ) are the expected values of X and Y , respectively. Note that

IX,Y > 0 and the equality holds if and only if F (x) = G(x) almost everywhere.

For more details about CKL information, we refer to Di Crescenzo and Longob-

ardi [10]. The measure given in (1.5) for past lifetimes can be considered as an

analog of the cumulative residual Kullback-Leibler (CRKL) divergence (cf. Barat-

pour and Rad [4]). The best model is determined by minimizing the CRKL/CKL
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between the true distribution and the approximate model. In view of (1.3) and (1.4),

(1.5) can alternatively be rewritten as

(1.6) IX,Y = KX,Y − ε(X) + E(X)− E(Y ),

where ε(X) is the CPE of the true distribution. Thus, minimizing the cumulative

Kullback-Leibler information to select the best model is equivalent to minimizing

the CPI. If G(x) = F (x), the CPI is said to be at a minimum and KX,Y = ε(X).

Indeed, closer the value of CPI is to the CPE, the better Y is an approximation

of X . CPI can therefore be used to compare approximate models. From two models,

the more accurate model will be the one with the lower CPI. Consider the following

example to manifest the important role of CPI for measuring quality in models. For

a detailed discussion on the role of inaccuracy measure (cross entropy) for comparing

models one may refer to Burnham and Anderson [5] and Choe [7].

E x am p l e 1.1. Let X be the true distribution that generated some data

and Y , Z be two power distributions assigned by the experimenter in order to

approximate X . Write the pdf ’s of X , Y and Z as f(x) = 1, g(x) = 2x, and

h(x) = 3x2 for all x ∈ (0, 1), respectively. Then after simple calculation one can

see that the entropy of X is zero whereas the inaccuracy measures KX,Y = 0.3068

and KX,Z = 0.9014. Thus, Y has a lower inaccuracy measure on X . Therefore,

Y is better than Z at approximating the true distribution X . Now, we calculate

ε(X) = 0.25, ε(Y ) = 0.22, ε(Z) = 0.1875, KX,Y = 0.5, and KX,Z = 0.75. Thus,

the CPI between X and Y is less than the CPI between X and Z. Therefore, on

using the notion of CPI it is also verified that the distribution of Y gives better

approximation to X than that of Z.

Next, we recall a connection between the CPI and expected inactivity time (EIT),

a well-known reliability measure having application in many areas such as reliability

theory, survival analysis and actuarial studies. The EIT of a random variable X is

defined as mX(t) = E(t − X | X < t). In the following proposition we show how

CPI is related to the EIT.

Proposition 1.1. LetX and Y be two absolutely continuous nonnegative random

variables with distribution functions F (·) and G(·), respectively, and let mX(t) be

the EIT corresponding to the random variable X . If KX,Y <∞, then

KX,Y = E
[mX(Y )F (Y )

G(Y )

]
.
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For further applications and perspectives of CPI along the same line, one may

refer to Ghosh and Kundu [13].

In analogy with (1.2), the notion of CPI of order α (CPI(α)) is defined as

(1.7) K
α

X,Y =
1

1− α
ln

∫ ∞

0

F (x)(G(x))α−1 dx, 0 < α 6= 1.

Note that the well known failure entropy of order α (cf. Abbasnejad [1]), also de-

nominated as CPE of order α, can be obtained from (1.7) by taking G(x) = F (x).

Unlike the univariate case, the study of information theoretic measures based

on multivariate lifetimes have attracted increasing attention in the recent years. In

many practical problems, multivariate lifetime data arise in a variety of observational

and experimental studies such as medicine, biology, public health, epidemiology,

engineering, economic and demography. In these situations it is important to consider

different multivariate models that could be used to model such multivariate lifetime

data. For example, the analysis of survival times for twins, siblings or other related

individuals. For an encyclopedia on various multivariate models, their properties

and applications, one may refer to the book by Kotz et al. [22]. Let X = (X1, X2) be

a bivariate random vector with support (0, l)× (0, l) for l > 0. Assume that X1 and

X2 describe the failure times of two components. Consider the conditional random

variables X̂i = (Xi | X1 < t1, X2 < t2) and X̂
∗
i|j = (Xi | Xi < ti, Xj = tj) for

i = 1, 2, j = 3 − i, where t1 and t2 may not necessarily be identical. Note that in

view of the joint past lifetime [(X1, X2) | X1 < t1, X2 < t2] when both components

failed before inspection, X̂1 and X̂2 are realized as marginal past lifetimes while X̂
∗
i|j ,

i = 1, 2, j = 3 − i as conditional past lifetimes. Here X̂i represents the conditional

distributions of Xi subject to the condition that failure of the first component had

occurred in (0, t1) and the second failed before t2. Recently, Ghosh and Kundu [13]

and Kundu and Kundu [26] have considered the bivariate extension of (1.4) and

CPE of order α, respectively, for marginal and conditional past lifetimes. Motivated

by this, in this article we extend the concept of CPI(α) in bivariate setup with

focus on marginal and conditional past lifetimes and study their properties useful

in reliability modeling. It is worthwhile to mention that the concepts in past time

are more appropriate than those truncated from below when the observations are

predominantly from left tail. For some recent work on conditionally specified models,

we refer to Navarro et al. [32], Ahmadi et al. [2], Ghosh and Kundu [14], [13], [15],

Kayal and Sunoj [18], Kundu and Kundu [25], [26], and the references therein.

The outline of this paper is as follows: In Section 2, we provide one parametric

generalization of conditional CPI for the marginal past lifetimes X̂i, i = 1, 2, called

generalized conditional CPI (GCCPI). We investigate several properties of the new

notion, such as the effect of monotone transformations, and obtain some bounds in
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context of usual stochastic order. In Section 3, we provide some characterization

results based on GCCPI under the assumption of conditional proportional reversed

hazard rate (CPRHR) model. Note that the results corresponding to the conditional

past lifetimes X̂∗
i|j , i = 1, 2, j = 3−i are analogous to that of Section 2 and hence not

presented here. Finally, in Section 4, we conclude the present study with a real-life

application in reliability modeling.

2. Definition and properties of GCCPI for (Xi | Xj < tj)

Let (X1, X2), (Y1, Y2), and (Z1, Z2) be three absolutely continuous bivariate

random vectors with common support (0, l) × (0, l) for l > 0. Note that l can

be equal to ∞. The joint pdf and cdf of (X1, X2) are denoted by f and F and

those of (Y1, Y2) by g and G and of (Z1, Z2) by h and H , respectively. Consider

the marginal past lifetimes (Xi | X1 < t1, X2 < t2), (Yi | Y1 < t1, Y2 < t2)

and (Zi | Z1 < t1, Z2 < t2) for i = 1, 2. For simplicity we denote them by

X̂i, Ŷi and Ẑi, i = 1, 2, respectively. We denote the pdf ’s and cdf ’s of these

random variables by fX̂i
, FX̂i

; gŶi
, GŶi

and hẐi
, HẐi

, respectively. Now, for

i = 1, 2, we define fX̂1

(x1) = f1(x1, t2)/F (t1, t2), fX̂2

(x2) = f2(t1, x2)/F (t1, t2),

FX̂1

= F (x1, t2)/F (t1, t2), and FX̂2

= F (t1, x2)/F (t1, t2), where f1(x1, t2) =

(∂/∂x1)F (x1, t2), f2(t1, x2) = (∂/∂x2)F (t1, x2), 0 6 x1 6 t1, 0 6 x2 6 t2, with

a similar definition for Ŷi and Ẑi. Then the CPI for X̂i and Ŷi, called conditional

CPI (CCPI), are defined as

(2.1) CKX1,Y1
(t1, t2) = −

∫ t1

0

F (x1, t2)

F (t1, t2)
ln
(G(x1, t2)
G(t1, t2)

)
dx1

and

(2.2) CKX2,Y2
(t1, t2) = −

∫ t2

0

F (t1, x2)

F (t1, t2)
ln
(G(t1, x2)
G(t1, t2)

)
dx2,

where t1, t2 > 0. Several aspects of (2.1)–(2.2) have recently been discussed in

Ghosh and Kundu [13]. Along a similar line, CPI(α) for X̂i and Ŷi, i = 1, 2, called

generalized conditional CPI (GCCPI) measure, can be defined as

(2.3) CK
α

X1,Y1
(t1, t2) =

1

1− α
ln

∫ t1

0

F (x1, t2)

F (t1, t2)

(G(x1, t2)
G(t1, t2)

)α−1

dx1

and

(2.4) CK
α

X2,Y2
(t1, t2) =

1

1− α
ln

∫ t2

0

F (t1, x2)

F (t1, t2)

(G(t1, x2)
G(t1, t2)

)α−1

dx2,
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where t1, t2 > 0 and 0 < α 6= 1. Note that (2.3) and (2.4) can be thought of as

a generalization of conditional CPE of order α (CCPE(α)) studied by Kundu and

Kundu [26] which are given below. The CCPE(α) of the bivariate random vector

X = (X1, X2), takes the form

(2.5) ε∗1,α(X ; t1, t2) =
1

1− α
ln

∫ t1

0

(F (x1, t2)
F (t1, t2)

)α
dx1

and

(2.6) ε∗2,α(X ; t1, t2) =
1

1− α
ln

∫ t2

0

(F (t1, x2)
F (t1, t2)

)α
dx2,

where t1, t2 > 0 and 0 < α 6= 1. Now we consider the following example.

E x am p l e 2.1. Let X = (X1, X2) follow the standard bivariate logistic distri-

bution (cf. Gumbel [16]) with joint cdf

F (t1, t2) = (1 + e−t1 + e−t2)−1, t1, t2 > 0,

and let Y = (Y1, Y2) follow the bivariate inverse exponential distribution

G(t1, t2) = exp
(
−

1

t1
−

1

t2
−

θ

t1t2

)
, 0 6 θ 6 1, t1, t2 > 0.

Then Figure 1 gives CK
α

Xi,Yi
(t1, t2) for α = 1.5 and θ = 0.75. It is to be mentioned

here that while plotting curves, the substitutions t1 = − lnx and t2 = − ln y have

been used so that CK
α

X1,Y1
(t1, t2) = CK

α

1 (x, y) and CK
α

X2,Y2
(t1, t2) = CK

α

2 (x, y),

(say).
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(i) Plot of CK
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1 (x, y).
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2 (x, y).

Figure 1. Graphical representation of CK
α
1 (x, y) and CK

α
2 (x, y) (Example 2.1).
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In order to pinpoint a probabilistic meaning of GCCPI, let us introduce the fol-

lowing functions for 0 6 xi < ti, i = 1, 2,

η
(2)
1 (x1, t1; t2) =

∫ t1

x1

(G(v1, t2))
(α−1) dv1

and

η
(2)
2 (x2, t2; t1) =

∫ t2

x2

(G(t1, v2))
(α−1) dv2.

It is worth mentioning that (∂/∂t1)η
(2)
1 (x1, t1; t2) = (G(t1, t2))

(α−1). Thus, the sig-

nificance of η
(2)
1 (x1, t1; t2) is that its partial derivative is closely related to the distri-

bution function of Y . The interpretation for η
(2)
2 (x2, t2; t1) is similar. The following

theorem provides a relation between GCCPI and η
(2)
i (xi, ti; tj), i = 1, 2, j = 3 − i,

which also generalizes Theorem 3.1 of Kundu and Kundu [26].

Theorem 2.1. Let X = (X1, X2) and Y = (Y1, Y2) be two absolutely continu-

ous nonnegative bivariate random variables with joint cdf ’s F (t1, t2) and G(t1, t2),

respectively. Then, for all t1, t2 > 0 and i = 1, 2, j = 3− i,

E[η
(2)
i (Xi, ti; tj) | X1 < t1, X2 < t2] = (G(t1, t2))

(α−1)e(1−α)CK
α

Xi,Yi
(t1,t2),

where 0 < α 6= 1.

P r o o f. Using Fubini’s theorem for i = 1 and t1, t2 > 0, we have

E[η
(2)
1 (X1, t1; t2) | X1 < t1, X2 < t2]

=

∫ t1

0

(∫ t1

x1

(G(v1, t2))
(α−1) dv1

)
f1(x1, t2)

F (t1, t2)
dx1

=

∫ t1

0

(∫ v1

0

f1(x1, t2)

F (t1, t2)
dx1

)
(G(v1, t2))

(α−1) dv1

=

∫ t1

0

F (v1, t2)

F (t1, t2)

(G(v1, t2)
G(t1, t2)

)(α−1)

(G(t1, t2))
(α−1) dx1,

which gives the stated result for i = 1. The proof for i = 2 follows in the same

line. �

Let us now define bivariate reversed hazard rate (BRHR) and bivariate expected

inactivity time (BEIT). For more properties of these two functions one may refer to

Roy [38] and Nair and Asha [29], respectively.
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Definition 2.1. For a random vector X = (X1, X2) with distribution function

F (t1, t2),

(i) the BRHR is defined as a vector φX(t1, t2) = (φX1 (t1, t2), φ
X
2 (t1, t2)), where

φXi (t1, t2) = (∂/∂ti) lnF (t1, t2), i = 1, 2 are the components of BRHR;

(ii) the BEIT, is defined as a vector mX(t1, t2) = (mX
1 (t1, t2),m

X
2 (t1, t2)), where

mX
i (t1, t2) = E(ti −Xi | X1 < t1, X2 < t2), i = 1, 2, ti > 0.

A fundamental relationship between BRHR and BEIT is

(2.7) φX1 (t1, t2)m
X
1 (t1, t2) = 1−

∂

∂t1
mX

1 (t1, t2).

Hereafter, we study some properties and obtain few bounds of GCCPI in terms

of CCPE(α) and BEIT. It is worthwhile to mention that for most of the well-known

bivariate models, the proposed measures have no simple closed form to perform the

analytic treatment and this necessitates to construct such bounds to get some idea

of the corresponding measures very easily. Also, these bounds are quite useful in

studying comparative behaviour of the proposed measures in reliability theory and

for applications in other disciplines.

Theorem 2.2. Let X = (X1, X2) and Y = (Y1, Y2) be two nonnegative bivariate

random variables. Then for 0 < α 6= 1, we have

CK
α

Xi,Yi
(t1, t2) >

1

1− α
ln[mX

i (t1, t2)],

where mX
i (t1, t2), i = 1, 2, are the components of BEIT of X .

P r o o f. It is known that for i = 1, G(x1, t2) is nondecreasing in x1 for fixed t2.

As a consequence, for x1 < t1 we have

(G(x1, t2)
G(t1, t2)

)α−1
{
> 1

6 1
according as

{
0 < α < 1,

α > 1.

Hence the stated result, for i = 1, follows from (2.3). The proof for i = 2 is analogous

and hence omitted. �

We give the following example to support the above theorem.
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E x am p l e 2.2. Let X and Y be two nonnegative bivariate random variables

with cdf ’s

F (t1, t2) = t1t2, 0 < t1, t2 < 1

and

G(t1, t2) =
t1t2(t1 + t2)

2
, 0 < t1, t2 < 1,

respectively. Then Fig. 2 shows that [CK
α

Xi,Yi
(t1, t2)− 1/(1− α)

−1
ln(mX

i (t1, t2))] =

ξαi (t1, t2), (say), are always positive for α = 0.75 and i = 1, 2, satisfying Theorem 2.2.

0
0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

2

4

0
0.2

0.4

0.6

0.8t1

t2

(i) Plot of ξα1 (t1, t2).
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(ii) Plot of ξα2 (t1, t2).

Figure 2. Graphical representation of ξα1 and ξ
α
2 (Example 2.2).

Recall that for two univariate nonnegative random variables X and Y with cdf ’s

F and G, respectively, X is said to be less than Y in the convex order, written as

X 6cx Y , if for all convex functions φ : R → R,

(2.8) E[φ(X)] 6 E[φ(Y )]

provided the expectations exist (see Shaked and Shanthikumar [40]). One can see

that (2.8) is equivalent to

∫ x

0

F (u) du 6

∫ x

0

G(u) du ∀x.

Theorem 2.3. Let X = (X1, X2) and Y = (Y1, Y2) be two nonnegative bivariate

random variables. For all t1, t2 > 0

(i) if X̂i >cx Ŷi and 0 < α < 1, then

CK
α

Xi,Yi
(t1, t2) >

1

1− α
ln[mY

i (t1, t2)],
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(ii) if X̂i 6cx Ŷi and α > 1, then

CK
α

Xi,Yi
(t1, t2) >

1

1− α
ln[mY

i (t1, t2)],

where mY
i (t1, t2), i = 1, 2, are the components of BEIT of Y .

P r o o f. Let us assume for i = 1 that X̂1 >cx Ŷ1, which leads to

(2.9)

∫ t1

0

F (x1, t2)

F (t1, t2)
dx1 >

∫ t1

0

G(x1, t2)

G(t1, t2)
dx1.

Now, using the nondecreasing property of G(x1, t2) with respect to x1 for fixed t2,

we have for 0 < α < 1

∫ t1

0

F (x1, t2)

F (t1, t2)

(G(x1, t2)
G(t1, t2)

)α−1

dx1 >

∫ t1

0

F (x1, t2)

F (t1, t2)
dx1.

Using (2.9), we get

ln

∫ t1

0

F (x1, t2)

F (t1, t2)

(G(x1, t2)
G(t1, t2)

)α−1

dx1 > ln

∫ t1

0

G(x1, t2)

G(t1, t2)
dx1.

Multiplying both sides by 1/(1 − α), we obtain the required result for i = 1. The

proof of the other cases is similar and hence omitted. �

Theorem 2.4. Let X and Y be two nonnegative bivariate random variables.

Then for α > 1 we have

CK
α

Xi,Yi
(t1, t2) >

2− α

1− α
ε∗i,α−1(Y ; t1, t2), i = 1, 2,

where ε∗i,α−1(Y ; t1, t2) is the conditional CPE of order (α−1) for the random vector Y .

P r o o f. For i = 1, using the nondecreasing property of F (x1, t2) in x1 for

fixed t2, we get
F (x1, t2)

F (t1, t2)
6 1,

for x1 6 t1. Multiplying both sides by
(G(x1, t2)
G(t1, t2)

)α−1

, we obtain

ln

∫ t1

0

F (x1, t2)

F (t1, t2)

(G(x1, t2)
G(t1, t2)

)α−1

dx1 6 ln

∫ t1

0

(G(x1, t2)
G(t1, t2)

)α−1

dx1.

Hence, the stated result is obtained for i = 1 by multiplying both sides by 1/(1− α).

The proof for i = 2 being analogous is omitted. �
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The following example illustrates the above theorem.

E x am p l e 2.3. Let X and Y be two nonnegative bivariate random variables

with cdf ’s

F (t1, t2) =
t1t2(t1 + t2)

2
, 0 < t1, t2 < 1,

and

G(t1, t2) =
1

1/t1 + 1/t2 − 1
, 0 < t1, t2 < 1,

respectively. Then Figure 3 shows that [CK
α

Xi,Yi
(t1, t2) − (2−α

1−α )ε
∗
i,α−1(Y ; t1, t2)] =

ψα
i (t1, t2), i = 1, 2, (say), are always positive for α = 1.25 satisfying Theorem 2.4.
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(i) Plot of ψα
1 (t1, t2).
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(ii) Plot of ψα
2 (t1, t2).

Figure 3. Graphical representation of ψα
1 and ψ

α
2 (Example 2.3).

Theorem 2.5. Let X and Y be two nonnegative bivariate random vectors. Then,

for i = 1, 2 and t1, t2 > 0, we have

[1− e−(1−α)CK
α

Xi,Yi
(t1,t2)] 6 (1− α)CK

α

Xi,Yi
(t1, t2) 6 [e(1−α)CK

α

Xi,Yi
(t1,t2) − 1].

P r o o f. For i = 1, using the fact that lnx 6 x− 1, we obtain

ln

∫ t1

0

F (x1, t2)

F (t1, t2)

(G(x1, t2)
G(t1, t2)

)α−1

dx1 6

∫ t1

0

F (x1, t2)

F (t1, t2)

(G(x1, t2)
G(t1, t2)

)α−1

dx1 − 1.

By some algebraic manipulation and with help of (2.3), we have

(2.10) (1 − α)CK
α

X1,Y1
(t1, t2) 6 [e(1−α)CK

α

X1,Y1
(t1,t2) − 1] for 0 < α 6= 1.
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Again, using lnx > (x− 1)/x, along a similar line, we get

(2.11) (1 − α)CK
α

X1,Y1
(t1, t2) >

e(1−α)CK
α

X1,Y1
(t1,t2) − 1

e(1−α)CK
α

X1,Y1
(t1,t2)

,

where 0 < α 6= 1. Thus the desired result for i = 1 follows by combining (2.10)

and (2.11). The proof for i = 2 follows in the same line. �

In the next theorem, we analyze the effect of monotone transformation on GCCPI

to obtain their bounds. Heuristically, the results enable one to examine the informa-

tion properties of lifetime models that can be obtained by transformation of simpler

models.

Theorem 2.6. Let X = (X1, X2) and Y = (Y1, Y2) be two absolutely continuous

nonnegative bivariate random variables. Suppose ϕ(x) is a strictly increasing, con-

tinuous and differentiable function. If a 6 ϕ′(x) 6 b, a, b > 0, then for all t1, t2 > 0

and i = 1, 2,

aCK
α

Xi,Yi
(ϕ−1(t1), ϕ

−1(t2)) 6 CK
α

ϕ(Xi),ϕ(Yi)(t1, t2)

6 bCK
α

Xi,Yi
(ϕ−1(t1), ϕ

−1(t2)), for 0 < α < 1

and

bCK
α

Xi,Yi
(ϕ−1(t1), ϕ

−1(t2)) 6 CK
α

ϕ(Xi),ϕ(Yi)(t1, t2)

6 aCK
α

Xi,Yi
(ϕ−1(t1), ϕ

−1(t2)), for α > 1.

P r o o f. Let us consider the conditional random variables

ϕ(X̂i) = (ϕ(Xi) | ϕ(X1) < t1, ϕ(X2) < t2), i = 1, 2,

and similar expression for ϕ(Ŷi). First we prove the result for i = 1. From (2.3), we

have

CK
α

ϕ(X1),ϕ(Y1)(t1, t2)

=
1

1− α
ln

∫ t1

0

F (ϕ−1(x1), ϕ
−1(t2))

F (ϕ−1(t1), ϕ−1(t2))

(G(ϕ−1(x1), ϕ
−1(t2))

G(ϕ−1(t1), ϕ−1(t2))

)α−1

dx1

=
1

1− α
ln

∫ ϕ−1(t1)

0

F (y1, ϕ
−1(t2))

F (ϕ−1(t1), ϕ−1(t2))

( G(y1, ϕ
−1(t2))

G(ϕ−1(t1), ϕ−1(t2))

)α−1

ϕ′(y1) dy1.

Thus, the stated result is obtained by using the fact that a 6 ϕ′(x) 6 b and 0 < α < 1

or α > 1. A similar result is obtained for i = 2. �
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In the sequel we obtain some bounds for GCCPI based on the usual stochastic

order. We recall that for two univariate random variables X and Y with cdf ’s F

and G, respectively, X is said to be less than Y in the usual stochastic order, written

as X 6st Y , if F (x) > G(x).

Theorem 2.7. Let X and Y be two absolutely continuous nonnegative random

vectors. For i = 1, 2 and t1, t2 > 0

(i) if X̂i 6st Ŷi then CK
α

Xi,Yi
(t1, t2) > max{ε∗i,α(X ; t1, t2), ε

∗
i,α(Y ; t1, t2)} when 0 <

α < 1, and ε∗i,α(X ; t1, t2) 6 CK
α

Xi,Yi
(t1, t2) 6 ε∗i,α(Y ; t1, t2) when α > 1;

(ii) if X̂i >st Ŷi then CK
α

Xi,Yi
(t1, t2) 6 min{ε∗i,α(X ; t1, t2), ε

∗
i,α(Y ; t1, t2)} for 0 <

α < 1 and ε∗i,α(Y ; t1, t2) 6 CK
α

Xi,Yi
(t1, t2) 6 ε∗i,α(X ; t1, t2) for α > 1.

P r o o f. Let us suppose, for i = 1, that X̂1 6st Ŷ1 holds. Then

(2.12) FX̂1

(x1, t2) > GŶ1

(x1, t2)

for x1 6 t1. Taking algebraic power (α − 1) on both sides of (2.12) and multiplying

by FX̂1

(x1, t2), we have

ln

∫ t1

0

FX̂1

(x1, t2)(FX̂1

(x1, t2))
α−1 dx1

{
6

>

}
ln

∫ t1

0

FX̂1

(x1, t2)(GŶ1

(x1, t2))
α−1 dx1,

according as 0 < α < 1 or α > 1. Multiplying both sides by 1/(1− α) and simplify-

ing, we obtain

(2.13) CK
α

X1,Y1
(t1, t2) > ε∗1,α(X ; t1, t2) for 0 < α 6= 1.

Again, multiplying both sides of (2.12) by (GŶ1

(x1, t2))
α−1 and integrating, we get

ln

∫ t1

0

FX̂1

(x1, t2)(GŶ1

(x1, t2))
α−1 dx1 > ln

∫ t1

0

(GŶ1

(x1, t2))
α dx1.

Multiplying both sides by 1/(1− α), we have

(2.14) CK
α

X1,Y1
(t1, t2)

{
6

>

}
ε∗1,α(Y ; t1, t2), according as 0 < α < 1 or α > 1.

Combining (2.13) and (2.14), one can easily conclude that

CK
α

X1,Y1
(t1, t2) > max{ε∗1,α(X ; t1, t2), ε

∗
1,α(Y ; t1, t2)} when 0 < α < 1

and

ε∗1,α(X ; t1, t2) 6 CK
α

X1,Y1
(t1, t2) 6 ε∗1,α(Y ; t1, t2) when α > 1.

Hence (i) holds for i = 1. The proof of the other cases being analogous is omitted.

�
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The proof of the following theorem is similar to that of Theorem 2.7 and hence

omitted.

Theorem 2.8. For two nonnegative bivariate random vectors X = (X1, X2) and

Y = (Y1, Y2),

(i) if X̂i 6st Ŷi, i = 1, 2, then

CK
α

Yi,Xi
(t1, t2) 6 ε∗i,α(X ; t1, t2) 6 CK

α

Xi,Yi
(t1, t2) when 0 < α < 1

and

ε∗i,α(X ; t1, t2) 6 min{CK
α

Xi,Yi
(t1, t2), CK

α

Yi,Xi
(t1, t2)} when α > 1;

(ii) Again, if X̂i >st Ŷi, i = 1, 2, then

CK
α

Xi,Yi
(t1, t2) 6 ε∗i,α(X ; t1, t2) 6 CK

α

Yi,Xi
(t1, t2) when 0 < α < 1

and

ε∗i,α(X ; t1, t2) > max{CK
α

Xi,Yi
(t1, t2), CK

α

Yi,Xi
(t1, t2)} when α > 1,

where t1, t2 > 0.

Theorem 2.9. Let X = (X1, X2), Y = (Y1, Y2) and Z = (Z1, Z2) be three

nonnegative bivariate random vectors. If Ŷi
{

6

>

}
Ẑi, i = 1, 2, then for t1, t2 > 0

CK
α

Xi,Yi
(t1, t2)

{
6

>

}
CK

α

Xi,Zi
(t1, t2),

where 0 < α 6= 1.

P r o o f. Let Ŷi 6st Ẑi hold for i = 1. As an immediate consequence we have

(2.15)
G(x1, t2)/G(t1, t2)

H(x1, t2)/H(t1, t2)
> 1.

Again, (2.3) can alternatively be rewritten as

(2.16) (1− α)CK
α

X1,Y1
(t1, t2)

= ln

∫ t1

0

F (x1, t2)

F (t1, t2)

(H(x1, t2)

H(t1, t2)

)α−1( G(x1, t2)/G(t1, t2)
H(x1, t2)/H(t1, t2)

)α−1

dx1.

Hence, the stated result for i = 1 follows from (2.16) by making use of (2.15). The

proof of the other cases follows in the same line. This completes the proof. �
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Theorem 2.10. Let X , Y and Z be three nonnegative bivariate random vectors.

If X̂i 6st Ŷi, then for t1, t2 > 0 and i = 1, 2 we have

CK
α

Xi,Zi
(t1, t2)

{
>

6

}
CK

α

Yi,Zi
(t1, t2)

for 0 < α < 1 or α > 1.

P r o o f. Let us assume that X̂i 6st Ŷi, i = 1, 2. Then for i = 1, X̂1 6st Ŷ1 leads

to

(2.17)
F (x1, t2)/F (t1, t2)

G(x1, t2)/G(t1, t2)
> 1.

By applying (2.3), CK
α

X1,Z1
(t1, t2) can be rewritten as

(2.18) (1 − α)CK
α

X1,Z1
(t1, t2)

= ln

∫ t1

0

G(x1, t2)

G(t1, t2)

(H(x1, t2)

H(t1, t2)

)α−1F (x1, t2)/F (t1, t2)

G(x1, t2)/G(t1, t2)
dx1.

Therefore, the desired result for i = 1 is obtained by using (2.17) and (2.18). The

proof of the other cases is similar and therefore omitted. �

As a continuation of the above result we have the following theorem.

Theorem 2.11. Let X , Y and Z be three nonnegative bivariate random vectors.

If for i = 1, 2, X̂i 6st Ẑi 6st Ŷi, then

CK
α

Yi,Xi
(t1, t2) 6 min{CK

α

Yi,Zi
(t1, t2), CK

α

Zi,Xi
(t1, t2)}, 0 < α < 1,

and

CK
α

Zi,Xi
(t1, t2) 6 CK

α

Yi,Xi
(t1, t2) 6 CK

α

Yi,Zi
(t1, t2), α > 1,

where t1, t2 > 0.

P r o o f. With help of (2.3), for i = 1, CK
α

Y1,X1
(t1, t2) can be written as

(2.19) CK
α

Y1,X1
(t1, t2)

=
1

1− α
ln

∫ t1

0

G(x1, t2)

G(t1, t2)

(H(x1, t2)

H(t1, t2)

)α−1( F (x1, t2)/F (t1, t2)
H(x1, t2)/H(t1, t2)

)α−1

dx1.

Alternatively (2.19) can also be represented as

(2.20) CK
α

Y1,X1
(t1, t2)

=
1

1− α
ln

∫ t1

0

H(x1, t2)

H(t1, t2)

(F (x1, t2)
F (t1, t2)

)α−1 G(x1, t2)/G(t1, t2)

H(x1, t2)/H(t1, t2)
dx1.
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Now, let us assume for i = 1 that X̂1 6st Ẑ1 holds. As a consequence, we have

F (x1, t2)/F (t1, t2)

H(x1, t2)/H(t1, t2)
> 1.

After some algebraic manipulations, we obtain

ln

∫ t1

0

G(x1, t2)

G(t1, t2)

(H(x1, t2)

H(t1, t2)

)α−1( F (x1, t2)/F (t1, t2)
H(x1, t2)/H(t1, t2)

)α−1

dx1

{
6

>

}
ln

∫ t1

0

G(x1, t2)

G(t1, t2)

(H(x1, t2)

H(t1, t2)

)α−1

dx1,

according as 0 < α < 1 or α > 1. Multiplying both sides by 1/(1−α) and using (2.19),

we obtain

(2.21) CK
α

Y1,X1
(t1, t2) 6 CK

α

Y1,Z1
(t1, t2) for 0 < α 6= 1.

Again, assuming for i = 1 that Ẑ1 6st Ŷ1 holds and then proceeding in the same

line, we get

(2.22) ln

∫ t1

0

H(x1, t2)

H(t1, t2)

(F (x1, t2)
F (t1, t2)

)α−1 G(x1, t2)/G(t1, t2)

H(x1, t2)/H(t1, t2)
dx1

6 ln

∫ t1

0

H(x1, t2)

H(t1, t2)

(F (x1, t2)
F (t1, t2)

)α−1

dx1,

for 0 < α 6= 1. Multiplying by 1/(1− α) and then with the aid of (2.20), we have

(2.23) CK
α

Y1,X1
(t1, t2)

{
6

>

}
CK

α

Z1,X1
(t1, t2), according as 0 < α < 1 or α > 1.

Thus, from (2.21) and (2.22), we conclude that the given results hold for i = 1. The

proof for i = 2 being analogous is omitted. �

3. Characterization

In the last three decades, several attempts have been made to characterize proba-

bility distributions in both the univariate and multivariate setup. Characterizations

of multivariate distributions have become a topic of great interest in the literature of

applied statistics, reliability and information theory. In this section we discuss char-

acterization theorems associated with some bivariate models based on the functional

form of GCCPI, BRHR and BEIT. Although the uniqueness of a characterization
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result is highly questionable, nonetheless under some conditions GCCPI uniquely

determines the parent distribution. Recall that the random vectors X = (X1, X2)

and Y = (Y1, Y2) are said to satisfy the conditional proportional reversed hazard rate

(CPRHR) model when the corresponding conditional reversed hazard rate functions

of X̂i and Ŷi satisfy

(3.1) φYi (t1, t2) = θi(tj)φ
X
i (t1, t2)

for i = 1, 2; j = 3 − i, and t1, t2 > 0. Here θ1(t2) and θ2(t1) are positive functions

of t2 and t1, respectively. In the following theorem we show that GCCPI determines

the distribution function uniquely under CPRHR model assumption.

Theorem 3.1. Let X = (X1, X2) and Y = (Y1, Y2) be two absolutely continuous

nonnegative random vectors with cdf ’s F (t1, t2), G(t1, t2), respectively, and satisfy

the CPRHR model given in (3.1). If (∂/∂ti)F (t1, t2) is continuous in ti, i = 1, 2,

then for each α, CK
α

Xi,Yi
(t1, t2) uniquely determine F (t1, t2).

P r o o f. Let X = (X1, X2) and Y = (Y1, Y2) satisfy the CPRHR model with

the constant of proportion θi(tj), i = 1, 2; j = 3 − i. Assume that Z = (Z1, Z2)

and W = (W1,W2) are other two absolutely continuous random variables with the

same support as that of X and Y and also satisfy the CPRHR model with the same

constant of proportion, i.e. θi(tj). Now for i = 1, CK
α

X1,Y1
(t1, t2) = CK

α

Z1,W1
(t1, t2)

implies that

(1− α)
∂

∂t1
CK

α

X1,Y1
(t1, t2) = (1− α)

∂

∂t1
CK

α

Z1,W1
(t1, t2).

The above equation simplifies to

(α− 1)φY1 (t1, t2) + φX1 (t1, t2) = (α− 1)φW1 (t1, t2) + φZ1 (t1, t2).

Under the CPRHR model assumption, we have

φX1 (t1, t2) = φZ1 (t1, t2).

By retracing the above steps, we obtain

φX2 (t1, t2) = φZ2 (t1, t2).

Thus, in general

φXi (t1, t2) = φZi (t1, t2), i = 1, 2.

Hence, the result follows by using the fact that the vector valued reversed hazard

rate uniquely determines the bivariate distribution function (cf. Roy [38]). �
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In the sequel, we provide some characterization results with dependent marginals.

Theorem 3.2. Let X = (X1, X2) and Y = (Y1, Y2) be two random vectors satis-

fying the CPRHR model given in (3.1) for i = 1, 2, j = 3 − i. If (∂/∂ti)F (t1, t2) is

continuous in ti, then for 0 < t1, t2 < 1, i = 1, 2; j = 3− i,

(3.2) (1− α)CK
α

Xi,Yi
(t1, t2) = ln[ωi(tj)m

X
i (t1, t2)]

if and only if X follows the distribution

(3.3) F (t1, t2) = t1+µ ln t2
1 t2, 0 < t1, t2 < 1, µ 6 0,

where

ωi(tj) =
2 + µ ln tj

1 + [θi(tj)(α− 1) + 1](1 + µ ln tj)
.

In particular, for µ = 0, (3.3) is bivariate uniform.

P r o o f. The if part is trivial when noting that if X follows the distribution (3.3)

then for i = 1, 2; j = 3− i,

mX
i (t1, t2) =

ti
2 + µ ln tj

and

CK
α

Xi,Yi
(t1, t2) =

1

1− α
ln

ti
1 + [θi(tj)(α− 1) + 1](1 + µ ln tj)

.

To prove the converse let us assume that (3.2) holds. Under the CPRHR model

assumptions, for i = 1, differentiating both sides of (3.2) with respect to t1, we get

φX1 (t1, t2)m
X
1 (t1, t2) =

1 + µ ln t2
2 + µ ln t2

.

Using (2.7), we have
∂

∂t1
mX

1 (t1, t2) =
1

2 + µ ln t2
,

which by integration gives

mX
1 (t1, t2) =

1

2 + µ ln t2
t1 + l1(t2),

where l1(t2) is a constant of integration. As t1 → 0,mX
1 (t1, t2) → 0 implies l1(t2) = 0,

which in turn gives the bivariate EIT of (3.3). Hence, the result follows for i = 1 by

virtue of the fact that bivariate EIT determines the distribution uniquely. The proof

of the other case is similar and hence omitted. �
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The next theorem gives a characterization of the bivariate power distribution.

Theorem 3.3. Let (X1, X2) and (Y1, Y2) be two absolutely continuous nonneg-

ative random vectors with common support (0, b1) × (0, b2) satisfying the CPRHR

model given in (3.1) for i = 1, 2, j = 3 − i. If (∂/∂ti)F (t1, t2) is continuous in ti,

i = 1, 2, then

(3.4) (1 − α)CK
α

Xi,Yi
(t1, t2) = ln[di(tj)m

X
i (t1, t2)],

where

0 < di(tj) <
1

1 + (α− 1)θi(tj)
, 0 < θi(tj) <

1

1− α

and

di(tj) >
1

1 + (α − 1)θi(tj)
, θi(tj) > 0

according as 0 < α < 1 and α > 1, respectively, characterizes the bivariate power

distribution

(3.5) F (t1, t2) =
( t1
b1

)c1( t2
b2

)c2+µ ln(t1/b1)

, µ 6 0,

where

ci =
1− di(bj)

[(α− 1)θi(bj) + 1]di(bj)− 1
.

P r o o f. The if part is straightforward. To prove the reverse implication, let us

assume that (3.4) holds. Under the CPRHR model assumptions, for i = 1, (3.4) can

alternatively be rewritten as
∫ t1

0

(F (x1, t2))
θ1(t2)(α−1)+1 dx1 = d1(t2)(F (t1, t2))

θ1(t2)(α−1)

∫ t1

0

F (x1, t2) dx1.

Differentiating both sides with respect to t1 and using (2.7), we get after some

algebraic manipulation

∂

∂t1
mX

1 (t1, t2) =
[(α− 1)θ1(t2) + 1]d1(t2)− 1

d1(t2)θ1(t2)(α − 1)
,

the integration of which gives

mX
1 (t1, t2) =

[(α − 1)θ1(t2) + 1]d1(t2)− 1

d1(t2)θ1(t2)(α − 1)
t1 + n1(t2),

where n1(t2) is a constant of integration. As t1 → 0, mX
1 (t1, t2) → 0 implies

n1(t2) = 0. By retracing the above steps, we obtain in general

mX
i (t1, t2) =

[(α− 1)θi(tj) + 1]di(tj)− 1

di(tj)θi(tj)(α − 1)
ti, i = 1, 2; j = 3− i.

The rest of the proof follows from Theorem 2.1 of Nair and Asha [29]. �
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Theorem 3.4. Let (X1, X2) and (Y1, Y2) be two absolutely continuous nonneg-

ative random vectors with common support (0, b1) × (0, b2) satisfying the CPRHR

model given in (3.1) for i = 1, 2; j = 3 − i. If (∂/∂ti)F (t1, t2) is continuous in ti,

i = 1, 2, then

(3.6) CK
α

Xi,Yi
(t1, t2) = Ci(tj)−

1

1− α
ln[φXi (t1, t2)],

where

Ci(tj) <
1

1− α
ln

1

1 + (α− 1)θi(tj)
, 0 < θi(tj) <

1

1− α

and

Ci(tj) >
1

α− 1
ln[1 + (α− 1)θi(tj)], θi(tj) > 0

according as 0 < α < 1 and α > 1, respectively, characterizes the bivariate power

distribution given in (3.5) with

ci =
e(1−α)Ci(bj)

1− [(α− 1)θi(bj) + 1]e(1−α)Ci(bj)
.

P r o o f. The if part is straightforward. To prove the converse part, let us assume

that (3.6) holds. Under the CPRHR model assumptions, for i = 1, some algebraic

manipulations from (3.6), yield

∫ t1

0

(F (x1, t2))
θ1(t2)(α−1)+1 dx1 =

A1(t2)

φX1 (t1, t2)
(F (t1, t2))

θ1(t2)(α−1)+1,

where A1(t2) = e(1−α)C1(t2). Differentiating both sides with respect to t1 and sim-

plifying, we obtain

∂

∂t1

1

φX1 (t1, t2)
=

1− [1 + (α− 1)θ1(t2)]A1(t2)

A1(t2)
,

which with help of (2.7) leads to

φX1 (t1, t2)m
X
1 (t1, t2) =

A1(t2)

1− (α − 1)θ1(t2)A1(t2)
.

Now, the rest of the proof follows from Theorem 3.1 of Nair and Asha [29]. A similar

result is obtained for i = 2. This completes the proof. �
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Now we provide a result where the support of the components is not restricted to

positive real half line. Here we assume that X = (X1, X2) and Y = (Y1, Y2) have

a common support D = (−∞, b1)× (−∞, b2) with bi < ∞. Consequently, the lower

limit of integrations in (2.3)–(2.4) will be taken with −∞ instead of zero.

Theorem 3.5. Let (X1, X2) and (Y1, Y2) be two absolutely continuous nonnega-

tive random vectors with common support D and satisfy the CPRHR model given

in (3.1). If (∂/∂ti)F (t1, t2) is continuous in ti, i = 1, 2, then the following conditions

are equivalent:

(i) CK
α

Xi,Yi
(t1, t2) only depends on tj for i = 1, 2; j = 3− i,

(ii) (X1, X2) has the joint cdf ’s of the form

F (t1, t2) = exp[c1(t1 − b1) + c2(t2 − b2) + c3(t1 − b1)(t2 − b2)],

where ci > 0.

P r o o f. To prove (i) implies (ii), let us assume that CK
α

Xi,Yi
(t1, t2) only depends

on tj for i = 1, 2; j = 3 − i, i.e. CK
α

Xi,Yi
(t1, t2) = ci(tj). Then for i = 1 we have

from (2.3)

∫ t1

−∞

(F (x1, t2))
θ1(t2)(α−1)+1 dx1 = A1(t2)(F (t1, t2))

θ1(t2)(α−1)+1,

where A1(t2) = e(1−α)c1(t2) > 0. Now differentiating both sides partially with respect

to t1, we have

φX1 (t1, t2) =
1

A1(t2)[θ1(t2)(α− 1) + 1]
=

1

B1(t2)
, (say).

Thus, φX1 (t1, t2) is independent of t1 and only depends on t2. Similarly, it can be

shown that φX2 (t1, t2) only depends on t1. Let us assume that φ
X
1 (t1, t2) = γ1(t2)

and φX2 (t1, t2) = γ2(t1). Using (2.7), we obtain after some algebraic manipulation

mX
i (t1, t2) = 1/γi(tj) = αi(tj), (say), for i = 1, 2; j = 3 − i. Now, the rest of

the proof follows from Theorem 2.3 of Nair and Asha [29]. The converse part is

straightforward.

4. Application to electrical appliance failure data

In this section, we illustrate the contribution of our proposed measure (i.e. GCCPI)

in a real-life problem. Note that our approach is parametric which involves specific

families of distributions.
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Information measures appear to be suitable performance criteria in estimation

and model selection. The use of information-theoretic approaches provides a new

paradigm for model selection in the analysis of empirical data. Model selection based

on information theory represents a quite different approach in the statistical sciences,

and the resulting selected model may differ substantially from model selection based

on some form of statistical null hypothesis testing. Though the information-theoretic

methods may not always be the very best for a particular situation, they do represent

a unified and rigorous theory, an extension of the likelihood theory, an important

application of the information theory, and they are objective and practical to em-

ploy across a very wide class of empirical problems. Model selection, under the

information-theoretic approach, attempts to identify the (likely) best model from

the candidate models available and orders the models from best to worst. Accord-

ing to the information-theoretic approach for model selection due to Burnham and

Anderson [5], for a given data set, the best fitted model is the one which has mini-

mum Kullback-Leibler (K-L) information or distance. The K-L distance between

models is a fundamental quantity in science and information theory (see Akaike [3])

and is the logical basis for model selection in conjunction with likelihood inference.

A good model contains the information in the data, leaving only noise. Of course,

we seek an approximating model that looses as little information as possible; this is

equivalent to minimizing K-L information. Again, in view of (1.6), minimizing the

K-L distance is equivalent to minimizing the (cumulative) inaccuracy measure (cross

entropy). Note that the most well-known model selection criterion, the Akaike in-

formation criterion (AIC), is an asymptotically unbiased estimator of the inaccuracy

measure from a parametric distribution to the true distribution of data. Minimizing

the AIC can be interpreted as minimizing an asymptotically unbiased estimator of

the inaccuracy/cross entropy. For some flavour of fascinating growth of cross entropy

for comparing models, one may refer to Burnham and Anderson [5], Jurafsky and

Martin [17] and Choe [7]. With this motivation, various generalized inaccuracy mea-

sures have been proposed in the literature which may contain minimum inaccuracy

(but could not be less than the information given by the Shannon entropy).

The use of CPI (KX,Y ) for comparing the true distribution to the used distribution

in statistical modeling has been discussed by Kundu et al. [24] in the univariate case.

To see the effectiveness of GCCPI in reliability modeling we consider the electrical

appliance failure data which are from an experiment in which new models of a small

electrical appliance were being tested (see Lawless [28]). The data set consists of

failure times or censoring times for 36 appliances subjected to an automated life

test. Failures are mainly classified into 18 different modes, though among 33 observed

failures only 7 modes are present and only modes 6 and 9 appear more than once.

We are mainly interested in the failure mode 9. The data consist of two causes of
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failures, δ = 1 (failure mode 9), δ = 2 (all other failure modes), and δ = 0 indicates

that the data are censored at that time point. The data are given below:

Data Set: (11, 2), (35, 2), (49, 2), (170, 2), (329, 2), (381, 2), (708, 2), (958, 2),

(1062, 2), (1167, 1), (1594, 2), (1925, 1), (1990, 1), (2223, 1), (2327, 2), (2400, 1),

(2451, 2), (2471, 1), (2551, 1), (2565, 0), (2568, 1), (2694, 1), (2702, 2), (2761, 2),

(2831, 2), (3034, 1), (3059, 2), (3112, 1), (3214, 1), (3478, 1), (3504, 1), (4329, 1),

(6367, 0), (6976, 1), (7846, 1), (13403, 0).

The joint distribution of failure times and failure modes is of special interest.

This can be used to help plan further development and testing of the appliance.

The failure time distribution will change as the appliance is developed, and product

improvements effectively remove certain causes of failure. In the final stages, the

failure time distribution model can be used to predict the implications of a warranty

plan for the appliance.

We now turn to an examination of statistical models for this data set. Sankaran

and Kundu [39] used Lindley-Singpurwalla bivariate Pareto (LSBP) distribution

(4.1) F (x1, x2) = (1 + β1x1 + β2x2)
−θ, x1, x2 > 0,

to analyze the data and estimated β̂1 = 0.00019, β̂2 = 0.00272, and θ̂ = 0.46688.

They also observed that the Sankaran-Nair bivariate Pareto (SNBP) distribution

given by

(4.2) F (x1, x2) = (1 + γ1x1 + γ2x2 + γ0x1x2)
−φ, x1, x2 > 0,

can also be fitted to the data where γ̂1 = 0.000340, γ̂2 = 0.00454, γ̂0 = 0.000074,

and φ̂ = 0.43103. They have concluded that (4.1) provides a better fit than (4.2) to

the given data set. Now we will use GCCPI to identify which of these two models

is the closest to the distribution that generated the given data set. It has already

been mentioned that between two models, the more accurate model will be the one

with the lower inaccuracy measure. Let X = (X1, X2) and Y = (Y1, Y2) be two

nonnegative bivariate random vectors which follow the distributions (4.1) and (4.2),

respectively. Then Figure 4 shows that [CKα
Xi,Yi

(t1, t2)−CKα
Yi,Xi

(t1, t2)] = ϑαi (t1, t2),

i = 1, 2, are always positive for α = 1.5. Note that the substitutions t1 = − lnx

and t2 = − ln y have been used while plotting curves so that ϑαi (t1, t2) = ϑαi (x, y),

i = 1, 2.

From Figure 4 we observe that the GCCPI of X on Y , for some specific value of

the parameter, is less than when their role is inverted, which indeed shows that X

provides a better approximation to the true distribution that generated the data set

than Y . Hence, in agreement with Sankaran and Kundu [39], we can conclude that

(4.1) gives a better fit to the given data set.
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(i) Plot of ϑα1 (x, y).
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(ii) Plot of ϑα2 (x, y).

Figure 4. Graphical representation of ϑα1 (x, y) and ϑ
α
2 (x, y).
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