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Abstract. In this paper, we consider a two-dimensional inverse medium problem from
noisy observation data. We propose effective reconstruction algorithms to detect the num-
ber, the location and the size of the piecewise constant medium within a body, and then
we try to recover the unknown shape of inhomogeneous media. This problem is nonlinear
and ill-posed, thus we should consider stable and elegant approaches in order to improve
the corresponding approximation. We give several examples to show the viability of our
proposed algorithms.

Keywords: inverse medium problem; Levenberg-Marquardt algorithm; trust-region-
reflective algorithm; ill-posed problem

MSC 2010 : 65N20, 65N21

1. Introduction

We consider an inverse medium problem to reconstruct the salient features of

inhomogeneous media within a body from the internal measured data which arises

from the problem of microwave imaging of biological tissue [3], [4], [6], [7], [8], [5], [26].

The objective is to stabilize and improve the resolution and contrast of imaging of

biological tissues, while reducing the costs. This inverse medium problem is known

to be ill-posed [14], [16], [24], that is, any small change of the measured data can

result in a dramatic change of the inhomogeneous medium. Thus we should use

regularization techniques to deal with this inverse medium problem.

Reconstruction algorithms of inverse medium problems have been introduced and

studied over the last decade [2], [4], [9], [10], [17], [23], [25]. Ammari et al. [4] ex-

tended the method developed by Ammari et al. in [1] to reliably reconstruct both
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the real-valued functions a and q from the internal energies. Choulli and Triki [10]

proposed new weighted stability estimates for the inverse medium problem with in-

ternal data. Triki [25] studied the uniqueness of the inverse medium problem with

internal data and got a local Lipschitz stability of the reconstruction. Ammari et

al. [2] provided an iterative algorithm for reconstructing the optical absorption coef-

ficient and proved the convergence of the algorithm. Schotland [23] employed various

direct reconstruction algorithms to reconstruct the optical properties of a medium

of interest from boundary measurements within a body. Bao and Triki [9] proposed

a general recursive linearization algorithm to solve inverse medium problems from

multi-frequency measurements. Ito et al. [17] presented a novel sampling method for

time harmonic inverse medium scattering problems.

In this paper, we study an inverse medium problem where the inhomogeneous

medium to be recovered consists of piecewise constant parts within a body. Then

this inverse medium problem can be transformed into a transmission problem. Based

on the fundamental solution of Helmholtz equation, we can obtain the expression

of solution for the transmission problem with boundary integral equations. This

inverse medium problem is nonlinear and ill-posed. Thus we employ iterative reg-

ularization algorithms to solve this inverse medium problem. We propose Trust-

Region-Reflective algorithm (TRA) and Levenberg-Marquardt algorithm (LMA) to

detect the number, the location and the size, and then to recover the shape of in-

homogeneous media within a body. Numerical experiments show that the proposed

algorithms are feasible and stable to determine the salient features of inhomogeneous

media from boundary measurements.

The outline of the paper is as follows. In Section 2, we introduce an inverse medium

problem. In Section 3, we present the parameterization of the boundary of the

inhomogeneous medium. We propose reconstruction algorithms to solve the inverse

medium problem in Section 4. Numerical experiments are presented in Section 5 to

illustrate the efficiency of the proposed algorithms. Finally, we give some concluding

remarks in Section 6.

2. Formulation of an inverse medium problem

Our goal is to numerically study a time harmonic inverse medium problem. Let Ω

be a simply connected bounded domain with boundary of class C2 and q a positive

and piecewise constant function in Ω. For the boundary data f ∈ H1/2(∂Ω), we

consider the Helmholtz equation

(1)

{
∆u+ qu = 0 in Ω,

u = f on ∂Ω,
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where ∆ is the Laplacian. Assume 0 is not in the spectrum of ∆+q with the solution

domain H1
0 (Ω) ∩ H2(Ω). If q and f are known, it is well known that there exists

a unique u ∈ H1(Ω), the solution to problem (1), see [21], [25].

According to a given Dirichlet data f , the inverse medium problem consists of

reconstructing q in Ω from Neumann boundary condition

(2)
∂u

∂ν
= g on ∂Ω,

where ν is the outward unit normal to the boundary ∂Ω. Furthermore, q is a piecewise

constant function in Ω, which means that a bounded domain Ω in the homogeneous

background space is occupied by some inhomogeneous media. In this paper, we

want to seek effective and stable algorithms to determine the salient features of the

inhomogeneous media.

Provided q is piecewise constant, the inverse medium problem simplifies into an

inverse transmission problem with the boundaries of the unknown inhomogeneous

media. We denote the boundary of Ω by Γ0 := ∂Ω. Assume that Ω1, . . . ,ΩN

are N starlike simply connected subdomains contained in Ω, the closures of which

are pairwise disjoint, denote the boundary of Ωk by Γk for k = 1, . . . , N , and set

Ω0 = Ω \
N⋃

k=1

Ωk. We denote by ν the outward unit normal to each of the curves Γk

for k = 0, 1, . . . , N . Let q|Ωk
= qk for k = 0, 1, . . . , N . Figure 1 shows an example

with N = 2.
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Figure 1. Example of a configuration Ω.

Because of q being piecewise constant, the problem (1) is equivalent to finding

a set of coupled Helmholtz equations

(3) ∆uk + qkuk = 0, in Ωk, k = 0, 1, . . . , N,
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satisfying interface conditions

(4)






u0 = f on Γ0,

u0 = uk on Γk,

∂u0
∂ν

=
∂uk
∂ν

on Γk.

From [21], [25], we know that (3)–(4) have a unique solution u ∈ H1(Ω) along

with q and f known. To our knowledge, we can use single- and double-layer poten-

tials to find solutions to the Helmholtz equation in a bounded domain with a con-

tinuous density ϕ, see Chapter 3 of [14]. We denote the fundamental solution to the

Helmholtz equation by

Gk(x, y) =
i

4
H

(1)
0 (

√
qk|x− y|), x 6= y, k = 0, 1, . . . , N,

where H
(1)
0 is a Hankel function of the first kind of order zero. In terms of the

fundamental solution, we define the single-layer potential

u0(x) =

∫

Γ0

G0(x, y)ϕ0(y) dy +

N∑

k=1

∫

Γk

G0(x, y)ϕk(y) dy, x ∈ Ω0,(5)

uk(x) =

∫

Γk

Gk(x, y)ϕN+k(y) dy, x ∈ Ωk.(6)

On page 108 of [14], authors proposed an interior Dirichlet problem in a bounded

domain D. They applied a double-layer potential to determine the solution of the

interior Dirichlet problem with a continuous density ϕ. Then, given a continuous

function f on the boundary, by the jump relations of Theorem 3.1 of [14], the den-

sity ϕ can be obtained from the integral equation ϕ−Kϕ = −2f on the boundary.

If k2 is not a Dirichlet eigenvalue for D, i.e., the homogeneous Dirichlet problem

in D has only the trivial solution, then with the aid of the jump relations it can be

seen that I − K has a trivial null space in C(∂D), for details see [13]. Hence, by

Riesz-Fredholm theory I − K has a bounded inverse (I − K)−1 from C(∂D) into

C(∂D). Then they got the uniqueness result in Theorem 5.4 in [14].

In this paper, we try to employ the same method to get the unknown densi-

ties ϕk. According to interface conditions (4), we can obtain the Neumann data gk

on the boundary Γk. From Theorem 3.1 of [14], we use single-layer potentials to

find solutions to the Helmholtz equation in a bounded domain Ωk with continuous

densities ϕk. If we assume that qk is not a Dirichlet eigenvalue in Ωk, then based

on Riesz-Fredholm theory, the unknown densities ϕk can be got from the integral
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equation on Γk as follows:

N∑

l=0

∫

Γl

∂G0(x, y)

∂ν(x)
ϕl(y) dy +

1

2
ϕk(x) = gk, k = 0, 1, . . . , N, x ∈ Γk,(7)

∫

Γk

∂Gk(x, y)

∂ν(x)
ϕN+k(y) dy +

1

2
ϕN+k(x) = gN+k, k = 1, . . . , N, x ∈ Γk.(8)

Let

(Tk,lϕl)(x) = 2

∫

Γl

∂G0(x, y)

∂ν(x)
ϕl(y) dy, x ∈ Γk,(9)

(TN+l,N+lϕN+l)(x) = 2

∫

Γk

∂Gk(x, y)

∂ν(x)
ϕN+l(y) dy, x ∈ Γk.(10)

Based on (9)–(10), (7)–(8) can be rewritten as

(11) (I +A)Ψ = R,

where I is an identity operator, Ψ = (ϕ0, ϕ1, . . . , ϕN , ϕN+1, . . . , ϕ2N ), R = 2(g0,

g1, . . . , gN , gN+1, . . . , g2N ), and

(12) A =




T0,0 T0,1 . . . T0,N 0 0 . . . 0

T1,0 T1,1 . . . T1,N 0 0 . . . 0
. . .

...
. . .

TN,0 TN,1 . . . TN,N 0 0 . . . 0

0 0 . . . 0 TN+1,N+1 0 . . . 0

0 0 . . . 0 0 TN+2,N+2 . . . 0
. . .

. . .
. . .

. . .

0 0 . . . 0 0 0 . . . T2N,2N




.

To our knowledge, operators Tk,k(k = 0, 1, . . . , 2N) : C(Γk) → C(Γk) are compact

operators [14]. Other operators in matrix A are integral operators with continuous

kernels which are compact operators in the corresponding space. In other words,

each element of matrix A is a compact operator, thus the matrix A is a compact

operator. Hence, by Riesz-Fredholm theory I +A has a bounded inverse (I +A)−1.

This implies solvability and well-posedness of the interior Dirichlet problem. From

the uniqueness result in Theorem 5.4 in [14], we know that we can get the uniqueness

for densities in (5)–(6).

This inverse problem is to detect the number, the location and the size of inhomo-

geneous media within a body, and then try to reconstruct the shape of inhomogeneous
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media. In practical problems, we can only get the measurement data gδ which is an

approximation of g satisfying

(13) ‖gδ − g‖L2(Γ0) 6 δ,

where ‖·‖ denotes the L2-norm and the constant δ > 0 represents a noisy level.

3. Parametrization

In this section, we want to parameterize the boundary Γk of Ωk. In order to detect

the number, the size and the location of inhomogeneous media, we parameterize the

boundary Γk of Ωk using the polar coordinate as follows:

Γk : Ok + ̺k(cos t, sin t), 0 6 t < 2π,

where Ok = (Ok,1, Ok,2) is the centroid of the domain Ωk and ̺k is the radius.

If zk(t) = (zk,1, zk,2) = ̺k(cos t, sin t) +Ok, we have

z′k,1 =
dzk,1
dt

= −̺k sin t, z′k,2 =
dzk,2
dt

= ̺k cos t.

Then we can obtain the outward unit normal

(14) ν(zk(t)) =
(z′k,2,−z′k,1)√
(z′k,1)

2 + (z′k,2)
2
= (cos t, sin t).

We can use βk = (Ok,1, Ok,2, ̺k) to describe the location and the size of inhomoge-

neous media within a body.

In order to reconstruct the shape of inhomogeneous media, we assume that the

subdomain Ωk is starlike and the boundary Γk of Ωk can be parameterized as

Γk : Ok + rk(t)(cos t, sin t), 0 6 t 6 2π,

where Ok is the centroid of the domain Ωk which is fixed, and rk(t) a real-valued

function of 0 6 t 6 2π given by the formula

(15) rk(t) = ck,0 +

lk∑

j=1

(ck,j cos(jt) + ck,j+lk sin(jt)),

where ck,j ∈ R, lk ∈ N.
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Similarly, let zk(t) = (zk,1, zk,2) = rk(t)(cos t, sin t) +Ok, then

z′k,1 =
dzk,1
dt

= r′k(t) cos t− rk(t) sin t,

z′k,2 =
dzk,2
dt

= r′k(t) sin t+ rk(t) cos t.

Thus we get the outward unit normal vector

(16) ν(zk(t)) =
(z′k,2,−z′k,1)√
(z′k,1)

2 + (z′k,2)
2
.

We can use βk = (ck,0, ck,1, . . . , ck,2lk) to describe the shape of inhomogeneous media

within a body.

We proceed by describing the parametrization of the integral equation (5)–(6).

For simplification, we assume the boundary Γ0 is the unit circle whose center is the

origin and set ϕk(τ) = ϕk(xk(τ)) for k = 0, . . . , 2N . Thus we get

(17) u0(zk1
(t)) =

∫ 2π

0

G0(zk1
(t), z0(τ))ϕ0(τ) dτ

+

N∑

k=1

∫ 2π

0

G0(zk1
(t), zk(τ))ϕk(τ)|z′k(τ)| dτ, k1 = 0, 1, . . . , N,

and

(18) uk(zk(t)) =

∫ 2π

0

Gk(zk(t), zk(τ))ϕN+k(τ)|z′k(τ)| dτ, k = 1, . . . , N,

where ϕk(τ) (k = 0, 1, . . . , 2N) are the unknown densities on the boundary.

Due to the interface conditions (4), we know that the densities ϕk(τ), k = 0, 1, . . . ,

2N are the solutions of the system of integral equations

∫ 2π

0

G0(z0(t), z0(τ))ϕ0(τ) dτ +
N∑

k=1

∫ 2π

0

G0(z0(t), zk(τ))ϕk(τ)|z′k(τ)| dτ = f,(19)

∫ 2π

0

G0(zk1
(t), z0(τ))ϕ0(τ) dτ +

N∑

k=1

∫ 2π

0

G0(zk1
(t), zk(τ))ϕk(τ)|z′k(τ)| dτ(20)

−
∫ 2π

0

Gk1
(zk1

(t), zk1
(τ))ϕN+k1

(τ)|z′k1
(τ)| dτ = 0, k1 = 1, . . . , N,
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∫ 2π

0

∂G0(zk2
(t), z0(τ))

∂ν(zk2
(t))

ϕ0(τ) dτ +

N∑

k=1

∫ 2π

0

∂G0(zk2
(t), zk(τ))

∂ν(zk2
(t))

ϕk(τ)|z′k(τ)| dτ(21)

+
1

2
ϕk2

(t)−
∫ 2π

0

∂Gk2
(zk2

(t), zk2
(τ))

∂ν(zk2
(t))

ϕN+k2
(τ)|z′k2

(τ)| dτ

− 1

2
ϕN+k2

(t) = 0, k2 = 1, . . . , N.

For the discretization of the integral equations, we note that the kernels of the

second term, the first term and the first term on the right-hand side of (19), (20),

and (21) are smooth so that the trapezoidal rule can be employed for numerical

approximation. However, the kernels of the first term, the second, and the third

terms on the right-hand side of (19), (20) have singularities [18]. Let

M(t, τ) = Gk(z(t), z(τ)) =
i

4
H

(1)
0 (

√
qk|z(t)− z(τ)|)

for t 6= τ ; we split it into

M(t, τ) =M1(t, τ) ln
(
4 sin2

t− τ

2

)
+M2(t, τ),

where

M1(t, τ) := − 1

4π

J0(
√
qk|z(t)− z(τ)|)

and the diagonal term for M2 is given by

M2(t, t) =
i

4
− E

2π

− 1

4π

ln
(qk
4
|z′(t)|2

)
,

where E denotes Euler constant. The kernels of the second and the fourth terms on

the right-hand side of (21) have singularities. Let

L(t, τ) = − i
√
qk

4
H

(1)
1 (

√
qk|z(t)− z(τ)|) [z

′(t)]⊥ · [z(t)− z(τ)]

|z(t)− z(τ)| ,

which can be decomposed in the form

L(t, τ) = L1(t, τ) ln
(
4 sin2

t− τ

2

)
+ L2(t, τ),

where

L1(t, τ) =

√
qk

4π

J1(
√
qk|z(t)− z(τ)|) [z

′(t)]⊥ · [z(t)− z(τ)]

|z(t)− z(τ)| ,

and note that the diagonal term L2(t, t) is given by

L2(t, t) =
[z′(t)]⊥ · z′′(t)

4π|z′(t)|2 .
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Thus the trapezoidal rule can be employed to the integral equation (19), (20),

and (21) for numerical approximation.

Taking into account the density ϕk(τ), k = 0, 1, . . . , 2N , we can obtain the Neu-

mann data on the boundary Γ0 according to (5):

(22) g =

∫ 2π

0

∂G0(z0(t), z0(τ))

∂ν(z0(t))
ϕ0(τ) dτ +

1

2
ϕ0(t)

+

N∑

k=1

∫ 2π

0

∂G0(z0(t), zk(τ))

∂ν(z0(t))
ϕk(τ)|z′k(τ)| dτ.

4. Reconstruction algorithms for the inverse medium problem

In this section, we will apply effective algorithms to determine the salient features

of inhomogeneous media. In practical applications, we can only get measured data

with errors on the boundary. Inverse medium problem is ill-posed in the sense

that the solution does not depend continuously on the input measurement data.

Therefore, we should consider regularization techniques for reconstruction algorithms

to solve this inverse medium problem.

We consider the cost functional

(23) F(β) =
1

2

∥∥∥gδ(z)− ∂u0(z, β)

∂ν(z)

∥∥∥
2

L2(Γ0)
, z ∈ Γ0,

where u0 is given by (5), ‖·‖ denotes the L2-norm, gδ(z) are the measured data on

the boundary Γ0, and

β = (O1,1, O1,2, ̺1, . . . , ON,1, ON,2, ̺N) ∈ R
3N

or

β = (c1,0, . . . , c1,2l1 , . . . , cN,0, . . . , cN,2lN ) ∈ R
2(l1+...+lN )+1.

We know that this problem is a nonlinear least squares optimization problem for

finding the minimum of the objective function in Eq. (23). There are many iterative

algorithms to solve this nonlinear least squares problem, all of these minimization

algorithms update the parameter values in order to reduce the error of F(β) for

every iteration. Starting with an initial guess β(0), these algorithms proceed by the

iterations

(24) β(s+1) = β(s) +△,
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where △ is the increment vector. Therefore, how to determine the search direction
is very important.

4.1. Trust-Region-Reflective algorithm (TRA). TRA is a subspace trust-

region method which is based on the interior-reflective Newton method described in

[11], [12]. Each iteration involves the approximate solution of a large linear system

using the method of preconditioned conjugate gradient. TRA is used to minimize

a nonlinear function subject to simple bound. TRA exhibits strong convergence

properties and global and second-order convergence.

We consider the cost functional F(β), and the shape derivative with respect to

the parameters β is given by

(25) F̃ ′(β) =
∂∇βu0(·, β)

∂ν
.

Let the increment △ be a solution to quadratic subproblem with a bound step:

(26) min
△∈Rn

{
ψ(∆) = F̃ ′(β)T△+

1

2
△TM△ : |B△| 6 Λ

}
,

where B is a positive diagonal scaling matrix, see [11], [12] for details, and Λ is

a positive scalar representing the trust region size, and

M(β) = F̃ ′(β)TF̃ ′(β) +B diag(F̃ ′(β)) diag(sign(F̃ ′(β)))B.

Based on the initial descent direction △, we determine the piecewise linear reflective
path p(α). We perform an approximate piecewise line minimization F (β(s) + p(α))

with respect to α to determine an acceptable stepsize α, see [11] for detail. Then we

get β(s+1) = β(s) + p(α).

Therefore, we can get the final iteration relationship

(27) β(s+1) = β(s) + p(α).

4.2. Levenberg-Marquardt algorithm (LMA). LMA is used to solve non-

linear least squares problems [19], [20], [22]. LMA is used in many software appli-

cations for solving generic curve-fitting problems. LMA interpolates between the

Gauss-Newton algorithm and the method of gradient descent. LMA is more robust

than the Gauss-Newton algorithm, which means that in many cases it finds a solution

even if it starts very far off the final minimum.

We consider the cost functional F(β), and the shape derivative with respect to

the parameter β is given by

(28) F̃ ′(β) =
∂∇βu0(·, β)

∂ν
.
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Therefore, we can get the increment vector △ as

(29) △ = −(F̃ ′(β)TF̃ ′(β) + λdiag(F̃ ′(β)TF̃ ′(β)))−1F̃ ′(β)Tγ(β),

where γ(β) = gδ − ∂u0(·, β)/∂ν and λ is the Marquardt parameter.
Marquardt recommended starting with a value λ0 and a factor v > 1, initially

setting λ = λ0 and computing the residual sum of squares γ(β) after one step from

the starting point with λ = λ0 and secondly with λ/v. If using the Marquardt

parameter λ/v results in a reduction in squared residual then this is taken as the

new value of λ and the process continues; if using λ/v resulted in a worse residual,

but using λ resulted in a better residual, then λ is left unchanged and the new

optimum is taken as the value obtained with λ as the Marquardt parameter.

So we can get the final iteration relationship

(30) β(s+1) = β(s) + α△,

where α is the step size of iteration.

5. Numerical experiments

In this section, we present several numerical examples to illustrate the effective-

ness of the proposed reconstruction algorithms. All numerical results show that the

proposed numerical approaches are feasible and stable.

The noisy measured data are generated by

gδ = g(1 + δ · rand(size(g)),

where g is the exact data, rand(size(g)) is a random number uniformly distributed

in [−1, 1] and the magnitude δ indicates a relative noise level.

5.1. Estimation of the number. We explain the procedure of estimating the

number of inhomogeneous media within a body. In many applications, maybe we

do not know the number of inhomogeneous media or take the number as a priori

assumptions within a body. Thus it is very important how to detect the number

of inhomogeneous media. Our idea is derived from [15]. In [15]; the authors took

M = 10 possible singular sources, which corresponds to the number of singular values

of B. We take the threshold value σ, delete the small singular values, and then obtain

“usable” point sources. Inspired by the idea of Hanke and Rundell, we try to use

the circle to measure the inhomogeneous medium. If the radius of a circle becomes
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very small which is less than the threshold value along with iterations, we take the

circle as “unusable” and delete it in terms of the threshold value. In addition, if the

distance between two circles is less than the threshold value, we take the two circles

as an inhomogeneous medium.

In order to obtain the number of inhomogeneous media, we parameterize the

boundary Γk of Ωk as Ok+̺k(cos t, sin t), 0 6 t 6 2π, along with β = (Ok,1, Ok,2, ̺k).

First, for a given estimate of the level of noise in gδ, we estimate a threshold value of

the lower bound εδ. The circle should not be viewed as an inhomogeneous medium

whose value of radius is less than εδ. Secondly, consider a set of circles {Ok}, k ∈ Z
+.

If for every k1 ∈ Z
+ there exists a k2 ∈ Z

+ such that the distance between the two

circles satisfies d(Ok1
, Ok2

) < εδ, we say the circles set {Ok} is connected. This
connected set is seen as an inhomogeneous medium. Based on these two criteria, we

can estimate the number of inhomogeneous media within a body according to the

threshold value εδ.

E x am p l e 5.1.1. In this case, we consider one inhomogeneous medium within

a body which is a peanut, and we take the centroid as O1(0, 0) along with q0 = 1

and q1 = 2. The polar radius of a peanut is given by

rpt =
6
25

√
cos2 t+ 1

4 sin
2 t, 0 6 t 6 2π.

Our initial estimate is to allow N = 2, 3 as the possible number of inhomogeneous

media within a body.

We apply LMA to determine the number of inhomogeneous media using two or

three possible estimates with 1% random noise in the data. We take λ0 = 0.1 and

v = 10, apply ̺(0) = 0.03 as the radius of the starting guess for every inhomogeneous

medium, and take |F(β(s+1))−F(β(s))| < 10−3 as a stopping criterion of iterations.

Then, we can update β(s) for every iteration step.

Figure 2 and Table 1, compared with the recovered radii for each case, enable us

to determine the number M = 1 of the medium when we take the threshold value

εδ = 0.04, 0.02 for Figures 2(b) and 2(d), respectively. However, from Figures 2(a)

and 2(c), we can see that the sets {O1, O2} cover the square, hence are recognized as
connected. Thus we can take arbitrarily small positive number εδ as the threshold

value. Applying the above proposed two criteria, it is easy to determine the number

of inhomogeneous media within a body.

E x am p l e 5.1.2. In this case, we consider two inhomogeneous media within

a body which are a pear and a bean, and we take q0 = 1 and q1 = q2 = 2. The polar

radius of a pear is given by

rpr = 0.3( 6
25 + 1

20 cos(3t)), 0 6 t 6 2π,
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(a) λ = 0.1, α = 3.8146e-8 (b) λ = 0.001, α = 4.1002e-12
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(c) λ = 0.001, α = 1.2172e-7 (d) λ = 0.1, α = 0.0432

Figure 2. Detecting the number of inhomogeneous media using two or three possible esti-
mates with 1% noise data along with the exact solution (Red, Solid), initial guess
(Black, Solid, Bold) and the recovered solution (Blue, Solid, ∗), respectively, for
Example 5.1.1.

̺ ̺1 ̺2 ̺3
(a) 0.1066 0.2193 –

(b) 0.0351 0.2219 –

(c) 0.0664 0.2012 –

(d) 0.0015 0.1911 0.0111

Table 1. The reconstructed radius ̺ of different cases with N = 2, 3 in Figure 2 for Exam-
ple 5.1.1.

and the polar radius of a bean is parameterized by

rbn = 0.1(15 + 9
50 cos t+

3
100 sin(2t))/(1 +

7
10 cos t), 0 6 t 6 2π.

Our initial estimate is to allow N = 3 as the possible number of inhomogeneous

media within a body.
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In this example, we consider how to determine the number for a multiscale medium

problem. In Figures 3(a) and 3(b) with the same exact solutions along with differ-

ent locations. The locations lie in (−0.2, 0.4), (0.3,−0.3) and (0, 0), (0.3,−0.3) for

Figures 3(a) and 3(b), respectively. We take 40 measured data along with 1% noise

level. In Figure 3(a), the pear is large and the bean is small, moreover the pear is far

from the bean, which can be viewed as two inhomogeneous media. From Figure 3(a)

and Table 2(a), we can determine the number M = 2 of media according to the

above second criterion. In Figure 3(b), the pear is very closed to the bean which can

be viewed as an inhomogeneous medium. From Figure 3(b) and Table 2(b), we can

determine the number M = 1 of inhomogeneous media according to the above two

criteria along with εδ = 0.02.
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(a) λ = 0.01, α = 0.0813 (b) λ = 0.1, α = 1.0174e-012

Figure 3. Detecting the number of inhomogeneous media using two or three possible esti-
mates with 1% noise data along with the exact solution (Red, Solid), initial guess
(Black, Solid, Bold) and the recovered solution (Blue, Solid, ∗), respectively, for
Example 5.1.2.

̺ ̺1 ̺2 ̺3
(a) 0.3002 0.1706 0.0856

(b) 0.1570 0.0197 0.3054

Table 2. The reconstructed radius ̺ of different cases in Figure 3 for Example 5.1.2.

5.2. Estimation of the location and the size of inhomogeneous media. In

order to estimate the location and the size of inhomogeneous media within a body, we

parameterize the boundary Γk of Ωk as Ok + ̺k(cos t, sin t), 0 6 t 6 2π, along with

β = (Ok,1, Ok,2, ̺k), that is, we use the circle to approximate the inhomogeneous

medium for every iteration.

E x am p l e 5.2.1. In this case, we suppose the inhomogeneous medium is a peanut

or a peach or a pear or a bean which is located in (0.1, 0.3) along with q0 = 1 and
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q1 = 2. The polar radius of a peanut is parameterized by

rpt =
8
25

√
cos2 t+ 1

4 sin
2 t, 0 6 t 6 2π,

the polar radius of a peach is parameterized by

rph = 6
25 − 1

15 sin t− 1
35 sin(3t), 0 6 t 6 2π,

the polar radius of a pear is parameterized by

rpr = 6
25 + 1

20 cos(3t), 0 6 t 6 2π,

and the polar radius of a bean is parameterized by

rbn = (15 + 9
50 cos t+

3
100 sin(2t))/(1 +

7
10 cos t), 0 6 t 6 2π.

In Figures 4, we can get the approximate centroid location and the size of the

inhomogeneous medium within a body using LMA with 1% noise data. In our

experiment, we can use any point and any radius as a starting guess in the domain

of the solution for these four cases. In Figures 4, we take λ0 = 0.05 and v = 10, choose

(0.4, 0.1, 0.07) as a test for starting guess, and take |F(β(s+1))−F(β(s))| < 10−5 as

a stopping criterion of iterations. From Figures 4 and Table 3, it can be seen that

we get a more accurate approximation of the location and the size for four different

cases. We can get the same results when using TRA to recover the location and the

size of the inhomogeneous medium within a body.

LSE (0.1,0.3,r)

LSSG (0.4,0.1,0.07)
(a) (0.1196,0.3096,0.2277)

(b) (0.1010,0.2418,0.2388)

(c) (0.0773,0.3012,0.2510)

(d) (0.1617,0.2951,0.2031)

Table 3. The approximate location and the size of the inhomogeneous media using TRA
with exact solution (LSE) and the starting guess (LSSG) along with 1% noise
data for Example 5.2.1.

5.3. Estimation of the shape of inhomogeneous media. From the previous

two subsections, we know that the number, the location and the size of inhomoge-

neous media can be determined. In the following, we try to recover the shape of

inhomogeneous media along with the number, the location and the size given a pri-

ori. Therefore, We can parameterize the boundary Γk of Ωk as rk(t)(cos t, sin t)+Ok
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(a) λ = 5e-7, α = 3.1548e-5 (b) λ = 5e-5, α = 2.1386e-5
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(c) λ = 5e-5, α = 1.9637e-5 (d) λ = 5e-7, α = 7.3365e-6

Figure 4. (a) peanut; (b) peach; (c) pear; (d) bean. Estimate the location and the size of
the inhomogeneous medium with 1% noise data along with exact solution (Red,
Solid), initial guess (Black, Solid, Bold) and recovered solution (Blue, Solid, ∗),
respectively, for Example 5.2.1.

with rk(t) a real-valued function of 0 6 t 6 2π, and Ok the fixed center of the

inhomogeneous medium Ωk. We apply LMA and TRA to reconstruct the shape of

inhomogeneous media.

In order to quantify the accuracy between such parametric forms of shape and the

exact ones, we take the Hausdorff distance as a nice tool to present such accuracy.

Let X and Y be two nonempty subsets of a metric space. We define their Husdorff

distance dH(X,Y ) by

dH(X,Y ) = max
{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}
,

where sup represents the supremum and inf the infimum.

The Hausdorff distance, or Hausdorff metric, also called Pompeiu-Hausdorff dis-

tance, measures how far two subsets of a metric space are from each other. Informally,
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two sets are close in the Hausdorff distance if every point of either set is close to some

point of the other set. The Hausdorff distance is the longest distance you can be

forced to travel by an adversary who chooses a point in one of the two sets, from

where you then must travel to the other set. In other words, it is the greatest of all

the distances from a point in one set to the closest point in the other set.

E x am p l e 5.3.1. In this case, we want to show the stability of our proposed

reconstruction algorithms. We assume the inhomogeneous medium is a peanut which

is located in (0.1, 0.3) along with q0 = 1 and q1 = 2. The polar radius of the peanut

is given in Example 5.2.1.

In Figure 5, we employ LMA to reconstruct the shape of the inhomogeneous

medium within a homogeneous medium along with δ = 1%, 5%, 10%, 15%, respec-

tively. We take l = 2, λ0 = 0.001, v = 10, choose c
(0)
0 = 0.01 as a starting guess, and

take |F(β(s+1))− F(β(s))| < 10−5 as a stopping criterion of iterations. In Figure 5,
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(a) δ = 1%, λ = 1e-5, α = 3.37e-6 (b) δ = 5%, λ = 1e-5, α = 3.28e-6

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(c) δ = 10%, λ = 1e-4, α = 3.32e-5 (d) δ = 15%, λ = 1e-4, α = 6.04e-4

Figure 5. Using LMA to estimate the shape of the inhomogeneous medium with four dif-
ferent noise levels along with the exact solution (Red, Solid) and the recovered
solution (Blue, Solid, ∗), respectively, for Example 5.3.1.
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the Hausdorff distances are 0.0173, 0.0351, 0.0618, 0.0830 for Figures 5(a), 5(b), 5(c)

and 5(d) along with δ = 1%, 5%, 10%, 15%, respectively. From Figure 5, it can be

seen that we can reconstruct the approximate shape of the inhomogeneous medium

within a body for four different noise levels. The smaller the error, the better the

result. The reconstruction results show that our proposed reconstruction algorithm

is stable. TRA can get the same results as LMA.

E x am p l e 5.3.2. In this case, we also assume the inhomogeneous medium is

a peanut or a peach or a pear or a bean with the approximate location and the size

given in Table 3 in Example 5.2.1.

From Table 3 in Example 5.2.1, we know the approximate location and the size

of the inhomogeneous medium for four different cases. In the following, we consider

to recover the shape of the inhomogeneous medium. We fix the location of the

inhomogeneous medium, take λ0 = 0.05 and v = 10, choose |F(β(s+1))−F(β(s))| <
10−5 as a stopping criterion of iterations, and take the size as a starting guess c

(0)
0 = ̺,

referring to Table 3 in Example 5.2.1, then we use TRA and LMA to reconstruct the

shape of the inhomogeneous medium within a homogeneous medium. In Figure 6,

the Hausdorff distances are 0.0244, 0.0249, 0.0466, 0.0769 for Figures 6(a), 6(b),

6(c), and 6(d), respectively. In Figure 7, the Hausdorff distances are 0.0244, 0.0249,

0.0636, 0.0767 for Figures 7(a), 7(b), 7(c) and 7(d), respectively. From Figures 6

and 7, it can be seen that we can get a more accurate shape of the inhomogeneous

medium within a body.

E x am p l e 5.3.3. In this case, we consider two inhomogeneous media within

a body which are a peanut and a circle. The peanut is located in (−0.2, 0.4) along

with q0 = 1 and q1 = 2 and its polar radius is parameterized by

rpt =
4
25

√
cos2 t+ 1

4 sin
2 t, 0 6 t 6 2π.

The circle is located in (0.3,−0.3) along with q2 = 3 and its radius is 0.2.

In this example, we try to reconstruct two inhomogeneous media using TRA and

LMA. We take λ0 = 0.001, v = 10, l1 = 2 and l2 = 1, choose c
(0)
0 = 0.1 as the

starting guess, and take |F(β(s+1)) − F(β(s))| < 10−2 as a stopping criterion of

iterations. In our experiment, we take the parameters λ = 1e-11 and α = 0.0022.

In Figure 8(a), we can obtain the Hausdorff distance dH = 0.0212, 4.0e-4 for peanut

and circle, respectively. Thus we can use one Hausdorff distance dH = 0.0212 to

quantify the accuracy of a multiscale medium. For Figure 8(b), we can get the same

conclusion for the Hausdorff distance dH = 0.0332. From Figure 8, we can see that

our proposed algorithms can get a more accurate shape of two inhomogeneous media

within a body.
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(0)
0 = 0.2277, l = 2, dH = 0.0244 (b) c

(0)
0 = 0.2388, l = 3, dH = 0.0249
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(c) c
(0)
0 = 0.2510, l = 3, dH = 0.0466 (d) c

(0)
0 = 0.2031, l = 2, dH = 0.0769

Figure 6. (a) peanut; (b) peach; (c) pear; (d) bean. Using TRA to estimate the shape of the
inhomogeneous medium with 1% noise data along with the exact solution (Red,
Solid) and the recovered solution (Blue, Solid, ∗), respectively, for Example 5.3.2.

E x am p l e 5.3.4. In this case, we also consider two inhomogeneous media within

a body which are a pear and a circle. The pear is located in (−0.2, 0.4) along with

q0 = 1 and q1 = 2 and its polar radius is parameterized by

rpr = 18
125 + 3

100 cos(3t), 0 6 t 6 2π, 0 6 t 6 2π.

The circle is located in (0.3,−0.3) along with q2 = 2 and its radius is 0.2.

We try to reconstruct two inhomogeneous media using TRA and LMA in this

example. We take λ0 = 0.001, v = 10, l1 = 3, and l2 = 1, choose c
(0)
0 = 0.1 as

the starting guess, and take |F(β(s+1))−F(β(s))| < 10−2 as a stopping criterion of

iterations. In our experiment, we take the parameters λ = 1e-14 and α = 0.0041.

In Figures 9(a) and 9(b), we obtain the Hausdorff distances dH = 0.0430, 0.0382

to quantify the accuracy of multiscale media, respectively. From Figure 9, we know

that the results match the exact ones very well.
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(a) λ = 5e-5, α = 3.9181e-5 (b) λ = 5e-7, α = 6.4963e-5
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(c) λ = 5e-10, α = 3.8785e-4 (d) λ = 5e-6, α = 9.8193e-5

Figure 7. (a) peanut; (b) peach; (c) pear; (d) bean. Using LMA to estimate the shape of the
inhomogeneous medium with 1% noise data along with the exact solution (Red,
Solid) and the recovered solution (Blue, Solid, ∗), respectively, for Example 5.3.2.

6. Conclusions

In this paper, we consider an inverse medium problem for the Helmholtz equation.

Our goal is to seek simple, convenient and efficient numerical algorithms to detect

the number, the location and the size of inhomogeneous media, and then to recover

the shape of inhomogeneous media from the noise data on the boundary. This inverse

problem is nonlinear and ill-posed. We should employ regularization techniques in

our proposed numerical algorithms. We propose both algorithms of TRA and LMA

to detect the salient features of inhomogeneous media within a body. Numerical

examples show that the proposed numerical approaches are efficient, feasible and

stable for reconstructing inhomogeneous media.
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(a) dHpt
= 0.0212, dHc

= 4.0e-4 (b) dHpt
= 0.0332, dHc

= 0.0019

Figure 8. (a) TRA; (b) LMA. Using TRA and LMA to reconstruct the shape of inhomoge-
neous media with 1% noise data along with the exact solution (Red, Solid) and
the recovered solution (Blue, Solid, ∗), respectively, for Example 5.3.3.
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(a) dHpr
= 0.0430, dHc

= 0.0027 (b) dHpr
= 0.0382, dHc

= 8.0e-4

Figure 9. (a) TRA; (b) LMA. Using TRA and LMA to reconstruct the shape of inhomoge-
neous media with 1% noise data along with the exact solution (Red, Solid) and
the recovered solution (Blue, Solid, ∗), respectively, for Example 5.3.4.
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