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EXISTENCE AND GLOBAL ATTRACTIVITY

OF PERIODIC SOLUTIONS

IN A HIGHER ORDER DIFFERENCE EQUATION

Chuanxi Qian and Justin Smith

Abstract. Consider the following higher order difference equation

x(n+ 1) = f
(
n, x(n)

)
+ g
(
n, x(n− k)

)
, n = 0, 1, . . .

where f(n, x) and g(n, x) : {0, 1, . . .}×[0,∞)→ [0,∞) are continuous functions
in x and periodic functions in n with period p, and k is a nonnegative integer.
We show the existence of a periodic solution {x̃(n)} under certain conditions,
and then establish a sufficient condition for {x̃(n)} to be a global attractor of
all nonnegative solutions of the equation. Applications to Riccati difference
equation and some other difference equations derived from mathematical
biology are also given.

1. Introduction

Our aim in this paper is to study the existence and global attractivity of periodic
solutions of the following higher order nonlinear difference equation
(1.1) x(n+ 1) = f

(
n, x(n)

)
+ g
(
n, x(n− k)

)
, n = 0, 1, . . .

where f(n, x) and g(n, x) : {0, 1, . . .} × [0,∞)→ [0,∞) are continuous functions in
x and periodic functions with period p in n, and k is a nonnegative integer.

A solution {x(n)}n≥−k is said to be eventually periodic with period p ∈ {1, 2, . . .}
if there is an n0 ≥ −k such that x(n) = x(n + p) for every n ≥ n0. For the case
that p = 1, such kind solutions are eventually constant, see for example, [6] and
the references therein. If n0 = −k, it is said that the solution is periodic. However,
as usual, both type of solutions will be simply called periodic [7]. The existence of
periodic solutions of difference equations has been studied by numerous authors
and many interesting results have been obtained, see, for example, [1], [2], [5]–[10],
[17]–[22], [24], [25] and the references cited therein. However, to the best of our
knowledge, no much work has been done for the equations of form (1.1) on this
topic. In addition, the study of global attractivity of periodic solutions of difference
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equations is also relatively scarce. Recently, the global attractivity of periodic
solutions of the following difference equation
(1.2) x(n+ 1) = a(n)x(n) + g

(
n, x(n− k)

)
, n = 0, 1, . . .

which is a special case of Eq. (1.1) with f(n, x) = a(n)x, has been studied in [15].
Applications to some difference equations derived from mathematical biology have
been shown in [15] also. However, the results obtained there can not be applied to
the cases when f(n, x) is a nonlinear function in x such as the equation

(1.3) x(n+ 1) = a(n)x2(n)
b(n) + x(n) + c(n) er(n)−q(n)x(n−k)

1 + er(n)−q(n)x(n−k) , n = 0, 1, . . .

where {a(n)}, {b(n)}, {c(n)}, {q(n)} and {r(n)} are nonnegative periodic sequences
with period p, and k is a nonnegative integer. When a(n) ≡ a, b(n) ≡ b, c(n) ≡ c,
q(n) ≡ q and r(n) ≡ r are all positive constants and k = 0, Eq. (1.3) reduces to

(1.4) x(n+ 1) = ax2(n)
b+ x(n) + c

er−qx(n)

1 + er−qx(n) , n = 0, 1, . . . .

Eq. (1.4) is a biological model derived from the evaluation of a perennial grass
[23]. The boundedness and the persistence of positive solutions, the existence, the
attractivity and the global asymptotic stability of the unique positive equilibrium
and the existence of periodic solutions of Eq. (1.4) have been studied in [10] and [15].
For some other recent work on the attractivity of periodic solutions of difference
equations, one may see [21], [22] and the references cited therein.

In the next section, we first show that under certain conditions, Eq. (1.1) has a
nonnegative periodic solution {x̃(n)} with period p by employing Schauder Fixed
Point Theorem. Then we establish a sufficient condition for {x̃(n)} to be a global
attractor of all nonnegative solutions of the equation. For the proof of the global
attractivity, we develop the method used in [15]. The related methods have been
used in a recent paper [16] for the global attractivity of equilibrium of a nonlinear
difference equation. In addition, some related equations have been studied by the
first author of the present paper and collaborators for some time [3, 4, 11, 14].

In Section 3, we apply the results obtained in Section 2 to Eq. (1.3) to establish
some sufficient conditions for the existence of a periodic solution {x̃(n)} and for
{x̃(n)} to be a global attractor of all nonnegative solutions of the equation. Some
interesting special cases of Eq. (1.3) are also discussed. In addition, we show that
our results can be applied to the following Riccati difference equation

(1.5) x(n+ 1) = α(n)x(n) + β(n)
γ(n)x(n) + δ(n) , n = 0, 1, . . .

where {α(n)}, {β(n)}, {γ(n)} and {δ(n)} are nonnegative periodic sequences with
period p. Riccati difference equations appear in mathematical biology. For instance,
the discrete logistic model without delay is a Riccati difference equation. See
[2], [12], [13] and [18]. Various properties and applications of Riccati difference
equations have been studied by numerous authors, see for example, [7], [8] and the
references cited therein. However, it seems that there are no many results on the
existence and global attractivity of periodic solutions of these kinds of equations.
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2. Main results

The following theorem provides a sufficient condition for the existence of nonne-
gative periodic solutions of Eq. (1.1). For the sake of convenience, we adopt the
notation

∏n
i=m s(i) = 1 and

∑n
i=m s(i) = 0 whenever {s(n)} is a real sequence and

m > n in the following discussion.

Theorem 1. Assume that there is a nonnegative periodic sequence {a(n)} with
period p such that

(2.1) â =
p−1∏
i=0

a(i) < 1 , and f(n, x) ≤ a(n)x for n = 0, 1, . . . , p− 1 and x ≥ 0

and that f(n, x)− a(n)x is nonincreasing in x. Suppose also that g(n, x) is nonin-
creasing in x and that there is a positive constant B such that

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)[
f(j, B)− a(j)B + g(j, B)

]
≥ 0 , n = 0, 1, . . . , p− 1(2.2)

and

1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)
g(j, 0) ≤ B , n = 0, 1, . . . , p− 1 .(2.3)

Then Eq. (1.1) has a nonnegative periodic solution {x̃(n)} with period p.

Proof. Let x = {x(n)}∞n=−k be a real sequence and let

X = {x : x satisfies x(n+ p) = x(n), n ≥ −k} .

Then X is a normed vector space with the usual linear operations and the norm
‖x‖ = sup0≤n≤p−1 |x(n)|. Let Λ be a subset of X defined by

Λ = {x : x ∈ X with 0 ≤ x(n) ≤ B, n ≥ −k} .

It is easy to see that Λ is a compact and convex subset of X.
Now, define a mapping T on Λ as the following: for each x = {x(n)} ∈ Λ,

(2.4) Tx(n) = 1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)[
f
(
j, x(j)

)
− a(j)x(j) + g

(
j, x(j − k)

)]
.

Clearly T is continuous since f and g are periodic in the first variable and continuous
in the second one. We show that T : Λ→ Λ. In fact, by noting f(n, x)− a(n)x and
g(n, x) are nonincreasing in x, and (2.2) and (2.3) hold, it is easy to see that

Tx(n) ≥ 1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)[
f(j, B)− a(j)B + g(j, B)

]
≥ 0
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and

Tx(n) ≤ 1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)
g(j, 0) ≤ B .

Next, observe that

Tx(n+ p) = 1
1− â

n+2p−1∑
j=n+p

( n+2p−1∏
i=j+1

a(i)
)[
f
(
j, x(j)

)
− a(j)x(j) + g

(
j, x(j − k)

)]

= 1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i+ p)
)[
f
(
j + p, x(j + p)

)
− a(j + p)x(j + p) + g

(
j + p, x(j + p− k)

)]
= 1

1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)[
f
(
j, x(j)

)
− a(j)x(j) + g

(
j, x(j − k)

)]
= Tx(n) .

Hence, {Tx(n)} is periodic with period p and so Tx ∈ Λ. Then by Schauder Fixed
Point Theorem, T has a fixed point x̃ = {x̃(n)} ∈ Λ. We claim that x̃ is a solution
of Eq. (1.1). In fact, by noting

∏n+p
i=n+1 a(i) =

∏p−1
i=0 a(i) = â,

∏n+p
i=n+p+1 a(i) = 1,

f(n + p, x̃(n + p)) = f(n, x̃(n)), g(n + p, x̃(n + p − k)) = g(n, x̃(n − k)) and
T x̃(n) = x̃(n), we see that

T x̃(n+ 1) = 1
1− â

n+p∑
j=n+1

( n+p∏
i=j+1

a(i)
)[
f
(
j, x̃(j)

)
− a(j)x̃(j) + g

(
j, x̃(j − k)

)]

= 1
1− â

n+p−1∑
j=n

( n+p∏
i=j+1

a(i)
)[
f
(
j, x̃(j)

)
− a(j)x̃(j) + g

(
j, x̃(j − k)

)]
− 1

1− â

( n+p∏
i=n+1

a(i)
)[
f
(
n, x̃(n)

)
− a(n)x̃(n) + g

(
n, x̃(n− k)

)]
+ 1

1− â

( n+p∏
i=n+p+1

a(i)
)[
f
(
n+ p, x̃(n+ p)

)
− a(n+ p)x̃(n+ p)

+ g
(
n+ p, x̃(n+ p− k)

)]
= 1

1− â

n+p−1∑
j=n

( n+p∏
i=j+1

a(i)
)[
f
(
j, x̃(j)

)
− a(j)x̃(j) + g

(
j, x̃(j − k)

)]
− â

1− â
[
f
(
n, x̃(n)

)
− a(n)x̃(n) + g

(
n, x̃(n− k)

)]
+ 1

1− â
[
f
(
n, x̃(n)

)
− a(n)x̃(n) + g

(
n, x̃(n− k)

)]
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= a(n+ p)
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)[
f
(
j, x̃(j)

)
− a(j)x̃(j) + g

(
j, x̃(j − k)

)]
+ f

(
n, x̃(n)

)
− a(n)x̃(n) + g

(
n, x̃(n− k)

)
= a(n)T x̃(n) + f

(
n, x̃(n)

)
− a(n)x̃(n) + g

(
n, x̃(n− k)

)
= f

(
n, x̃(n)

)
+ g
(
n, x̃(n− k)

)
= f

(
n, T x̃(n)

)
+ g
(
n, T x̃(n− k)

)
.

Hence, {T x̃(n)} satisfies Eq. (1.1) and so {T x̃(n)}, that is {x̃(n)}, is a periodic
solution of Eq. (1.1) with period p. The proof is complete. �

The following theorem provides a sufficient condition for a periodic solution of
Eq. (1.1) to be a global attractor of all nonnegative solutions of Eq. (1.1). This
theorem is an extension and improvement of the corresponding result obtained in
[15] for Eq. (1.2). We relax the condition

0 < a(n) ≤ 1 and a(n) 6≡ 1 , n = 0, 1, . . . , p− 1

assumed in [15] to the more general condition

p−1∏
i=0

a(i) < 1 and a(n) ≥ 0 , n = 0, 1, . . . , p− 1

which has been assumed above in the hypotheses of Theorem 1 for the existence of
periodic solutions. This relaxation of the condition makes the result more applicable.

Theorem 2. Assume that f(n, x) is nondecreasing in x and there is a nonnega-
tive sequence {a(n)} with period p such that (2.1) holds and f(n, x) − a(n)x is
nonincreasing in x. Suppose also that g(n, x) is nonincreasing in x and there is a
nonnegative periodic sequence {L(n)} with period p such that

|g(n, x)− g(n, y)| ≤ L(n)|x− y| , n = 0, 1, . . . , p− 1(2.5)

and that either

a(n) ≤ 1 and
n+k∑
j=n

( n+k∏
i=j+1

a(i)
)
L(j) < 1 , n = 0, 1, . . . , p− 1(2.6)

or
n+k+p−1∑

j=n

( n+k+p−1∏
i=j+1

a(i)
)
L(j) < 1 , n = 0, 1, . . . , p− 1 .(2.7)

If Eq. (1.1) has a nonnegative periodic solution {x̃(n)} with period p, then {x̃(n)}
is the only periodic solution of Eq. (1.1) and {x̃(n)} is a global attractor of all
nonnegative solutions of Eq. (1.1) in the sense that every nonnegative solution
{x(n)} of Eq. (1.1) satisfies

(2.8) lim
n→∞

(
x(n)− x̃(n)

)
= 0 .
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Proof. Clearly, if we can show that every nonnegative solution of Eq. (1.1)
converges to {x̃(n)}, then {x̃(n)} is the unique periodic solution. Let y(n) =
x(n)− x̃(n). Then {y(n)} satisfies

y(n+ 1) + x̃(n+ 1) = f
(
n, y(n) + x̃(n)

)
+ g
(
n, y(n− k) + x̃(n− k)

)
.

Since {x̃(n)} is a solution of Eq. (1.1), x̃(n+1) = f(n, x̃(n))+g(n, x̃(n−k)). Hence,
it follows that

y(n+ 1) = f
(
n, y(n) + x̃(n)

)
− f

(
n, x̃(n)

)
+ g
(
n, y(n− k) + x̃(n− k)

)
− g
(
n, x̃(n− k)

)
.(2.9)

First, assume that {x(n)} does not oscillate about {x̃(n)}. Then, {y(n)} is either
eventually positive or eventually negative. We assume that {y(n)} is eventually
positive. The proof for the case that {y(n)} is eventually negative is similar and
will be omitted. Hence there is a positive integer n0 such that y(n) > 0, n ≥ n0.
Then by noting that g is nonincreasing in x, it follows from (2.9) that
(2.10) y(n+ 1) ≤ f

(
n, y(n) + x̃(n)

)
− f

(
n, x̃(n)

)
, n ≥ n0 + k .

Since f(n, x)− a(n)x is nonincreasing in x also,
(2.11) f

(
n, y(n)+ x̃(n)

)
−a(n)

(
y(n)+ x̃(n)

)
≤ f

(
n, x̃(n)

)
−a(n)x̃(n) , n ≥ n0 .

Hence, (2.10) and (2.11) yield
y(n+ 1) ≤ a(n)

(
y(n) + x̃(n)

)
− a(n)x̃(n) = a(n)y(n) , n ≥ n0 + k

and so it follows that

y(n) ≤
( n−1∏
i=n0+k

a(i)
)
y(n0 + k) , n ≥ n0 + k .

By noting a(n) ≥ 0, a(n) is p-periodic and
∏p−1
i=0 a(i) < 1, we see that

∏n−1
i=n0+k a(i)→

0 as n→∞. Hence y(n)→ 0 as n→∞ and so (2.8) holds.
Next, assume that {x(n)} oscillates about {x̃(n)} and so {y(n)} oscillates about

zero. Then there is an increasing sequence {nt} of positive integers with n1 ≥ k
such that y(n1) ≤ 0 and for t = 1, 2, . . .

y(n) > 0 for n2t−1 < n ≤ n2t(2.12)

and

y(n) ≤ 0 for n2t < n ≤ n2t+1 .(2.13)
We claim that when n1 < n ≤ n2,

(2.14) y(n) ≤
n−1∑
j=n1

( n−1∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]
.

In fact, from (2.9) we see that
y(n1 + 1) = f

(
n1, y(n1) + x̃(n1)

)
− f

(
n1, x̃(n1)

)
+ g
(
n1, y(n1 − k) + x̃(n1 − k)

)
− g
(
n1, x̃(n1 − k)

)
.(2.15)



EXISTENCE AND GLOBAL ATTRACTIVITY OF PERIODIC SOLUTIONS 97

Since y(n1) ≤ 0 and f(n, x) is nondecreasing in x, f(n1, y(n1)+x̃(n1)) ≤ f(n1, x̃(n1)).
Hence, it follows from (2.15) that

y(n1 + 1) ≤ g
(
n1, y(n1 − k) + x̃(n1 − k)

)
− g
(
n1, x̃(n1 − k)

)
,

that is, (2.14) holds when n = n1 + 1. Next, assume that (2.14) holds when n = m
with n1 < m < n2,

(2.16) y(m) ≤
m−1∑
j=n1

( m−1∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]
.

From (2.9) we see that

y(m+ 1)− a(m)y(m) = f
(
m, y(m) + x̃(m)

)
− f

(
m, x̃(m)

)
− a(m)y(m)

+ g
(
m, y(m− k) + x̃(m− k)

)
− g
(
m, x̃(m− k)

)
.(2.17)

Since f(n, x)− a(n)x is nonincreasing in x and y(m) > 0,

f
(
m, y(m) + x̃(m)

)
− a(m)

(
y(m) + x̃(m)

)
≤ f

(
m, x̃(m)

)
− a(m)x̃(m)

which yields

f
(
m, y(m) + x̃(m)

)
− f

(
m, x̃(m)

)
− a(m)y(m) ≤ 0 .

Hence, it follows from (2.17) that

y(m+ 1) ≤ a(m)y(m) + g
(
m, y(m− k) + x̃(m− k)

)
− g
(
m, x̃(m− k)

)
.

Then by noting (2.16), we see that

y(m+ 1) ≤ a(m)
m−1∑
j=n1

( m−1∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]
+ g
(
m, y(m− k) + x̃(m− k)

)
− g
(
m, x̃(m− k)

)
=

m∑
j=n1

( m∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]
,

that is, (2.14) holds when n = m+ 1. Therefore, by mathematical induction, (2.14)
holds when n1 < n ≤ n2.

Since g(n, x) is periodic in n with period p and (2.5) holds, we see that

|g(n, x)− g(n, y)| ≤ L(n)|x− y| , n = 0, 1, . . . .

Then it follows from (2.14) that when n1 < n ≤ n2

y(n) ≤
n−1∑
j=n1

( n−1∏
i=j+1

a(i)
)∣∣g(j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)∣∣
≤

n−1∑
j=n1

( n−1∏
i=j+1

a(i)
)
L(j)

∣∣y(j − k)
∣∣ .(2.18)
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First assume that (2.6) holds. By noting the periodic property of {a(n)} and
{L(n)}, we see that there is a positive constant c < 1 such that

(2.19)
n+k∑
j=n

( n+k∏
i=j+1

a(i)
)
L(j) ≤ c , n = 0, 1, . . . .

Then by an argument similar to that used in the proof of Theorem 1 in [15], we may
show that there is a subsequence {ntm} of {nt} with ntm+1 ≥ ntm+k, m = 1, 2, . . .
such that

(2.20)
∣∣y(n)

∣∣ ≤ cm max
n1−k≤s≤n1

∣∣y(s)
∣∣ for n > ntm .

For the sake of completeness, we give detail of the proof in the following. First, we
claim that

(2.21) y(n) ≤ c max
n1−k≤s≤n1

∣∣y(s)
∣∣ , n1 < n ≤ n2 .

To this end, consider the two cases n2 ≤ n1 +k+1 and n2 > n1 +k+1, respectively.
When n2 ≤ n1 + k + 1, then for any n1 < n ≤ n2, n − k − 1 ≤ n1 and so (2.18)
yields

y(n) ≤
n−1∑
j=n1

( n−1∏
i=j+1

a(i)
)
L(j) max

n1−k≤s≤n1
|y(s)|

≤
n−1∑

j=n−k−1

( n−1∏
i=j+1

a(i)
)
L(j) max

n1−k≤s≤n1
|y(s)| .(2.22)

Then by noting (2.19), we see that (2.21) holds. Next, consider the case that
n2 > n1 + k+ 1. When n1 < n ≤ n1 + k+ 1, as we have shown above, (2.21) holds.
Hence, we only need to show that (2.21) holds also when n1 + k + 1 < n ≤ n2. To
this end, first we show that

(2.23) y(n) ≤ a(n− 1)y(n− 1) , n1 + k + 1 < n ≤ n2 .

In fact, by noting that when n1 + k+ 1 < n ≤ n2, y(n− 1) > 0 and f(n, x)− a(n)x
is nonincreasing in x, we see that

f
(
n− 1, y(n− 1) + x̃(n− 1)

)
− a(n− 1)

(
y(n− 1) + x̃(n− 1)

)
≤ f

(
n− 1, x̃(n− 1)

)
− a(n− 1)x̃(n− 1)

which yields

f
(
n− 1, y(n− 1) + x̃(n− 1)

)
− f

(
n− 1, x̃(n− 1)

)
≤ a(n− 1)y(n− 1) .

In addition, by noting that when n1 + k + 1 < n ≤ n2, y(n− 1− k) > 0 and g(·, x)
is nonincreasing in x, we see that

g
(
n− 1, y(n− 1− k) + x̃(n− 1− k)

)
− g
(
n− 1, x̃(n− 1− k)

)
≤ 0 .



EXISTENCE AND GLOBAL ATTRACTIVITY OF PERIODIC SOLUTIONS 99

Then it follows from (2.9) that

y(n) = f(n− 1, y(n− 1) + x̃(n− 1))− f(n− 1, x̃(n− 1))
+ g(n− 1, y(n− 1− k) + x̃(n− 1− k))− g(n− 1, x̃(n− 1− k))
≤ a(n− 1)y(n− 1)

and so (2.23) holds. Then by noting a(n) ∈ [0, 1], it follows that y(n2) ≤ y(n2−1) ≤
· · · ≤ y(n1 + 1 + k), which implies that (2.21) holds when n1 + k + 1 < n ≤ n2.
Hence for any n1 < n ≤ n2, (2.21) holds. Then by a similar argument, we may
show that

(2.24) y(n) ≥ −c max
n2−k≤s≤n2

|y(s)| , n2 < n ≤ n3 .

To this end, we first claim that when n2 < n ≤ n3,

(2.25) y(n) ≥
n−1∑
j=n2

( n−1∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]
.

From (2.9) we see that

y(n2 + 1) = f
(
n2, y(n2) + x̃(n2)

)
− f

(
n2, x̃(n2)

)
+ g
(
n2, y(n2 − k) + x̃(n2 − k)

)
− g
(
n2, x̃(n2 − k)

)
.(2.26)

Since y(n2) > 0 and f(n, x) is nondecreasing in x, f(n2, y(n2)+x̃(n2)) ≥ f(n2, x̃(n2)).
Hence, it follows from (2.26) that

y(n2 + 1) ≥ g
(
n2, y(n2 − k) + x̃(n2 − k)

)
− g
(
n2, x̃(n2 − k)

)
,

that is, (2.25) holds when n = n2 + 1. Next, assume that (2.25) holds when n = m
with n2 < m < n3,

(2.27) y(m) ≥
m−1∑
j=n2

( m−1∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]
.

From (2.9) we see that

y(m+ 1)− a(m)y(m) = f
(
m, y(m) + x̃(m)

)
− f

(
m, x̃(m)

)
− a(m)y(m)

+ g
(
m, y(m− k) + x̃(m− k)

)
− g
(
m, x̃(m− k)

)
.(2.28)

Since f(n, x)− a(n)x is nonincreasing in x and y(m) ≤ 0,

f
(
m, y(m) + x̃(m)

)
− a(m)

(
y(m) + x̃(m)

)
≥ f

(
m, x̃(m)

)
− a(m)x̃(m)

which yields

f
(
m, y(m) + x̃(m)

)
− f

(
m, x̃(m)

)
− a(m)y(m) ≥ 0 .

Hence, it follows from (2.28) that

y(m+ 1) ≥ a(m)y(m) + g
(
m, y(m− k) + x̃(m− k)

)
− g
(
m, x̃(m− k)

)
.
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Then by noting (2.27) we see that

y(m+ 1) ≥ a(m)
m−1∑
j=n2

( m−1∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]
+ g
(
m, y(m− k) + x̃(m− k)

)
− g
(
m, x̃(m− k)

)
=

m∑
j=n2

( m∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]
,

that is, (2.25) holds when n = m+ 1. Therefore, by mathematical induction, (2.25)
holds when n2 < n ≤ n3.

As before, since g(n, x) is periodic in n with period p and (2.5) holds, we see
that

|g(n, x)− g(n, y)| ≤ L(n)|x− y| , n = 0, 1, . . . .

It follows from (2.25) that when n2 < n ≤ n3, as y(n) ≤ 0,

|y(n)| = −y(n) ≤
∣∣∣ n−1∑
j=n2

( n−1∏
i=j+1

a(i)
)[
g
(
j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)]∣∣∣
≤

n−1∑
j=n2

( n−1∏
i=j+1

a(i)
)∣∣g(j, y(j − k) + x̃(j − k)

)
− g
(
j, x̃(j − k)

)∣∣
≤

n−1∑
j=n2

( n−1∏
i=j+1

a(i)
)
L(j)

∣∣y(j − k)
∣∣ .(2.29)

To show (2.24) holds, we consider the two cases n3 ≤ n2 +k+1 and n3 > n2 +k+1,
respectively. When n3 ≤ n2 + k + 1, then for any n2 < n ≤ n3, n− k− 1 ≤ n2 and
so (2.29) yields

−y(n) ≤
n−1∑
j=n2

( n−1∏
i=j+1

a(i)
)
L(j) max

n2−k≤s≤n2

∣∣y(s)
∣∣

≤
n−1∑

j=n−k−1

( n−1∏
i=j+1

a(i)
)
L(j) max

n2−k≤s≤n2

∣∣y(s)
∣∣ .(2.30)

By noting (2.19),
−y(n) ≤ c max

n2−k≤s≤n2

∣∣y(s)
∣∣ ,

thus (2.24) holds. Next, consider the case that n3 > n2 + k + 1. When n2 < n ≤
n2 + k + 1, as we have shown above, (2.24) holds. Hence, we only need to show
that (2.24) holds also when n2 + k + 1 < n ≤ n3. To this end, we first show that

(2.31) y(n) ≥ a(n− 1)y(n− 1) , n2 + k + 1 < n ≤ n3 .
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By noting that when n2 + k + 1 < n ≤ n3, y(n − 1) ≤ 0 and f(n, x) − a(n)x is
nonincreasing in x, we see that

f
(
n− 1, y(n− 1) + x̃(n− 1)

)
− a(n− 1)

(
y(n− 1) + x̃(n− 1)

)
≥ f

(
n− 1, x̃(n− 1)

)
− a(n− 1)x̃(n− 1)

which yields

f
(
n− 1, y(n− 1) + x̃(n− 1)

)
− f

(
n− 1, x̃(n− 1)

)
≥ a(n− 1)y(n− 1) .

In addition, by noting that when n2 + k + 1 < n ≤ n3, y(n− 1− k) ≤ 0 and g(·, x)
is nonincreasing in x, we see that

g
(
n− 1, y(n− 1− k) + x̃(n− 1− k)

)
− g
(
n− 1, x̃(n− 1− k)

)
≥ 0 .

Then it follows from (2.9) that

y(n) = f
(
n− 1, y(n− 1) + x̃(n− 1)

)
− f

(
n− 1, x̃(n− 1)

)
+ g
(
n− 1, y(n− 1− k) + x̃(n− 1− k)

)
− g
(
n− 1, x̃(n− 1− k)

)
≥ a(n− 1)y(n− 1)

and so (2.31) holds. Then by noting a(n) ∈ [0, 1], as y(n) ≤ 0, it follows that
y(n3) ≥ y(n3 − 1) ≥ · · · ≥ y(n2 + 1 + k), which implies that (2.24) holds when
n2 + k + 1 < n ≤ n3. Hence, for any n2 < n ≤ n3, (2.24) holds.

If n2 − k > n1, we see that when n2 − k ≤ n ≤ n2, (2.21) holds and so

max
n2−k≤s≤n2

|y(s)| ≤ c max
n1−k≤s≤n1

|y(s)| ≤ max
n1−k≤s≤n1

|y(s)|.

If n2−k < n1, we see that (2.21) holds when n1 < n ≤ n2; while when n2−k ≤ n ≤
n1, by noting n1 − k < n2 − k, we see that |y(n)| ≤ maxn1−k≤s≤n1 |y(s)|. Hence,
from the above discussion, we see that maxn2−k≤s≤n2 |y(s)| ≤ maxn1−k≤s≤n1 |y(s)|
and so it follows from (2.24) that when n2 < n ≤ n3,

(2.32) y(n) ≥ −c max
n1−k≤s≤n1

∣∣y(s)
∣∣ .

By combining (2.21) and (2.32), we see that∣∣y(n)
∣∣ ≤ c max

n1−k≤s≤n1

∣∣y(s)
∣∣ for n1 < n ≤ n3 .

Then by the method of steps, we may show that∣∣y(n)
∣∣ ≤ c max

n1−k≤s≤n1

∣∣y(s)
∣∣ for n > n1 .

Now, by choosing an nr2 ∈ {nr} with nr2 > n1 + k and then by using a similar
argument, we may show that∣∣y(n)

∣∣ ≤ c2 max
n1−k≤s≤n1

∣∣y(s)
∣∣ for n > nr2 .

Finally, by induction, we may show that for any positive integer m > 1, (2.20)
holds. Since 0 < c < 1, we see that y(n)→ 0 as n→∞ and then it follows that
(2.8) holds.
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Next, assume that (2.7) holds. By the periodic property of {a(n)} and {L(n)},
there is a positive constant d < 1 such that

(2.33)
n+k+p−1∑

j=n

( n+k+p−1∏
i=j+1

a(i)
)
L(j) ≤ d , n = 0, 1, . . . .

We claim that when n1 < n ≤ n2,

(2.34) y(n) ≤ d max
n1−k≤s≤n1+p−1

∣∣y(s)
∣∣ .

To this end, consider the two cases n2 ≤ n1 +k+p and n2 > n1 +k+p, respectively.
When n2 ≤ n1 + k + p, then for any n1 < n ≤ n2, n − k − p ≤ n1 and so (2.18)
yields

y(n) ≤
n−1∑
j=n1

( n−1∏
i=j+1

a(i)
)
L(j) max

n1−k≤s≤n1+p−1

∣∣y(s)
∣∣

≤
n−1∑

j=n−k−p

( n−1∏
i=j+1

a(i)
)
L(j) max

n1−k≤s≤n1+p−1

∣∣y(s)
∣∣ .

Then by noting (2.33), we see that (2.34) holds. Next, consider the case that
n2 > n1 + k+ p. When n1 < n ≤ n1 + k+ p, as we have shown above, (2.34) holds.
Hence, we only need to show that (2.34) holds also when n1 + k + p < n ≤ n2.
First, by the same argument used for the case (2.6) above, we may have

(2.35) y(n) ≤ a(n− 1)y(n− 1) , n1 + k + 1 < n ≤ n2 .

Hence,

y(n1 + k + p+ 1) ≤ a(n1 + k + p)y(n1 + k + p)
≤ a(n1 + k + p)a(n1 + k + p− 1)y(n1 + k + p− 1)

≤ · · · ≤
( n1+k+p∏
i=n1+k+1

a(i)
)
y(n1 + k + 1) < y(n1 + k + 1)

and similarly,

y(n1 + k + p+ 2) < y(n1 + k + 2), . . . , y(n2) < y(n2 − p) .

Since y(n) satisfies (2.34) when n1 < n ≤ n1 + k + p, from the above inequalities
we see that y(n) satisfies (2.34) also when n1 + k + p < n ≤ n2. Hence, (2.34)
holds when n1 < n ≤ n2. Then by an argument similar to that used for the case
when (2.6) holds, we may show that there is a subsequence {ntl} of {nt} with
ntl+1 ≥ ntl + k, l = 1, 2, . . . such that∣∣y(n)

∣∣ ≤ dl max
n1−k≤s≤n1+p−1

∣∣y(s)
∣∣ for n > ntl .

Since 0 < d < 1, we see that y(n) → 0 as n → ∞ and then it follows that (2.8)
holds. The proof is complete. �

By combining Theorems 1 and 2, we have the following result immediately.
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Theorem 3. Assume that f(n, x) is nondecreasing in x and there is a nonnega-
tive sequence {a(n)} with period p such that (2.1) holds and f(n, x) − a(n)x is
nonincreasing in x. Suppose also that g(n, x) is nonincreasing in x and there are a
positive constant B and a nonnegative periodic sequence {L(n)} with period p such
that (2.2), (2.3), (2.5) and either (2.6) or (2.7) hold. Then Eq. (1.1) has a unique
nonnegative periodic solution {x̃(n)} with period p and {x̃(n)} is a global attractor
of all nonnegative solutions of Eq. (1.1).

When f(n, x) = a(n)x where {a(n)} is a nonnegative periodic sequence with
period p, Eq. (1.1) reduces to Eq. (1.2). Clearly, (2.2) holds for any positive B, and
(2.3) holds when B is large. Hence, the following conclusion is a direct consequence
of Theorem 3.
Corollary 1. Assume that

∏p−1
i=0 a(i) < 1, and that g(n, x) is nonincreasing in x

and there is a nonnegative periodic sequence {L(n)} with period p such that (2.5)
and either (2.6) or (2.7) hold. Then Eq. (1.2) has a unique nonnegative periodic
solution {x̃(n)} with period p and {x̃(n)} is a global attractor of all nonnegative
solutions of Eq. (1.2).

When g is free of x, that is, g(n, x) = b(n) where {b(n)} is a nonnegative periodic
sequence with period p, Eq. (1.1) reduces to the first order equation
(2.36) x(n+ 1) = f

(
n, x(n)

)
+ b(n) .

Clearly, (2.5) and (2.7) hold with L(n) ≡ 0. (2.2) and (2.3) become

(2.37)
n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)[
f(j, B)− a(j)B + b(j)

]
≥ 0 , n = 0, 1, . . . , p− 1

and

(2.38) 1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)
b(j) ≤ B , n = 0, 1, . . . , p− 1

respectively. Hence, the following conclusion is a direct consequence of Theorem 3.
Corollary 2. Assume that f(n, x) is nondecreasing in x and there is a nonne-
gative sequence {a(n)} with period p such that (2.1) holds and f(n, x)− a(n)x is
nonincreasing in x, and that there is a positive constant B such that (2.37) and
(2.38) hold. Then Eq. (2.36) has a unique nonnegative periodic solution {x̃(n)} with
period p and {x̃(n)} is a global attractor of all nonnegative solutions of Eq. (2.36).

In particular, when f(n, x) = a(n)x and g(n, x) = b(n) where {a(n)} and {b(n)}
are nonnegative periodic sequences with period p, Eq. (1.1) reduces to the following
first order linear equation
(2.39) x(n+ 1) = a(n)x(n) + b(n) .
From the above we have the following conclusion immediately.
Corollary 3. Assume that

∏p−1
i=0 a(i) < 1. Then Eq. (2.39) has a unique nonnega-

tive periodic solution {x̃(n)} with period p and {x̃(n)} is a global attractor of all
nonnegative solutions of Eq. (2.39).
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Remark 1. Recently, bounded and periodic solutions of the linear first order
difference equation have been studied extensively in [21]. Several interesting results
are obtained, one of which is the following: if {a(n)} and {b(n)} are two periodic
sequences with period p and

∏p−1
i=0 a(i) is different from zero and one, then Eq. (2.39)

has a unique p-periodic solution {x̃(n)}. Furthermore, if |
∏p−1
i=0 a(i)| < 1, then

every solution of Eq. (2.39) converges geometrically to {x̃(n)} as n→∞, and it is
getting away geometrically from {x̃(n)} as n→ −∞. Comparing this result with
Corollary 3, we see that {a(n)} and {b(n)} are not required to be nonnegative
and the conclusion is stronger in this result, but a(n) 6= 0, n = 0, 1, 2, . . . is not
required in Corollary 3.

3. Applications

In this section, we apply the results obtained above to some equations derived
from applications. First consider the following equation mentioned in Section 1

(3.1) x(n+ 1) = a(n)x2(n)
b(n) + x(n) + c(n) er(n)−q(n)x(n−k)

1 + er(n)−q(n)x(n−k) , n = 0, 1, . . .

where {a(n)}, {b(n)}, {c(n)}, {q(n)} and {r(n)} are nonnegative periodic sequences
with period p, and k is a nonnegative integer. Eq. (3.1) is in the form of Eq. (1.1)
with

f(n, x) = a(n)x2

b(n) + x
and g(n, x) = c(n) er(n)−q(n)x

1 + er(n)−q(n)x .

Clearly, f is nondecreasing in x and f(n, x) ≤ a(n)x. Noting

d

dx
(f(n, x)− a(n)x)′ = − a(n)b2(n)

(b(n) + x)2 ≤ 0

we see that f(n, x)− a(n)x is nonincreasing in x. Observe that

d

dx

(
g(n, x)

)
= −c(n)q(n) er(n)−q(n)x

(1 + er(n)−q(n)x)2

and

d2

dx2

(
g(n, x)

)
= c(n)q2(n)e

r(n)−q(n)x(1− er(n)−q(n)x)
(1 + er(n)−q(n)x)3 .

Clearly, g(n, x) is nonincreasing in x, and for each n, |dg(n,x)
dx | takes maximum

when x = r(n)
q(n) and |dg(n,x)

dx |
x= r(n)

q(n)
= c(n)q(n)

4 . Hence, g(n, x) is L-Lipschitz in x

with L(n) = c(n)q(n)
4 for each n. Then by Theorems 1 and 2, we have the following

conclusion immediately.
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Theorem 4. Assume that
∏p−1
i=0 a(i) < 1, and that there is a positive number B

such that
n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)[
c(j) er(j)−q(j)B

1 + er(j)−q(j)B −
a(j)b(j)B
b(j) +B

]
≥ 0 ,

n = 0, 1, . . . , p− 1(3.2)

and

1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

a(i)
)
c(j) er(j)

1 + er(j) ≤ B , n = 0, 1, . . . , p− 1(3.3)

where â =
∏p−1
i=0 a(i). Then Eq. (3.1) has a nonnegative periodic solution {x̃(n)}

with period p. Furthermore, if either

a(n) ≤ 1 and
n+k∑
j=n

( n+k∏
i=j+1

a(i)
)c(j)q(j)

4 < 1 , n = 0, 1, . . . , p− 1(3.4)

or
n+k+p−1∑

j=n

( n+k+p−1∏
i=j+1

a(i)
)c(j)q(j)

4 < 1 , n = 0, 1, . . . , p− 1 ,(3.5)

then Eq. (3.1) has a unique nonnegative periodic solution {x̃(n)} with period p and
{x̃(n)} is a global attractor of all nonnegative solutions of Eq. (3.1).

Clearly, if

c(n) er(n)−q(n)

1 + er(n)−q(n) ≥
a(n)b(n)
b(n) + 1 , n = 0, 1, . . . , p− 1(3.6)

and

c(n) er(n)

1 + er(n) ≤
1− â∑n+p−1

j=n

(∏n+p−1
i=j+1 a(i)

) , n = 0, 1, . . . , p− 1(3.7)

then (3.2) and (3.3) hold with B = 1. Hence, the following corollary is a direct
consequence of the above theorem.

Corollary 4. Assume that
∏p−1
i=0 a(i) < 1, and that (3.6) and (3.7) hold. Then

Eq. (3.1) has a nonnegative periodic solution {x̃(n)}. Furthermore, if either (3.4)
or (3.5) holds also, then {x̃(n)} is the only periodic solution of Eq. (3.1) and it is
a global attractor of all nonnegative solutions of Eq. (3.1).

Next, we consider some special cases of Eq. (3.1). If a(n)b(n) ≡ 0, then (3.2)
holds for any B and (3.3) holds when B is large. Hence the following corollary is a
direct consequence of Theorem 4.
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Corollary 5. Assume that a(n)b(n) ≡ 0 and
∏p−1
i=0 a(i) < 1. Then Eq. (3.1)

has a nonnegative periodic solution {x̃(n)}. Furthermore, if either (3.4) or (3.5)
holds, then {x̃(n)} is the only periodic solution and it is a global attractor of all
nonnegative solutions of Eq. (3.1).

In particular, when a(n) ≡ 0, Eq. (3.1) reduces to

(3.8) x(n+ 1) = c(n) er(n)−q(n)x(n−k)

1 + er(n)−q(n)x(n−k) , n = 0, 1, . . .

and the following result is a direct consequence of Corollary 5.

Corollary 6. Eq. (3.8) has a unique nonnegative periodic solution {x̃(n)} which
is also a global attractor of all nonnegative solutions of Eq. (3.8).

When b(n) ≡ 0, Eq. (1.1) reduces to

(3.9) x(n+ 1) = a(n)x(n) + c(n) er(n)−q(n)x(n−k)

1 + er(n)−q(n)x(n−k) , n = 0, 1, . . . .

The following result comes from Corollary 5 immediately.

Corollary 7. Assume that
∏p−1
i=0 a(i) < 1. Then Eq. (3.9) has a nonnegative

periodic solution {x̃(n)}. If either (3.4) or (3.5) holds, then {x̃(n)} is the only
periodic solution and it is a global attractor of all nonnegative solutions of Eq. (3.9).

In addition, when q(n) ≡ 0, Eq. (3.1) reduces to

(3.10) x(n+ 1) = a(n)x2(n)
b(n) + x(n) + c(n) er(n)

1 + er(n) , n = 0, 1, . . . .

In this case, (3.5) holds automatically. Hence, the following conclusion is a direct
consequence of Theorem 4 and Corollary 4.

Corollary 8. Assume that
∏p−1
i=0 a(i) < 1. Suppose also either there is a positive

number B such that (3.2) and (3.3) hold with q(n) ≡ 0, or in particular (3.6)
and (3.7) hold with q(n) ≡ 0. Then Eq. (3.10) has a unique nonnegative periodic
solution {x̃(n)} with period p and {x̃(n)} is a global attractor of all nonnegative
solutions of Eq. (3.10).

Next, consider the difference equation

(3.11) x(n+ 1) = α(n)x(n)
γ(n)x(n) + δ(n) + β(n)

µ(n)x(n− k) + η(n) , n = 0, 1, . . .

where {α(n)}, {β(n)}, {γ(n)}, {δ(n)}, {µ(n)} and {η(n)} are nonnegative se-
quences. Eq. (3.11) is in the form of Eq. (1.1) with

f(n, x) = α(n)x
γ(n)x+ δ(n) and g(n, x) = β(n)

µ(n)x+ η(n) .

Clearly f is nondecreasing in x. Noting
d

dx

(
f(n, x)− α(n)

δ(n) x
)

= −α(n)γ(n)x(γ(n)x+ 2δ(n))
δ(n)(γ(n)x+ δ(n))2 ≤ 0
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we see that f(n, x)− α(n)
δ(n) x is nonincreasing in x. Since

d

dx

(
g(n, x)

)
= − β(n)µ(n)

(µ(n)x+ η(n))2 ,

we see that for each n,

max
x≥0

∣∣∣dg(n, x)
dx

∣∣∣ = β(n)µ(n)
η2(n) .

Hence, by Theorems 1 and 2, we have the following result immediately.

Theorem 5. Assume that

(3.12) δ(n) 6= 0 and
p−1∏
i=0

α(i)
δ(i) < 1 ,

and that there is a positive number B such that
n+p−1∑
j=n

( n+p−1∏
i=j+1

α(i)
δ(i)

)[ β(j)
µ(j)B + η(j) −

α(j)γ(j)B2

δ(j)(γ(j)B + δ(j))

]
≥ 0 ,(3.13)

n = 0, 1, . . . , p− 1

and

(3.14) 1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

α(i)
δ(i)

)β(j)
η(j) ≤ B , n = 0, 1, . . . , p− 1

where â =
∏p−1
i=0

α(i)
δ(i) . Then Eq. (3.11) has a nonnegative periodic solution {x̃(n)}

with period p. Furthermore, if either

(3.15) α(n)
δ(n) ≤ 1 and

n+k∑
j=n

( n+k∏
i=j+1

α(i)
δ(i)

)β(j)µ(j)
η2(j) < 1 , n = 0, 1, . . . , p− 1 ,

or

(3.16)
n+k+p−1∑

j=n

( n+k+p−1∏
i=j+1

α(i)
δ(i)

)β(j)µ(j)
η2(j) < 1 , n = 0, 1, . . . , p− 1 ,

then Eq. (3.11) has a unique periodic solution {x̃(n)} with period p and {x̃(n)} is
a global attractor of all nonnegative periodic solutions of Eq. (3.11).

When µ(n) ≡ γ(n), η(n) ≡ δ(n) and k = 0, Eq. (3.11) reduces to the following
Riccati equation

(3.17) x(n+ 1) = α(n)x(n) + β(n)
γ(n)x(n) + δ(n) , n = 0, 1, . . . .
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(3.13), (3.14), (3.15) and (3.16) reduce to
n+p−1∑
j=n

( n+p−1∏
i=j+1

α(i)
δ(i)

)β(j)δ(j)− α(j)γ(j)B2

δ(j)(γ(j)B + δ(j)) ≥ 0 , n = 0, 1, . . . , p− 1 ,(3.18)

1
1− â

n+p−1∑
j=n

( n+p−1∏
i=j+1

α(i)
δ(i)

)β(j)
δ(j) ≤ B , n = 0, 1, . . . , p− 1 ,(3.19)

α(n)
δ(n) ≤ 1 and β(n)γ(n)

δ2(n) < 1 , n = 0, 1, . . . , p− 1 .(3.20)

and
n+p−1∑
j=n

( n+p−1∏
i=j+1

α(i)
δ(i)

)β(j)γ(j)
δ2(j) < 1 , n = 0, 1, . . . , p− 1 ,(3.21)

respectively. Hence, the following is a direct consequence of the above theorem.

Corollary 9. Assume that (3.12) holds and there is a positive number B such
that (3.18) and (3.19) hold. Then Eq. (3.17) has a periodic solution {x̃(n)} with
period p. Furthermore, if either (3.20) or (3.21) holds, then Eq. (3.17) has a unique
nonnegative periodic solution {x̃(n)} with period p and {x̃(n)} is a global attractor
of all nonnegative solutions of Eq. (3.17).

Clearly, if

β(n)δ(n) ≥ α(n)γ(n) , n = 0, 1, . . .(3.22)

and

β(n)
δ(n) ≤

1− â∑n+p−1
j=n

(∏n+p−1
i=j+1

α(i)
δ(i)

) , n = 0, 1, . . .(3.23)

then (3.18) and (3.19) hold with B = 1. Hence, the following conclusion comes
from Corollary 9 directly.

Corollary 10. Assume that (3.12), (3.22) and (3.23) hold. Then Eq. (3.17) has a
nonnegative periodic solution {x̃(n)} with period p. Furthermore, if either (3.20)
or (3.21) holds, then {x̃(n)} is the only periodic solution and it is a global attractor
of all nonnegative solutions of Eq. (3.17).

If α(n)γ(n) ≡ 0, then (3.18) holds for any B, and (3.19) holds when B is large.
Hence, the following corollary is a direct consequence of Theorem 5.

Corollary 11. Assume that α(n)γ(n) ≡ 0 and (3.12) holds. Then Eq. (3.17) has
a nonnegative periodic solution {x̃(n)}. Furthermore, if either (3.20) or (3.21)
holds, then {x̃(n)} is the only periodic solution and it is a global attractor of all
nonnegative solutions of Eq. (3.17).
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In particular, when α(n) ≡ 0, Eq.(3.17) reduces to

(3.24) x(n+ 1) = β(n)
γ(n)x(n) + δ(n) , n = 0, 1, . . . .

Clearly, (3.12) holds when δ(n) 6= 0. Hence, from Corollary 8 we have the following
conclusion immediately.

Corollary 12. Assume that δ(n) 6= 0. Then, Eq. (3.24) has a nonnegative periodic
solution {x̃(n)} with period p. Furthermore, if either (3.20) or (3.21) holds, then
{x̃(n)} is the only periodic solution of Eq. (3.24) and {x̃(n)} is a global attractor
of all nonnegative solutions of Eq. (3.24).
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