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SOME FUNCTORIAL PROLONGATIONS

OF GENERAL CONNECTIONS

Ivan Kolář

Abstract. We consider the problem of prolongating general connections on
arbitrary fibered manifolds with respect to a product preserving bundle functor.
Our main tools are the theory of Weil algebras and the Frölicher-Nijenhuis
bracket.

0. Introduction

Our approach to connections on an arbitrary fibered manifold p : Y → M is
slightly different from the approach by C. Ehresmann, [2], p. 186. Roughly speaking,
the fundamental idea in [2] is the development along the individual curves, while
the main idea of our approach is the absolute differentiation of the sections of Y .
This is explained in Chapter 1 of the present paper. But the theory of general
connections on Y can be well developed even by using the concept of tangent valued
form on Y . This was invented by L. Mangiarotti and M. Modugno in [7] and first
systematically presented in the book [6]. We repeat the basic ideas in Chapter 2.
Chapter 3 is devoted to the case of product preserving bundle functors on the
category Mf of smooth manifolds and smooth maps. Our geometrical description
of them uses the language of Weil algebras, [5], [6].

All manifolds and maps are assumed to be infinitely differentiable. Unless
otherwise specified, we use the terminology and notation from [6].

1. General connections

Let πY : TY → Y denote the tangent bundle of a fibered manifold p : Y →M .
In [6], a general connection of Y is defined as a lifting map
(1) Γ: Y ×M TM → TY

linear in TM and satisfying πY ◦Γ = pr1, Tp◦Γ = pr2, Y Y ×M TM
pr1oo pr2 //TM .

If xi, yp are some local fiber coordinates on Y , then the equations of Γ are
(2) dyp = F pi (x, y) dxi
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with arbitrary smooth functions F pi . Every vector field X on M defines the Γ-lift
Γ(X) : Y → TY , Γ(X)(y) = Γ(y,X). Write πM : TM →M for the bundle projec-
tion.

Equivalently, Γ can be interpreted as a section Y → J1Y of the first jet pro-
longation J1Y of Y . It is well known that J1Y → Y is an affine bundle with
associated vector bundle V Y ⊗ T ∗M , where V Y is the vertical tangent bundle of
Y . For a section s : M → Y , its absolute differential ∇Γs with respect to Γ is a
section ∇Γs : M → V Y ⊗ T ∗M defined by
(3) ∇Γs(x) = j1

xs− Γ
(
s(x)

)
x ∈M . Hence the coordinate form of (3) is

(4) ∂sp

∂xi
− F pi

(
x, s(x)

)
.

The curvature CΓ: Y ×M Λ2T ∗M → V Y can be characterized as the obstruction
for lifting the bracket
(5) (CΓ)(y,X1, X2) =

[
Γ(X1),Γ(X2)

]
(y)− Γ

(
[X1, X2]

)
(y) .

By direct evaluation, we find that (5) depends on the values of the vector fields
X1, X2 at p(y) only and the coordinate form of (5) is

(6) 2
(∂F pi
∂xj

+ ∂F pi
∂yq

F qj

) ∂

∂yp
⊗ dxi ∧ dxj .

Using the flow prolongation of vector fields, we construct an induced connection
VΓ: V Y ×M TM → TV Y on V Y as follows, [6]. Consider the flow Fl Γ(X)

t of the
vector filed Γ(X) and its vertical flow prolongation

(7) V
(
Γ(X)

)
= ∂

∂t

∣∣∣
0
V
(

Fl Γ(X)
t

)
: V Y → TV Y .

Write ηp = dyp for the induced coordinates on V Y . Then the coordinate form of
(7) is

(8)
dyp = F pi (x, y) dxi ,

dηp = ∂F pi
∂yq

ηq dxi ,

that determines a general connection VΓ on V Y →M . The theoretical meaning of
the vertical operator V is underlined by the following assertion, [6].

Proposition 1. V is the only natural operator transforming general connections
on Y →M into general connections on V Y →M .

Consider a section ϕ : Y → V Y ⊗ ΛkT ∗M with the coordinate expression
ηp = ϕpi1...ik(x, y) dxi1 ∧ · · · ∧ dxik .

According to [6], we construct its absolute exterior differential

dVΓϕ : Y → V Y ⊗
k+1∧

T ∗M
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as follows. Take (at least locally) an auxiliary linear symmetric connection Λ on

M . Then VΓ⊗
k∧

Λ∗ is a connection on V Y ⊗
k∧
T ∗M → Y and we can construct

the absolute differential

∇VΓ⊗
∧k Λ∗ϕ : Y → V

(
V Y ⊗

k∧
T ∗M

)
⊗ T ∗M ,

[6]. Applying antisymmetrization and natural identifications, we obtain a section
dVΓϕ : Y → V Y ⊗ Λk+1T ∗M independent of Λ with the coordinate expression

(9) ηp =
(∂ϕpi1...ik

∂xi
+
∂ϕpi1...ik
∂yq

F qi −
∂F pi
∂yq

ϕqi1...ik

)
dxi ∧ dxi1 ∧ · · · ∧ dxik .

In [6], we deduced by direct evaluation

Proposition 2 (Bianchi identity). We have

(10) dVΓCΓ = 0 .

2. Tangent valued forms

Mangiarotti and Modugno studied systematically the general connections by
using the concept of tangent valued forms, [7]. A tangent valued k-form P on a
manifold M is a section P : M → TM ⊗ΛkT ∗M , that can be also interpreted as a
map

(11) P : TM ×M · · · ×M︸ ︷︷ ︸
k-times

TM → TM .

If Q is another tangent valued l-form on M , Mangiarotti and Modugno defined a
tangent valued (k + l)-form [P,Q] on M by the formula[

P,Q
]
(X1 . . . , Xk+l)

= 1
k!l!

∑
σ

σ
[
P (Xσ1 , . . . , Xσk), Q(Xσ(k+1) , . . . , Xσ(k+l))

]
+ −1
k!(l − 1)!

∑
σ

σQ
([
P (Xσ1 , . . . , Xσk), Xσ(k+1)

]
, Xσ(k+2) , . . .

)
+ (−1)kl

(k − 1)!l!
∑
σ

σP
([
Q(Xσ1 , . . . , Xσl), Xσ(l+1)

]
, Xσ(l+2) , . . .

)
+ (−1)k−1

(k−1)!(l−1)!2
∑
σ

σQ
(
P ([Xσ1 , Xσ2 ], Xσ3 , . . . ), Xσ(k+2) , . . .

)
+ (−1)(k−1)l

(k−1)!(l−1)!2
∑
σ

σP
(
Q([Xσ1 , Xσ2 ], Xσ3 , . . . ), Xσ(l+2) , . . .

)
(12)

where X1, . . . , Xk+l are vector fields on M , the bracket on the right-hand side are
the classical Lie bracket of vector fields, the summations are with respect to all
permutations σ of k + l letters and σ denotes the signum of σ. The tangent valued
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0-forms are the vector fields and (12) reduces to the classical Lie bracket in the
case k = l = 0.

Later it was clarified, [6], that (12) was introduced in a quite different situation
by Frölicher-Nijenhuis, so that this bracket is related with their names today.

The identity of TM is a special tangent valued 1-form on M and we have
(13) [id TM , P ] = 0
for every tangent valued form P . By [6],
(14) [P,Q] = −(−1)kl[Q,P ]
and the graded Jacobi identity holds
(15)

[
P1, [P2, P3]

]
=
[
[P1, P2], P3

]
+ (−1)k1k2

[
P2, [P1, P3]

]
for tangent valued ki-forms Pi, i = 1, 2, 3.

A general connection Γ: Y ×M TM → TY defines a tangent valued 1-form ωΓ
on Y

(16) ωΓ(Z) = Γ
(
y, Tp(Z)

)
, Z ∈ TyY .

Even CΓ can be interpreted as a tangent valued 2-form CΓ on Y ,
(17) CΓ(Z1, Z2) = CΓ

(
y, Tp(Z1), Tp(Z2)

)
, Z1, Z2 ∈ TyY .

Proposition 3. We have CΓ = 1
2 [ωΓ, ωΓ].

Proof. This follows directly from Lemma 8.13 in [6]. �

Consider an arbitrary tangent valued 1-form ψ of Y . Put P1 = P2 = P3 = ψ
into (14) and (15) This yields [

ψ, [ψ,ψ]
]

= 0 .
If ψ = ωΓ, we obtain

Proposition 4. We have [ωΓ, [ωΓ, ωΓ]] = 0.

A simple evaluation shows that this relation coincides with the identity from
Proposition 2. This gives a simple geometric proof of the Bianchi identity of a
general connection Γ on Y .

3. Weilian prolongations

We recall that Weil algebra is a finite dimensional, commutative, associative
and unital algebra of the form A = R×N , where N is the ideal of all nilpotent
elements of A. Since A is finite dimensional, there exists an integer r such that
Nr+1 = 0. The smallest r with this property is called the order of A. On the other
hand, the dimension wA of the vector space N/N2 is the width of A, [8]. Using
systematically our point of view, we say that a Weil algebra of width k and order
r is a Weil (k, r)-algebra, [5].

The simpliest example of a Weil (k, r)-algebra is
Drk = R[x1, . . . , xk]

/
〈x1, . . . , xk〉r+1 = Jr0 (Rk,R) .

For k = r = 1, D1
1 = D is the algebra of Study numbers. In [3] we deduced
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Lemma 1. Every Weil (k, r)-algebra is a factor algebra of Drk. If %, σ : Drk → A are
two algebra epimorphisms, then there exists an algebra isomorphism χ : Drk → Drk
such that % = σ ◦ χ.

We are going to present the covariant approach to Weil functors, [5].
Definition 1. Two maps γ, δ : Rk →M determine the same A-velocity jAγ = jAδ,
if for every smooth function ϕ : M → R,
(18) %

(
jr0(ϕ ◦ γ)

)
= %
(
jr0(ϕ ◦ δ)

)
.

By Lemma 1, this is independent of the choice of %. We say that
(19) TAM = {jAγ; γ : Rk →M}
is the bundle of all A-velocities on M . For every smooth map f : M → N , we define
TAf : TAM → TAM by
(20) TAf(jAγ) = jA(f ◦ γ) .
Clearly, TAR = A.

We say that (19) and (20) represent the covariant approach to Weil functors.
The following result is a fundamental assertion, see [6] or [5] for a survey.
Theorem. The product preserving bundle functors on Mf are in bijection with
TA. The natural transformations TA1 → TA2 are in bijection with the algebra
homomorphisms µ : A1 → A2.

We write µM : TA1M → TA2M for the value of µ : A1 → A2 on M .
The iteration TA2 ◦ TA1 corresponds to the tensor product of A1 and A2. The

algebra exchange homomorphism ex : A1⊗A2 → A2⊗A1 defines a natural exchange
transformation TA2TA1 → TA1TA2 . We have T = TD.

The canonical exchange κAM : TATM → TTAM is called flow natural. Indeed,
if FlXt is the flow of a vector field X : M → TM , then

T AX = ∂

∂t

∣∣∣
0
TA(FlXt ) : TAM → TTAM

is the flow prolongation of X. It is related with the functorial prolongation
TAX : TAM → TATM by
(21) T AX = κAM ◦ TAX .

Consider a tangent valued k-form P on a manifold M

P : TM ×M · · · ×M TM → TM .

Applying functor TA, we obtain
TAP : TATP ×M · · · ×M TATP → TATP .

Using the flow natural exchange κAM , we construct
(22) T AP = κAM ◦ TAP ◦

(
(κAM )−1 × · · · × (κAM )−1) .

This is an antisymmetric tensor field of type (1, k), so a tangent valued k-form on
TAM .

In [1], the following result is deduced.
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Proposition 5. The Frölicher-Nijenhuis bracket is preserved under T A, i.e. for
every tangent valued k-form P and every tangent valued l-form Q on the same
manifold M , we have
(23) T A([P,Q]) = [T AP, T AQ] .

Further, consider a tangent valued k-form P on a manifold M , a tangent valued
k-form Q on a manifold N and a smooth map f : M → N . We say that P and Q
are f -related, if the following diagram commutes

ΛkTM
P //

ΛkTf
��

TM

Tf

��
ΛkTN

Q // TN

In [6], p. 74, one has deduced

Proposition 6. Consider a smooth map f : M → N . Let P1, Q1 or P2, Q2 be two
f-related pairs of k-forms or l-forms, respectively. Then the Frölicher-Nijenhuis
brackets [P1, Q1] and [P2, Q2] are also f -related.

Consider a general connection Γ on Y in the lifting form Γ: Y ×M TM → TY .
Applying TA, κAM and κAY , [4, 5], we can construct the induced connection on
TAY → TAM

(24) T AΓ: TAY ×TAM TTAM → TTAY .

Consider the connection form ωΓ : TY → TY of Γ. Then Proposition 5 and (24)
imply

(25) T ACΓ = 1
2
[
T AωΓ, T AωΓ

]
.

Hence the curvature of T AΓ is the T A-prolongation of the curvature of Γ.
Further, the Bianchi identity of T AΓ is the T A-prolongation of the Bianchi

identity of Γ.
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