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Abstract. Let L be a non-negative self-adjoint operator acting on L2(Rn) satisfying
a pointwise Gaussian estimate for its heat kernel. Let w be an Ar weight on R

n
× R

n,
1 < r < ∞. In this article we obtain a weighted atomic decomposition for the weighted
Hardy spaceHp

L,w(R
n
×R

n), 0 < p 6 1 associated to L. Based on the atomic decomposition,

we show the dual relationship between H1L,w(R
n
× R

n) and BMOL,w(R
n
× R

n).
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1. Introduction

The theory of Hardy spaces has been a central part of modern harmonic analysis.

The theory of Hardy spaces on product domains was initiated by Gundy and Stein

in [23]. The atomic decompositions for Hardy spaces on product domains were

obtained by Chang and Fefferman in [11], [13]. Later, Fefferman in [21], Krug in [29],

Sato in [36] and others established the weighted theory of the classical Hardy spaces

on product domains. See [42], [12], [8] for more results on product domain.

The classical Hardy spaces on Rn can be characterized by certain estimates via the

Laplacian, but there are some important situations in which the theory of classical

Hardy spaces is not applicable. Some interesting operators were found to be out of

the Calderón-Zygmund class. See [17], [2], [25], [4], [5], [6]. In order to handle such

beyond Calderón-Zygmund operators, many researchers study Hardy spaces that
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are adapted to a linear operator L. For some results on the one-parameter Hardy

spaces adapted to an operator, we refer the reader to [3], [20], [7], [25], [19], [26],

[24], [9], [16], [38], [28] and their references. For the theory of weighted Hardy spaces

associated with an operator, we refer the reader to a series of papers [1], [39], [31],

[33], [34].

In [32], the authors studied the atomic decomposition of weighted Hardy spaces

H1
L,w(R

n × Rn) associated to self-adjoint operators on product spaces. Inspired by

the work [32], it is natural to study the weighted Hardy space Hp
L,w(R

n × Rn),

0 < p < 1. Let L be a non-negative self-adjoint operator acting on L2(Rn) satisfying

a pointwise Gaussian estimate for its heat kernel. Let w be an Ar weight on R
n×Rn

(see Section 2 for its definition), where 1 < r < ∞. The main purpose of this

paper is to introduce a weighted Hardy space Hp
L,w(R

n ×R
n) and prove a weighted

atomic decomposition for Hp
L,w(R

n×Rn). See Theorem 4.1. And then, we introduce

weighted BMO spaces BMOp
L,w(R

n × R
n) on product spaces. Using the atomic

decomposition for Hp
L,w(R

n × Rn), we show that the dual space of the weighted

Hardy space H1
L,w(R

n × R
n) is BMOL,w(R

n × R
n). See Theorem 5.2. When L is

the Laplacian of Rn, the weighted atomic decompositions in product spaces were

obtained in [29], [30]. Here, we generalize the results of [29], [30].

Since there is no Whitney decomposition in product domains, the situation be-

comes considerably complicated. As pointed out by [10], the product atoms should

be supported in open sets rather than rectangles, which leads to many difficulties.

The important tool is a weighted version of Journé’s covering lemma, which is a good

substitute in product domains for Whitney decomposition. It will be used to prove

(i) of Theorem 4.1.

The layout of the article is as follows. In Section 2, we introduce some basic as-

sumptions and state some preliminary results. In Section 3, we define the weighted

Hardy space Hp
L,w(R

n × Rn), 0 < p 6 1 associated to a non-negative self-adjoint

operator with Gaussian upper bounds on its heat kernel. We give an atomic char-

acterization of the weighted Hardy spaces on the product domain associated to the

operator. In Section 4, we state and prove the relationship between H1
L,w(R

n ×Rn)

and BMOL,w(R
n × Rn), which is the main result of this paper.

Throughout this article, the letter “C” or “c” will denote (possibly different)

constants that are independent of the essential variables.

416



2. The preliminaries

2.1. Assumption (H). Assume that L is a non-negative self-adjoint operator

on L2(Rn) and that each of the semigroups e−tL, generated by −L on L2(Rn), has

the kernel pt(x, y) which satisfies the Gaussian upper bound. That is, there exist

constants C, c > 0 such that

(GE) |pt(x, y)| 6
C

tn/2
exp

(
−
|x− y|2

c t

)
.

We note that such estimates are typical for elliptic or sub-elliptic differential op-

erators of second order (see for example, [14] and [18]).

Lemma 2.1. Let L be an operator satisfying the assumption (H). For every

k = 0, 1, . . ., there exist two positive constants Ck, ck such that the kernel pt,k(x, y)

of the operator (t2L)ke−t2L satisfies

(2.1) |pt,k(x, y)| 6
Ck

(4πt)n
exp

(
−
|x− y|2

ckt2

)

for all t > 0 and almost every x, y ∈ Rn.

P r o o f. For the proof, we refer the reader to [14] and [35], Theorem 6.17. �

2.2. Muckenhoupt weights. We review some needed background on Mucken-

houpt weights.

A weight w is a non-negative locally integrable function on Rn. We say that

w ∈ Ap, 1 < p < ∞, if there exists a constant C such that for every ball B ⊆ Rn,

(
1

|B|

∫

B

w(x) dx

)(
1

|B|

∫

B

w−1/(p−1)(x) dx

)p−1

6 C.

For p = 1, we say that w ∈ A1 if there is a constant C such that for every ball

B ⊆ Rn,
1

|B|

∫

B

w(y) dy 6 Cw(x) for a.e. x ∈ B.

We denote the Hardy-Littlewood maximal function by

M(f)(x) := sup
x∈B

|B|−1

∫

B

|f(y)| dy.

We sum up some of the properties of the above classes.
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Proposition 2.2. The following assertions hold:

(i) A1 ⊆ Ap ⊆ Aq for 1 6 p 6 q < ∞.

(ii) If w ∈ Ap, 1 < p < ∞, then there exists 1 < q < p such that w ∈ Aq.

(iii) A∞ =
⋃

16p<∞

Ap.

(iv) If 1 < p < ∞, w ∈ Ap if and only if w
1−p′

∈ Ap′ .

(v) Let w ∈ Ap, p > 1. Then for any ball B and λ > 1, there exists a constant C

(independent of B and λ) such that

w(λB) 6 Cλnpw(B).

(vi) If 1 < p < ∞, w ∈ Ap, then

∫

Rn

(M(f)(x))pw(x) dx 6 C

∫

Rn

|f(x)|pw(x) dx.

P r o o f. Properties (i)–(vi) are standard, see for instance [22] and [40]. �

2.3. Muckenhoupt weights on product spaces. In this section, we recall

some basic facts on the product Ap(R
n × Rn).

A non-negative locally integrable function w(x, y) on Rn ×Rn is said to belong to

Ap(R
n × Rn), 1 < p < ∞, if there exists a constant C such that

(
1

|R|

∫∫

R

w(x, y) dxdy

)(
1

|R|

∫∫

R

w(x, y)−1/(p−1) dxdy

)p−1

6 C,

whereR runs over all rectangles in Rn×Rn.When p = 1, we say thatw ∈ A1(R
n×Rn)

if there exists a constant C such that

1

|R|

∫∫

R

w(x, y) dxdy 6 C ess inf
(x,y)∈R

w(x, y) for all R.

We also define A∞(Rn ×Rn) :=
⋃
r>1

Ar(R
n ×Rn). For any 1 6 p < ∞, the weighted

Lebesgue spaces Lp
w(R

n × R
n) can be defined by

{
f :

∫

Rn

∫

Rn

|f(x, y)|pw(x, y) dxdy < ∞

}

with the norm

‖f‖Lp
w
:=

(∫

Rn

∫

Rn

|f(x, y)|pw(x, y) dxdy

)1/p
.
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We denote the strong maximal function by

Ms(f)(x, y) := sup
(x,y)∈R

|R|−1

∫∫

R

|f(u, v)| du dv,

where R is any rectangle in Rn × Rn.

The following properties of product Ap weights are well known, see [36], [30].

Proposition 2.3. The following assertions hold:

(i) If w(x, y) ∈ Ar(R
n ×Rn), then w(x, ·) satisfies Ar(R

n) condition uniformly for

a.e. x; similarly for w(·, y).

(ii) Product weights satisfy A1 ⊆ Ar ⊆ At ⊆ A∞ for 1 6 r 6 t < ∞.

(iii) If w ∈ Ar(R
n × Rn), 1 < r < ∞, there exists 1 < s < r such that w ∈

As(R
n × Rn).

(iv) If 1 < r < ∞, w ∈ Ar(R
n × Rn) if and onl if w1−r′ ∈ Ar′(R

n × Rn).

(v) If 1 < r < ∞, w ∈ Ar(R
n × Rn), then

∥∥∥∥
(∑

k

M2
s(fk)

)1/2∥∥∥∥
Lr

w

6 C

∥∥∥∥
(∑

k

|fk|
2

)1/2∥∥∥∥
Lr

w

.

3. Weighted product Hardy spaces and atoms associated to operators

3.1. Weighted product Hardy spaces and weighted product atoms. Given

a function f on Rn × Rn, K = [n/2] + 1, let us use Qt1,t2 to denote the operator

(t21L)
Ke−t21L⊗(t22L)

Ke−t22L. The area function associated with operators L is defined

by

(3.1) Sα1,α2
f(x) :=

(∫∫
|x1−y1|<α1t1
|x2−y2|<α2t2

|Qt1,t2f(y)|
2 dy dt

tn+1
1 tn+1

2

)1/2
,

where αi > 0, x = (x1, x2), y = (y1, y2), t = (t1, t2) and xi, yi ∈ Rn, ti ∈ (0,∞)

for i = 1, 2. Here, we replace (t2iL)e
−t2iL by (t2iL)

Ke−t2iL for technical reasons. For

simplicity, we write S(f) := S1,1(f). For the theory of unweighted Hardy spaces

associated to the operator L on product domains, we refer to [15], [37].

Definition 3.1. Let L be an operator satisfying the assumption (H) and

0 < p 6 1. Suppose that w ∈ A∞(Rn × Rn). The weighted product Hardy space

Hp
L,w(R

n × Rn) associated to L is defined as the completion of

{f ∈ L2(Rn × R
n) : ‖S(f)‖Lp

w(Rn×Rn) < ∞}
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with respect to the norm

‖f‖Hp
L,w(Rn×Rn) = ‖S(f)‖Lp

w(Rn×Rn).

Remark 3.2. An argument similar to Theorem 1 of Chapter IV in [41] implies

the following result. Suppose w ∈ Ar(R
n × Rn), 1 6 r < ∞. Then for all α1 > 1,

α2 > 1, there exist positive constants cα1,α2,p and Cα1,α2,p such that

cα1,α2,p‖S(f)‖L1
w(Rn×Rn) 6 ‖Sα1,α2

(f)‖L1
w(Rn×Rn) 6 Cα1,α2,p‖S(f)‖L1

w(Rn×Rn).

We now introduce the product (p, r,M,w)-atom associated to operators.

Definition 3.3. Suppose that M ∈ N, 0 < p 6 1 and w ∈ Ar, 1 6 r < ∞.

A function a ∈ L2(R2n) is called a product (p, r,M,w)-atom associated to L, if it

satisfies

(1) supp a ⊆ Ω, where Ω is an open set with finite measure;

(2) a can be further decomposed into a =
∑

R∈m(Ω)

aR, where for each R ∈ m(Ω)

there exists a function bR ∈ D(LM ⊗ LM ) such that

(i) aR = (LM ⊗ LM )bR;

(ii) supp(Lk1 ⊗ Lk2)bR ⊆ 10R, k1, k2 = 0, 1, . . . ,M ;

(iii) ‖a‖Lr
w(Rn×Rn) 6 w(Ω)1/r−1/p and for k1, k2 = 0, 1, . . . ,M ,

∑

R∈m(Ω)

ℓ(I)−2rMℓ(J)−2rM‖(ℓ(I)2L)k1 ⊗ (ℓ(J)2L)k2bR‖
r
Lr

w(Rn×Rn) 6 w(Ω)1−r/p,

where m(Ω) denotes the set of maximal dyadic subrectangles of Ω; L0 := I

denotes the identity operator on Rn; R = I × J denotes the dyadic rectangle of

Rn × Rn, I, J denote the dyadic cube of Rn; 10R denotes the 10-fold dilate of

R concentric with R.

Now we can define a weighted product Hardy space Hp,r,M
L,w by atoms.

Definition 3.4. Let M and w be the same as in Definition 3.3. The weighted

product Hardy space Hp,r,M
L,w (Rn × Rn) is defined as follows. We say that f =∑

j λjaj is a product atomic (p, r,M,w)-representation of f if {λj}
∞
j=0 ∈ ℓp, each aj

is a product (p, r,M,w)-atom, and the sum converges in L2(R2n). Set

H
p,r,M
L,w (Rn × R

n) = {f : f has a product atomic (p, r,M,w)-representation},

with the norm given by

‖f‖
H

p,r,M
L,w (Rn×Rn)

= inf

{( ∞∑

j=0

|λj |
p

)1/p
: f =

∑
j

λjaj has a product atomic (p, r,M,w)-representation

}
.
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The space Hp,r,M
L,w (Rn × Rn) is then defined as the completion of Hp,r,M

L,w (Rn × Rn)

with respect to this norm.

3.2. Some auxiliary lemmas. For any α > 0, let us introduce the product cone

Γ(x) := Γ(x1) × Γ(x2), where Γ(xi) := {(yi, ti) ∈ R
n+1
+ : |xi − yi| < ti}, i = 1, 2.

Suppose Ω ⊆ R
n×R

n is an open set of finite measure. Denote by m(Ω) the maximal

dyadic subrectangles of Ω. Let m1(Ω) denote those dyadic subrectangles R ⊆ Ω,

R = I × J which are maximal in the x1 direction. In other words, if S = I ′ × J ⊇ R

is a dyadic subrectangle of Ω, then I = I ′. Define m2(Ω) similarly.

In order to prove our main result, we need some auxiliary results.

Lemma 3.5. Let w ∈ A∞ and let Ω be an open set of Rn × Rn. For any

R = I × J ∈ m2(Ω), we set

γ1(R) := sup
I⊆I′

I′×J⊆Ω∗

|I ′|/|I|,

where Ω∗ = {x ∈ Rn × Rn : Ms(χΩ)(x) > 1/2}. Then for any δ > 0,

∑

R∈m2(Ω)

w(R)γ−δ
1 (R) 6 cδw(Ω),

where cδ is a constant depending only on δ, not on Ω.

Similarly, for any R = I × J ∈ m1(Ω), we set

γ2(R) := sup
J⊆J′

I×J′⊆Ω∗

|J ′|/|J |.

Then for any δ > 0, ∑

R∈m1(Ω)

w(R)γ−δ
2 (R) 6 cδw(Ω),

where cδ is a constant depending only on δ, not on Ω.

P r o o f. For the proof, we refer to [21], Lemma 2, and [27]. In fact, this is

a weighted version of Journé’s lemma. �

We also need the following results.

Lemma 3.6. Let L be an operator satisfying the assumption (H). Then for any

1 < r < ∞ and w ∈ Ar(R
n × R

n), there exist constants C1, C2 such that

(3.2) C1‖f‖Lr
w(Rn×Rn) 6 ‖S(f)‖Lr

w(Rn×Rn) 6 C2‖f‖Lr
w(Rn×Rn)

holds for all f ∈ Lr
w(R

n × Rn).
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P r o o f. For the details of the proof, we refer the reader to [32]. �

Lemma 3.7. Fix M ∈ N and w ∈ A∞(Rn × Rn), 0 < p 6 1. Suppose that T is

a non-negative sublinear operator satisfying the weak-type (2, 2) bound

ω{x ∈ R
n × R

n : |Tf(x)| > η} 6 CT η
−2‖f‖2L2(Rn×Rn), η > 0,

and for every product (p, r,M,w)-atom a we have

‖Ta‖Lp
w(Rn×Rn) 6 C,

with constant C independent of a. Then T is bounded from Hp,r,M
L,w (Rn × Rn) to

Lp
w(R

2n), and

‖Tf‖Lp
w(R2n) 6 C‖f‖Hp,r,M

L,w (Rn×Rn).

P r o o f. The proof is similar to that of Lemma 4.3 in [24] and so we skip it

here. �

4. The atomic characterizations of weighted product Hardy spaces

In this section we will state and prove the atomic characterizations of weighted

product Hardy spaces Hp
L,w(R

n × Rn), 0 < p 6 1.

Theorem 4.1. Suppose that w ∈ As(R
n × Rn), 1 < s < ∞ and 0 < p 6 1.

(i) Suppose that M ∈ N, M > (r/p− 1)n/2 and r > s. Let f =
∞∑
i=0

λiai, where

{λi}
∞
i=0 ∈ lp, the ai are product (p, r,M,w)-atoms, and the sum converges in

L2(R2n). Then f ∈ Hp
L,w(R

n × Rn) ∩ L2(R2n) and

∥∥∥∥
∞∑

i=0

λiai

∥∥∥∥
Hp

L,w(Rn×Rn)

6 C

( ∞∑

i=0

|λi|
p

)1/p
.

(ii) Let M ∈ N and 1 < r < ∞. If f ∈ Hp
L,w(R

n × Rn) ∩ L2(R2n), then there

exist a family of product (p, r,M,w)-atoms {ai}
∞
i=0 and a sequence of numbers

{λi}
∞
i=0 such that f can be represented in the form f =

∞∑
i=0

λiai, and the sum

converges in the sense of L2(R2n)-norm. Moreover,

( ∞∑

i=0

|λi|
p

)1/p
6 C‖f‖Hp

L,w(Rn×Rn).
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The proof of (ii) in Theorem 4.1 is very similar to the case p = 1 considered by [32]

(in fact, one just needs to set λi := cΨ2
iw(Ωi)

1/p to get the result), we do not discuss

it here. In this paper, we give the details of the proof of (i).

P r o o f of (i) of Theorem 4.1. Let f(x) =
∑
j

λjaj(x), where the aj are product

(p, r,M,w)-atoms and
( ∞∑
i=0

|λi|
p
)1/p

< ∞. By applying Lemma 3.7 and the fact that

a (p, s,M,w)-atom is also a (p, r,M,w)-atom for s > r > 1, it shall be enough to show

that for every product (p, r,M,w)-atom a there exists a constant C (independent

of a) such that

‖S(a)‖Lp
w(Rn×Rn) 6 C.

By the assumption on M , we can choose N such that n(r/p− 1) < N < 2M . We

assume that a =
∑

R∈m(Ω)

aR is supported in some open set Ω with finite measure. For

any R = I × J ⊆ Ω, let I ′ be the biggest dyadic cube containing I such that

I ′ × J ⊆ Ω̃ = {x ∈ R
n × R

n : Ms(χΩ)(x) > 1/2}.

Then I ′ × J is in m1(Ω̃) and let S be the biggest dyadic cube such that S ⊇ J

and I ′ × S ⊆
˜̃
Ω, where

˜̃
Ω = {x ∈ Rn × Rn : Ms(χΩ̃)(x) > 1/2}. Let R̆ be the

10-fold dilate of I ′ × S concentric with I ′ × S. By (v) of Proposition 2.3, we have

w(
⋃

R̆) 6 Cw(Ω).

Making use of Hölder’s inequality and the definition of product atoms, we have

∫
⋃

R̆

S(a)p(x)w(x) dx 6

∫
⋃

R̆

S(a)(x)wp/r(x)w1−p/r(x) dx

6 C

(∫
⋃

R̆

w dx

)1−p/r

‖S(a)‖pLr
w

6 Cw(Ω)1−p/r‖a‖pLr
w

6 Cw(Ω)1−1/pw(Ω)(1/r−1/p)p

6 C,

where in the third inequality we have used Lemma 3.6.

It remains to prove

(4.1)

∫

(
⋃

R̆)c
S(a)p(x)w(x) dx 6 C.
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By the definition of product atoms, one can write

(4.2)

∫

(
⋃

R̆)c
S(a)p(x)w(x) dx 6

∑

R∈m(Ω)

∫

R̆c

S(aR)
p(x)w(x) dx

6
∑

R∈m(Ω)

∫

(10I′)c×Rn

S(aR)
p(x)w(x) dx

+
∑

R∈m(Ω)

∫

Rn×(10S)c
S(aR)

p(x)w(x) dx

=: D + E.

We only estimate the term D since the term E can be estimated similarly.

For the term D, we have

∫

(10I′)c×Rn

S(aR)
p(x)w(x) dx =

∫

(10I′)c×(10J)c
S(aR)

p(x1, x2)w(x1, x2) dx1 dx2

+

∫

(10I′)c×10J

S(aR)
p(x1, x2)w(x1, x2) dx1 dx2

=: D1 +D2.

By the same analysis as that of Theorem 4.1 in [32], we know that

(4.3) D1 6 C
( |R|

w(R)1/p
‖cR‖Lp

w

)p

×

∫

(10I′)c×(10J)c

w(x)
ℓ(I)pN

|x1 − xI |p(n+N)

ℓ(J)pN

|x2 − xJ |p(n+N)
dx

where cR := |aR| + ℓ(J)−2M |aR,1| + ℓ(I)−2M |aR,2| + ℓ(I)−2M ℓ(J)−2M |bR|, and we

write aR,1 := (LM ⊗ I)bR and aR,2 := (I⊗ LM )bR.

Noting that N > n(r/p− 1), one can compute

∫

(10I′)c×(10J)c
w(x)

ℓ(I)pN

|x1 − xI |p(n+N)

ℓ(J)pN

|x2 − xJ |p(n+N)
dx(4.4)

6 C

∞∑

l1=1

∞∑

l2=1

∫

2l1I′\2l1−1I′

∫

2l2J\2l2−1J

w(x1, x2)
ℓ(I)pN

|x1 − xI |p(n+N)

×
ℓ(J)pN

|x2 − xJ |p(n+N)
dx2 dx1
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6 C

∞∑

l1=1

∞∑

l2=1

ℓ(I)pN

(2l1ℓ(I ′))p(n+N)

ℓ(J)pN

(2l2ℓ(J))p(n+N)
w(2l1I ′ × 2l2J)

6 C

∞∑

l1=1

∞∑

l2=1

1

2l1(p(n+N)−rn)

1

2l2(p(n+N)−rn)

ℓ(I)N

ℓ(I ′)n+N
w(R)|J |−p

6 C
( ℓ(I)

ℓ(I ′)

)pN
w(R)|R|−p,

where in the third inequality above we have used (v) of Proposition 2.2.

Combining (4.3) and (4.4), we write

(4.5) D1 6 Cγ1(R)−pNw(R)1−p/r‖cR‖
p
Lr

w
,

where γ1(R) = ℓ(I ′)/ℓ(I).

We turn to estimating the term D2. By Hölder’s inequality, we have

D2 6

∞∑

k=3

∫

2k+1I′\2kI′

∫

10J

|S(aR)(x1, x2)|
pw(x1, x2) dx2 dx1

6

∞∑

k=3

(∫

2k+1I′\2kI′

∫

10J

|S(aR)(x1, x2)|
rw(x1, x2) dx2 dx1

)p/r

×

(∫

2k+1I′

∫

10J

w(x1, x2) dx2 dx1

)1−p/r

.

We have

(4.6)

∫

2k+1I′\2kI′

∫

10J

|S(aR)(x1, x2)|
rw(x1, x2) dx2 dx1

6 C

∫

2k+1I′\2kI′

∫ (∫∫

Γ(x1)

|(t21L)
Ke−t21LaR(y1, x2)|

2 dy1 dt1

tn+1
1

)r/2

× w(x1, x2) dx2 dx1.

By an argument similar to that of D1,i, i = 1, . . . , 4 we obtain

∫∫

Γ(x1)

|(t21L)
Ke−t21LaR(y1, x2)|

2 dy1 dt1

tn+1
1

6 C
ℓ(I)2N

|x1 − xI |2(n+N)

[(∫
|aR(z1, x2)| dz1

)2
+

(
ℓ(I)−2M

∫
|aR,2(z1, x2)| dz1

)2]
,

since 2M > N .
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Let M(1) denote the Hardy–Littlewood maximal operator in the first variable.

Then we have
∫

|cR(z1, x2)| dz1 =
|2k+1I ′|

|2k+1I ′|

∫

2k+1I′

|cR(z1, x2)| dz1

6 |2k+1I ′| inf
z1∈2k+1I′

M(1)cR(z1, x2).

Thus, one can write

(4.7)

(∫

2k+1I′\2kI′

∫

10J

|S(aR)(x)|
rw(x) dx

)1/r

6 C
ℓ(I)N2kn|I ′|

(2kℓ(I ′))n+N

(∫

2k+1I′

∫ [
inf

z1∈2k+1I′

M(1)cR(z1, x2)
]r

× w(x1, x2) dx2 dx1

)1/r

6 Cγ1(R)
−N

2−kN

(∫∫
[M(1)cR(x1, x2)]

rw(x1, x2) dx2 dx1

)1/r

6 Cγ1(R)−N2−kN‖cR‖Lr
w
,

where in the third inequality above we have used (vi) of Proposition 2.2 and (i) of

Proposition 2.3.

By virtue of (v) of Proposition 2.2 we have

(4.8)

(∫

2k+1I′

∫

10J

w(x) dx

)1−p/r

6 C2(k+1)n(r−p)w(R)1−p/r.

Combining (4.7) and (4.8), we have

D2 6 C

∞∑

k=3

2−k(pN−n(r−p))‖cR‖
p
Lr

w
γ1(R)

−pN
w(R)1−p/r

6 C‖cR‖
p
Lr

w
γ1(R)

−pN
w(R)1−p/r ,

since N > n(r/p− 1).

Estimates of D1 and D2, together with Hölder’s inequality and weighted Journé’s

covering lemma (Lemma 3.5), imply that

D 6 C
∑

R∈m(Ω)

‖cR‖
p
Lr

w
γ1(R)

−pN
w(R)1−p/r

6 C

( ∑

R∈m(Ω)

‖cR‖
r
Lr

w

)p/r( ∑

R∈m(Ω)

w(R)γ1(R)−Np(r−p)/r

)1−p/r

6 Cw(Ω)p/r−1w(Ω)1−p/r 6 C.

426



The desired estimate of (4.1) follows readily. This completes the proof of (i) of

Theorem 4.1. �

5. BMOL,w: duality with H1
L,w(R

n × Rn) spaces

In this section, we introduce and study the duality of the weighted Hardy spaces

H1
L,w(R

n × Rn). Given a real-valued function f on Rn × Rn and a weight w ∈

As(R
n × Rn), 1 6 s < ∞, we consider the following situation: if Ω is a bounded

open set in Rn × Rn, and R = I × J runs over the collection of the maximal dyadic

rectangles contained in Ω, then we introduce the following definition.

Definition 5.1. Let L be a non-negative self-adjoint operator such that the

corresponding heat kernel satisfies conditions (GE). For w ∈ As, 1 6 s < ∞ and

1 6 p < ∞, an element f ∈ L2 is said to belong to BMOp
L,w if

‖f‖BMOp
L,w

=: sup
Ω

(
1

w(Ω)

∑

R⊂Ω

∫∫

I×J

|(I− (1 + ℓ(I)2L⊗ ℓ(J)2L)−1)Mf |pw1−p dx

)1/p
< ∞,

where the supremum ranges over the whole open set Ω of Rn×R
n with finite measure,

and I denotes the identity operator on Rn × Rn. In particular, for p = 1 we denote

BMO1
L,ω =: BMOL,w.

We have the following theorem. In fact, it expresses the dual relationship of

BMOL,w and H1
L,w(R

n × Rn).

Theorem 5.2. H1,r,M
L,w (Rn × Rn)∗ = BMOr′

L,w(R
n × Rn), r > 1.

P r o o f. First, we show that each f ∈ BMOr′

L,w induces a bounded linear func-

tional on H1,r,M
L,w (Rn×Rn). Suppose that a is a (1, r,M,w)-atom in H1,r,M

L,w (Rn), and

let f ∈ BMOr′

L,w(R
n). For simplicity, denote I− (1 + ℓ(I)2L ⊗ ℓ(J)2L)−1)M =: PM ,

then by the atomic definition we have

∣∣∣∣
∫∫

Rn×Rn

a(x, y)f(x, y) dxdy

∣∣∣∣ 6
∑

R

∣∣∣∣
∫∫

10R

aR(x, y)f(x, y) dxdy

∣∣∣∣

6
∑

R

∣∣∣∣
∫∫

10R

PMaR(x, y)f(x, y) dxdy

∣∣∣∣

+
∑

R

∣∣∣∣
∫∫

10R

(I− PM )aR(x, y)f(x, y) dxdy

∣∣∣∣ =: J1 + J2.
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For the term J1, by Hölder’s inequality and the definitions of atom and f ∈

BMOr′

L,w we obtain

J1 6

(∑

R

‖aR‖
r
Lr

w

)1/r ∑

R

(∫∫

10R

|PMf(x, y)|r
′

w1−r′ dxdy

)1/r′

6 C‖f‖BMOr′

L,1/w
w(B)1/r−1w(B)1/r

′

6 C‖f‖BMOr′

L,1/w
.

To analyse J2, by the condition aR = (LM ⊗ LM )bR and the fact that L is self-

adjoint, we write

(I− PM )aR = (I− PM )(LM ⊗ LM )bR = (LM ⊗ LM )(I− PM )bR

=

M∑

k1=1

M∑

k2=1

M !

(M − k1)k1!

M !

(M − k2)k2!
(ℓ(I)−2k1LM−k1 ⊗ ℓ(J)−2k2LM−k2)PM bR

=:

M∑

k1=1

M∑

k2=1

Ck1
Ck2

(ℓ(I)−2k1LM−k1 ⊗ ℓ(J)−2k2LM−k2)PM bR.

Thus, by the definitions of an atom and f ∈ BMOq′

L,w and Hölder’s inequality, we

have

J2 6

M∑

k1=1

M∑

k2=1

Ck1
Ck2

∑

R

∣∣∣∣ℓ(I)
−2M ℓ(J)−2M

×

∫∫

I×J

(ℓ(I)2L)M−k1 ⊗ (ℓ(J)2L)M−k2bRPMf(x, y) dxdy

∣∣∣∣

6

M∑

k1=1

M∑

k2=1

Ck1
Ck2

×

(∑

R

|ℓ(I)−2rM ℓ(J)−2rM |(ℓ(I)2L)M−k1 ⊗ (ℓ(J)2L)M−k2bR‖Lr
w

)1/r

×
∑

R

∫∫

I×J

|PMf(x, y)|r
′

w1−r′ dxdy 6 Cw(Ω)1/r−1w(Ω)1/r
′

6 C.

Therefore, for every h =
∑
j

λjaj ∈ H1,q,M
L,ω (Rn×Rn), where aj are weighted atoms,

we have
∣∣∣∣
∫∫

Rn×Rn

f(x, y)h(x, y) dxdy

∣∣∣∣ 6
∑

j

|λj |

∣∣∣∣
∫∫

Rn×Rn

f(x, y)aj(x, y) dxdy

∣∣∣∣

6 C
∑

j

|λj |‖f‖BMOq′

L,1/w

6 C‖h‖H1
L,w

‖f‖
BMOq′

L,w

.
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Conversely, suppose that l ∈ H1,r,M
L,w (Rn ×Rn)∗ can be represented by f(x, y) in the

form

l(g) =

∫∫

Rn×Rn

f(x, y)g(x, y) dxdy.

Let Ω be a bounded open set in Rn ×Rn, and suppose that Ω =
⋃
R

R, where the R’s

are the maximal dyadic rectangles contained in Ω, and that

(∑

R

‖ϕ‖rLr
w(R)

)1/r
= 1.

Set

a(x, y) =
1

w(Ω)1−1/r

∑

R

(I− (1 + ℓ(I)2L⊗ ℓ(J)2L)−1)M )ϕ.

Then it is not difficult to check that a is a (1, r,M,w)-atom (see Theorem 6.4 in [24]).

Consequently,

‖l‖ > ‖l(a)‖

=
1

w(Ω)1−1/r

∑

R

∫∫

R

(I− (1 + ℓ(I)2L⊗ ℓ(J)2L)−1)M )ϕ(x, y)f(x, y) dxdy

=
1

w(Ω)1−1/r

∑

R

∫∫

R

ϕ(x, y)(I − (1 + ℓ(I)2L⊗ ℓ(J)2L)−1)M )f(x, y) dxdy.

Then by duality it readily follows that

(
1

ω(Ω)

∑

R

∫∫

I×J

|(I− (1 + ℓ(I)2L⊗ ℓ(J)2L)−1)Mf |r
′

w1−r′ dx

)1/r′
6 ‖l‖,

which is what we want to show. �
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