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Periodic solutions to Lagrangian system

Oleg Zubelevich

Abstract. A classical mechanics Lagrangian system with even Lagrangian is con-
sidered. The configuration space is a cylinder R

m
× T

n. A large class of nonho-
motopic periodic solutions has been found.

Keywords: Lagrangian system; periodic solution

Classification: 34C25, 70F20

1. Introduction

Existence problems for periodic solutions to Lagrangian systems have inten-
sively been studied since the beginning of the 20th century and even earlier.
There is an immense number of different results and methods developed in this
field. We mention only few of them those are closely related to this article.

In [2] periodic solutions have been obtained for the Lagrangian system of the
type

(1.1)
d

dt

∂L

∂ẋi
− ∂L

∂xi
= g(t), x = (x1, . . . , xm) ∈ R

m;

where

L(x, ẋ) =
1

2
gij(x)ẋ

iẋj − V (x).

Here and in the sequel we use the Einstein summation convention. The form gij
is symmetric and positive definite:

gijξ
iξj ≥ const1|ξ|2;

V is a bounded function |V (x)| ≤ const2 and g is an ω-periodic function. The
functions V , gij are even.

System (1.1) can also be presented as follows

d

dt

∂L
∂ẋi

− ∂L
∂xi

= 0,
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where

L(t, x, ẋ) = 1

2
gij(x)ẋ

iẋj −W, W (t, x) = V (x) + g(t)
m
∑

i=1

xi.

Under these assumptions the authors prove that there exists a nontrivial ω-
periodic solution.

Our main tool to obtain periodic solutions is variation technique. Variational
problems and Hamiltonian systems have been studied extensively. Classic refer-
ences of these subjects are [5], [6], [4].

2. The main theorem

Introduce some notations. Let x = (x1, . . . , xm) and ϕ = (ϕ1, . . . , ϕn) be
points of the standard R

m and R
n, respectively. Then let z stand for the point

(x, ϕ) ∈ R
m+n. By |·| denote the standard Euclidean norm of Rk, k = m,m+ n

that is |x|2 =
∑k

i=1(x
i)2.

The main object of our study is the following Lagrangian system

(2.1) L(t, z, ż) =
1

2
gij ż

iżj + aiż
i − V, z = (z1, . . . , zm+n).

The functions gij , ai, V depend on (t, z) and belong to C2(Rm+n+1); moreover all
these functions are 2π-periodic in each variable ϕj and ω−periodic in the variable
t, ω > 0. For all (t, z) ∈ R

m+n+1 it follows that gij = gji.
We also assume that there are positive constants C,M,A,K such that for all

(t, z) and ξ ∈ R
m+n we have

(2.2) |ai(t, z)ξi| ≤ |ξ|(C +M |x|), V (t, z) ≤ A|x|2, 1

2
gij(t, z)ξ

iξj ≥ K|ξ|2.

Theorem 2.1. Assume that
1) all the functions are even:

gij(−t,−z) = gij(t, z), ai(−t,−z) = ai(t, z), V (−t,−z) = V (t, z);

2) the following inequality holds

(2.3) K − Mω√
2

− Aω2

2
> 0.

Then for each ν = (ν1, . . . , νn)∈Z
n system (2.1) has a solution z(t) = (x(t), ϕ(t))∈

C3(R,Rm+n) such that
1) the function z is odd: z(−t) = −z(t);
2) x(t+ ω) = x(t), ϕ(t+ ω) = ϕ(t) + 2 πν.
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Remark 2.1. 1) If ν = 0 then z(t) is a contractible solution.
2) If all the functions do not depend on t then we can choose ω to be arbitrary

small and inequality (2.3) is satisfied. Taking a vanishing sequence of ω, we obtain
infinitely many periodic solutions of the same homotopic type.

3) Suppose that M = 0 and V (t, z) ≤ A1|x|α, α < 2. In this case after
some calibration of the potential energy V the second condition of the theorem is
satisfied.

Indeed, choose a constant A > 0 small such that inequality (2.3) is satisfied
then choose a constant c1 > 0 such that for all |x| one has A1|x|α ≤ A|x|2 + c1.
Now the second inequality of (2.2) is satisfied for the new potential

V1 = V − c1 ≤ A|x|2.

The condition 2) is essential. Indeed, system

L(t, x, ẋ) =
1

2
ẋ2 − 1

2
(x− sin t)2

obeys all the conditions except inequality (2.3). It is easy to see that the corre-
sponding equation ẍ+ x = sin t does not have periodic solutions.

2.1 Examples. Our first example is as follows.

Figure 1. The tube and the ball.

Example 2.1. A thin tube can rotate freely in the vertical plane about a fixed
horizontal axis passing through its centre O. A moment of inertia of the tube
about this axis is equal to J . The mass of the tube is distributed symmetrically
such that tube’s centre of mass is placed at the point O.

Inside the tube there is a small ball which can slide without friction. The mass
of the ball is m. The ball can pass by the point O and fall out from the ends of
the tube.

The system undergoes the standard gravity field g.

It seems to be evident that for typical motion the ball reaches an end of the
tube and falls down out the tube. It is surprisingly, at least for the first glance,
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that this system has very many periodic solutions such that the tube turns around
several times during the period.

The sense of generalized coordinates φ, x is clear from Figure 1.
The Lagrangian of this system is as follows

(2.4) L(x, φ, ẋ, φ̇) =
1

2
(mx2 + J)φ̇2 +

1

2
mẋ2 −mgx sinφ.

From Theorem 2.1 it follows that for any constant ω > 0 system (2.4) has a solu-
tion φ(t), x(t), t ∈ R such that

1) x(t) = −x(−t), φ(t) = −φ(−t);
2) x(t+ ω) = x(t), φ(t+ ω) = φ(t) + 2 π.

This result shows that for any ω > 0 the system has an ω-periodic motion such
that the tube turns around once during the period. The length of the tube should
be chosen properly.

Our second example is a counterexample. Let us show that the first condition
of Theorem 2.1 cannot be omitted.

Example 2.2. Consider a mass point m that slides on a right circular cylinder
of radius r. The surface of the cylinder is perfectly smooth. The axis x of the
cylinder is parallel to the gravity g and directed upwards.

The Lagrangian of this system is

(2.5) L(x, ϕ, ẋ, ϕ̇) =
m

2

(

r2ϕ̇2 + ẋ2
)

−mgx.

All the conditions except the evenness are satisfied but it is clear this system does
not have periodic solutions.

3. Proof of Theorem 2.1

In this section we use several standard facts from functional analysis and the
Sobolev spaces theory [3], [1].

Subsection 1. Recall that the Sobolev space H1
loc(R) consists of functions u(t),

t ∈ R, such that u, u̇ ∈ L2
loc(R). The following embedding holds H1

loc(R) ⊂ C(R).

Lemma 3.1. Let u ∈ H1
loc(R) and u(0) = 0. Then for any a > 0 we have

‖u‖2L2(0,a) ≤
a2

2
‖u̇‖2L2(0,a), ‖u‖2C[0,a] ≤ a‖u̇‖2L2(0,a).

Here and below the notation ‖u̇‖L2(0,a) implies that

‖u̇|(0,a)‖L2(0,a),

the same is concerned to ‖u‖C[0,a] etc.
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This lemma is absolutely standard, nevertheless just for completeness of expo-
sition sake we bring a sketch of its proof.

Proof of Lemma 3.1: From formula

(3.1) u(t) =

∫ t

0

u̇(s) ds

it follows that
∫ a

0

u2(s) ds =

∫ a

0

(
∫ t

0

u̇(s) ds

)2

dt.

It remains to observe that by the Cauchy inequality

∣

∣

∣

∣

∫ t

0

u̇(s) ds

∣

∣

∣

∣

≤
∫ t

0

|u̇(s)| ds ≤ ‖u̇‖L2(0,a)

(
∫ t

0

ds

)1/2

, t ∈ [0, a].

This implies the first inequality of the lemma. The second inequality also follows
from formula (3.1) and the Cauchy inequality. Lemma 3.1 is proved. �

Subsection 2. Here we collect several spaces those are needed in the sequel.

Definition 3.1. By X denote a space of functions u ∈ H1
loc(R) such that for all

t ∈ R the following conditions hold

u(−t) = −u(t), u(t+ ω) = u(t).

By virtue of Lemma 3.1, the mapping u 7→ ‖u̇‖L2(0,ω) determines a norm in X .
This norm is denoted by ‖u‖. The norm ‖·‖ is equivalent to the standard norm of
H1[0, ω]. The space (X, ‖·‖) is a Banach space. Since the norm ‖·‖ is generated
by an inner product

(u, v)X =

∫ ω

0

u̇(t)v̇(t) dt

the space X is also a real Hilbert space, particularly this implies that X is a re-
flexive Banach space.

Definition 3.2. Let Φ stand for the space {ct+ u(t) : c ∈ R, u ∈ X}.
By the same argument, (Φ, ‖·‖) is a reflexive Banach space. Observe also that

Φ = R⊕X and by direct calculation we get

‖ψ‖2 = ωc2 + ‖u‖2, ψ(t) = ct+ u(t) ∈ Φ.

Observe that X ⊂ Φ.

Definition 3.3. Let E stand for the space

Xm × Φn = {z(t) = (x1, . . . , xm, ϕ1, . . . , ϕn)(t) : xi ∈ X, ϕj ∈ Φ}.
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The space E is also a real Hilbert space with an inner product defined as follows

(z, y)E =

∫ ω

0

m+n
∑

i=1

ẋi(t)ẏi(t) dt,

where z = (zk), y = (yk) ∈ E, k = 1, . . . ,m+ n.

We denote the corresponding norm in E by the same symbol and write

‖z‖2 = ‖ |z| ‖2 =
m+n
∑

k=1

‖zk‖2.

The space E is also a reflexive Banach space.
Introduce the following set

E0 =
{

(x, ϕ) ∈ E : ϕj =
2πνj

ω
t+ uj, uj ∈ X, j = 1, . . . , n

}

.

This set is a closed plane of codimension n in E.
If (x, ϕ) ∈ E0 then ϕ(t+ ω) = ϕ(t) + 2πν.

Definition 3.4. Let Y stand for the space

{u ∈ L2
loc(R) : u(t) = u(−t), u(t+ ω) = u(t) almost everywhere in R}.

Subsection 3. Introduce the action functional S : E0 → R,

S(z) =

∫ ω

0

L(t, z, ż) dt.

Our next goal is to prove that this functional attains its minimum.
Observe that |x| ≤ |z| then by using estimates (2.2) we get

S(z) ≥
∫ ω

0

(K|ż|2 − |ż|(C +M |z|)−A|z|2) dt.

From the Cauchy inequality and Lemma 3.1 it follows that

∫ ω

0

|ż||z| dt ≤ ω√
2
‖z‖2,(3.2)

∫ ω

0

|z|2 dt ≤ ω2

2
‖z‖2,

∫ ω

0

|ż| dt ≤
√
ω‖z‖,

∫ ω

0

|ż||z| dt ≤ ω√
2
‖z‖2,
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∫ ω

0

|z|2 dt ≤ ω2

2
‖z‖2,

∫ ω

0

|ż| dt ≤
√
ω‖z‖.

We finally yield

S(z) ≥
(

K − Mω√
2

− Aω2

2

)

‖z‖2 − C
√
ω‖z‖.

By formula (2.3) the functional S is coercive:

(3.3) S(z) → ∞ as ‖z‖ → ∞.

Note that the action functional which corresponds to system (2.5) is also co-
ercive but, as we see above, property (3.3) by itself does not imply existence
results.

Subsection 4. Let {zk} ⊂ E0 be a minimizing sequence:

S(zk) → inf
z∈E0

S(z) as k → ∞.

By formula (3.3) the sequence {zk} is bounded: supk ‖zk‖ < ∞. Since the
space E is reflexive, this sequence contains a weakly convergent subsequence.
Denote this subsequence in the same way: zk → z∗ weakly in E.

Moreover, the space H1[0, ω] is compactly embedded in C[0, ω]. Thus extract-
ing a subsequence from the subsequence and keeping the same notation we also
have

(3.4) max
t∈[0,ω]

|zk(t)− z∗(t)| → 0 as k → ∞.

The set E0 is convex and strongly closed therefore it is weakly closed: z∗ ∈ E0.

Subsection 5. Let us show that infz∈E0
S(z) = S(z∗).

Lemma 3.2. Let a sequence {uk} ⊂ Φ weakly converges to u ∈ Φ (or uk, u ⊂ X

and uk → u weakly in X); and also maxt∈[0,ω] |uk(t)− u(t)| → 0.

Then for any f ∈ C(R) and for any v ∈ L2(0, ω) it follows that
∫ ω

0

f(uk)u̇kv dt →
∫ ω

0

f(u)u̇v dt.

Indeed,
∫ ω

0

f(uk)u̇kv dt =

∫ ω

0

(f(uk)− f(u))u̇kv dt+

∫ ω

0

f(u)u̇kv dt.
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The function f is uniformly continuous in a compact set
[

min
t∈[0,ω]

{u(t)} − c, max
t∈[0,ω]

{u(t)}+ c
]

with some constant c > 0. Consequently we obtain

max
t∈[0,ω]

|f(uk(t))− f(u(t))| → 0.

Since the sequence {uk} is weakly convergent it is bounded:

sup
k

‖uk‖ <∞

particularly, we get

‖u̇k‖L2(0,ω) <∞.

So that
∣

∣

∣

∣

∫ ω

0

(f(uk)− f(u))u̇kv dt

∣

∣

∣

∣

≤ ‖v(f(uk)− f(u))‖L2(0,ω)‖u̇k‖L2(0,ω) → 0.

To finish the proof it remains to observe that a function

u 7→
∫ ω

0

f(u)u̇v dt

belongs to Φ′ (or to X ′). Indeed,
∣

∣

∣

∣

∫ ω

0

f(u)u̇v dt

∣

∣

∣

∣

≤ max
t∈[0,ω]

|f(u(t))| ‖v‖L2(0,ω)‖u‖.

Subsection 6. The following lemma is proved similarly.

Lemma 3.3. Let a sequence {uk} ⊂ Φ (or {uk} ⊂ X) be such that

max
t∈[0,ω]

|uk(t)− u(t)| → 0.

Then for any f ∈ C(R) and for any v ∈ L1(0, ω) it follows that

∫ ω

0

f(uk)v dt→
∫ ω

0

f(u)v dt.

Subsection 7. Introduce a function pk(t, ξ) = L(t, zk, ż∗ + ξ). The function pk is
a quadratic polynomial of ξ ∈ R

m+n, so that

pk(t, ξ) = L(t, zk, ż∗) +
∂L

∂żi
(t, zk, ż∗)ξ

i +
1

2

∂2L

∂żj∂żi
(t, zk, ż∗)ξ

iξj .
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The last term in this formula is non-negative:

∂2L

∂żj∂żi
(t, zk, ż∗)ξ

iξj = gij(t, zk)ξ
iξj ≥ 0.

We consequently obtain

pk(t, ξ) ≥ L(t, zk, ż∗) +
∂L

∂żi
(t, zk, ż∗)ξ

i.

It follows that

(3.5)

S(zk) =

∫ ω

0

pk(t, żk − ż∗) dt

≥
∫ ω

0

L(t, zk, ż∗) dt+

∫ ω

0

∂L

∂żi
(t, zk, ż∗)(ż

i
k − żi

∗
) dt.

From Lemma 3.2 and Lemma 3.3 it follows that
∫ ω

0

L(t, zk, ż∗) dt→
∫ ω

0

L(t, z∗, ż∗) dt,

and
∫ ω

0

∂L

∂żi
(t, zk, ż∗)(ż

i
k − żi

∗
) dt→ 0.

Passing to the limit as k → ∞ in (3.5) we finally yield

inf
z∈E0

S(z) ≥ S(z∗).

Subsection 8. Thus for any v ∈ Xm+n it follows that

d

dε

∣

∣

∣

ε=0
S(z∗ + εv) = 0.

Every element v ∈ Xm+n is presented as follows

v(t) =

∫ t

0

y(s) ds,

where y ∈ Y m+n is such that

∫ ω

0

y(s) ds = 0.

Introduce a linear operator h : Y m+n → R
m+n by the formula

h(y) =

∫ ω

0

y(s) ds.
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Define a linear functional q : Y m+n → R by the formula

q(y) =
d

dε

∣

∣

∣

ε=0
S

(

z∗ + ε

∫ t

0

y(s) ds

)

.

Now all our observations are resumed as follows

kerh ⊆ ker q.

Therefore, there exists a linear functional λ : Rm+n → R such that

q = λh.

Subsection 9. Let us rewrite the last formula explicitly. There are real constants
λk such that for any yk ∈ Y one has

∫ ω

0

( ∂L

∂żk
(t, z∗, ż∗)y

k(t) +
∂L

∂zk
(t, z∗, ż∗)

∫ t

0

yk(s) ds
)

dt = λk

∫ ω

0

yk(s) ds.

By the Fubini theorem we obtain

(3.6)

∫ ω

0

∂L

∂żk
(t, z∗, ż∗)y

k(t) dt+

∫ ω

0

yk(s)

∫ ω

s

∂L

∂zk
(t, z∗, ż∗) dt ds

= λk

∫ ω

0

yk(s) ds.

In this formula it does not matter whether the function yk is periodic and even,
we use this function only in the interval (0, ω). Any function from L2(0, ω) can
be extended up to a function of Y .

Therefore, equation (3.6) is rewritten as the following system

(3.7)
∂L

∂żk
(t, z∗(t), ż∗(t)) +

∫ ω

t

∂L

∂zk
(s, z∗(s), ż∗(s)) ds = λk,

here k = 1, . . . ,m+ n. Equalities (3.7) hold for almost all t ∈ (0, ω).

Subsection 10. Let us show that if w ∈ L2
loc(R) is an ω-periodic and odd function:

w(−t) = −w(t), w(t+ ω) = w(t) almost everywhere,

then a function t 7→
∫ ω

t
w(τ) dτ belongs to Y .

Indeed,
∫ ω

t w(τ) dτ =
∫ 0

t w(τ) dτ +
∫ ω

0 w(t) dt. Due to oddity and periodicity

∫ ω

0

w(t) dt =

∫ ω/2

−ω/2

w(τ) dτ = 0.

Thus
∫ 0

t w(τ) dτ ∈ Y .



Periodic solutions to Lagrangian system 251

Subsection 11. The function

∂L

∂zk
(t, z∗, ż∗) dt

is ω-periodic and odd in t. From the argument above we conclude that
∫ ω

t

∂L

∂zk
(τ, z∗, ż∗) dτ ∈ Y.

Since the left side of (3.7) is ω-periodic, this equation holds for almost all t ∈ R.
If we formally differentiate in t both sides of equations (3.7) we obtain the

Lagrange equations with Lagrangian L.

Subsection 12. Present equation (3.7) in the form

(3.8) żj
∗
(t) = gkj(t, z∗(t))

(

λk −
∫ ω

t

∂L

∂zk
(s, z∗(s), ż∗(s)) ds− ak(t, z∗(t))

)

.

Recall that by the Sobolev embedding theorem, z∗ ∈ X ⊂ C(R). Thus the right
side of equality (3.8) belongs to C(R). Therefore, z∗ ∈ C1(R). Applying the same
argument two times again, we get z∗ ∈ C3(R).

The theorem is proved. �
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