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Isometric embeddings of a class

of separable metric spaces into Banach spaces

Sophocles K. Mercourakis, Vassiliadis G. Vassiliadis

Abstract. Let (M, d) be a bounded countable metric space and c > 0 a constant,
such that d(x, y) + d(y, z) − d(x, z) ≥ c, for any pairwise distinct points x, y, z

of M . For such metric spaces we prove that they can be isometrically embedded
into any Banach space containing an isomorphic copy of ℓ∞.
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Introduction

Let (M,d) be a metric space; following [4] we will call it concave, when the
triangle inequality is strict, i.e., when d(x, y) + d(y, z) > d(x, z) for any pairwise
distinct points x, y, z of M .

In this note we are interested in (concave) metric spaces satisfying the stronger
property: there is a constant c > 0 such that d(x, y)+d(y, z)−d(x, z) ≥ c for any
pairwise distinct points x, y, z. Let us call these spaces strongly concave metric
spaces.

The main result we prove is an infinite dimensional version of Theorem 4.3
of [4], that is, if a Banach space X contains an isomorphic copy of ℓ∞, then
X contains isometrically any bounded countable strongly concave metric space
(Theorem 2). An immediate consequence of this result is that any Banach space
containing an isomorphic copy of c0 admits an infinite equilateral set (Theorem 3).
This result was first proved (by similar methods) in [5, Theorem 2].

A subset S of a metric space (M,d) is said to be equilateral, if there is a λ > 0
such that for x 6= y ∈ S we have d(x, y) = λ; we also call S a λ-equilateral set
(see [8]).

If X is any (real) Banach space, then BX and SX denote its closed unit ball and
unit sphere respectively. X is said to be strictly convex, if for any x 6= y ∈ SX we
have ‖x + y‖ < 2. The Banach-Mazur distance between two isomorphic Banach
spaces X and Y is d(X,Y ) = inf{‖T ‖ ‖T−1‖ : T is an isomorphism}.
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Strongly concave metric spaces

We start by presenting some examples of concave metric spaces.

Examples 1. (1) a) Let (M,d) be a discrete metric space (i.e. d(x, y) = 1 when
x 6= y). Clearly 1 = d(x, z) < d(x, y)+d(y, z) = 2 for any pairwise distinct triplet
x, y, z ∈ M . Therefore (M,d) is a concave metric space. In particular, every
λ-equilateral subset of any metric space is a concave metric space.

b) More generally, every ultrametric space is concave. This holds since for any
x, y, z pairwise distinct points we have d(x, z) ≤ max{d(x, y), d(y, z)} < d(x, y) +
d(y, z).

(2) Let (X, ‖·‖) be a strictly convex Banach space. As is well known, if x, y, z
are non collinear points of X then ‖x− z‖ < ‖x− y‖+ ‖y − z‖.

It then follows that the unit sphere SX and every affinely independent subset
A of X with the norm metric are concave metric spaces (in any case no three
pairwise distinct points are collinear).

(3) Let (X, ‖·‖) be a Banach space and A ⊆ BX such that x 6= y ∈ A ⇒
‖x − y‖ > 1 (see [3]). Then for any x, y, z pairwise distinct points of A we have
‖x− y‖+ ‖y− z‖− ‖x− z‖ > 1+ 1− ‖x− z‖ ≥ 1 + 1− 2 = 0. Hence A with the
norm metric is concave.

(4) Let (M,d) be any metric space and p ∈ (0, 1). Then it is rather easy to
show that dp is a concave metric on M . This follows from the fact that given
a, b, c > 0 with a ≤ b + c then ap < bp + cp. The metric dp is then called the
snowflaked version of d (see [6]).

We are interested in concave metric spaces (M,d) satisfying the stronger prop-
erty: there is a constant c > 0 such that for any pairwise distinct points x, y, z of
M we have d(x, y)+d(y, z)−d(x, z) ≥ c, equivalently d(x, z)+c ≤ d(x, y)+d(y, z).
Let us call these spaces strongly concave spaces.

Lemma 1. Every strongly concave metric space is separated (or uniformly dis-
crete).

Proof: Assume that (M,d) is a c-strongly concave metric space. We claim that
x 6= y ∈ M ⇒ d(x, y) ≥ c/2. Assume for the purpose of contradiction that
there is a pair {x, y} ⊆ M with d(x, y) < c/2. Let also z ∈ M \ {x, y}. We
then have d(x, y) + d(y, z) ≤ d(x, y) + (d(y, x) + d(x, z)) = 2d(x, y) + d(x, z) ⇒
d(x, y) + d(y, z) − d(x, z) ≤ 2d(x, y) < 2c/2 = c. The last inequality clearly
contradicts the fact that M is c-strongly concave. �

The following are examples of strongly concave metric spaces.

Examples 2. (1) Every finite concave metric space is clearly strongly concave.
(2) Let A be a λ-equilateral subset of any metric space (M,d). For any pairwise

distinct points x, y, z of A we have d(x, y) + d(y, z)− d(x, z) = λ+ λ− λ = λ, so
A is a λ-strongly concave metric subspace of (M,d).
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(3) Let (X, ‖·‖) be a Banach space. Also let A ⊆ BX with the property that
x 6= y ∈ A ⇒ ‖x − y‖ ≥ 1 + ε, where ε > 0 is a constant. Then we have
‖x − y‖ + ‖y − z‖ − ‖x − z‖ > (1 + ε) + (1 + ε) − 2 = 2ε (cf. Examples 1 (3)).
Therefore A with the norm metric is a 2ε-strongly concave metric space.

Note that if dimX = ∞, then by a result of J. Elton and E. Odell (see [2])
there is A ⊆ SX infinite and ε > 0 such that x 6= y ∈ A ⇒ ‖x− y‖ ≥ 1 + ε.

Remarks 1. (1) Clearly every separable strongly concave metric space M is
at most countable (this is so because M is separated, hence it has the discrete
topology).

(2) Every subspace of a concave (or strongly concave) space has the same
property.

The following result is classical (see [6]).

Theorem 1 (Fréchet). Every separable metric space (M,d) embeds isometrically
into ℓ∞.

Proof: Let (xn) ⊆ M be a dense sequence in M . Then the map

ϕ : x ∈ M 7→ (d(x, xn)− d(x1, xn))n≥1 ∈ ℓ∞

satisfies our claim. �

Remark 2. Let (M,d) be a separable metric space. We define a map

σ : M → R
N with σ(x) = (d(x, xn))n≥1

where (xn) is any dense sequence in M . Then the Fréchet embedding of M into
ℓ∞ is the map

ϕ(x) = σ(x) − σ(x1), x ∈ X.

Note that if the space (M,d) is bounded (i.e., there is k > 0 such that d(x, y) ≤ k
for all x, y ∈ M), then the map σ is already an isometric embedding ofM into ℓ∞,
which we will still call the Fréchet embedding of M into ℓ∞.

Proposition 1. Let (M,d) be a bounded countable infinite metric space. Then
there is an infinite subset N of M such that the Fréchet embedding of N into ℓ∞
takes values into the space c.

Proof: Let {x1, x2, . . . , xn, . . . } be a one-to-one enumeration of M . Then
σ(xk) = (d(xk, xn))n≥1 ∈ ℓ∞ for k ∈ N, since d is a bounded metric. We construct
by induction a subsequence {x′

1, x
′
2, . . . , x

′
n, . . . } of (xn) satisfying our claim.

Since (d(x1, xn))n≥1 is a bounded sequence of real numbers, there is A1 ⊆ N

infinite, such that d(x1, xn)
n∈A1−−−→ α1. Set n1 = 1.

Let n2 = minA1 for which we may assume that n2 > n1. Then for the
sequence (d(xn2

, xn))n∈A1
, there is A2 ⊆ A1 infinite with n3 = minA2 > n2 such

that d(xn2
, xn)

n∈A2−−−→ α2.
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Then for the sequence (d(xn3
, xn))n∈A2

, there is A3 ⊆ A2 infinite with n4 =

minA3 > n3 such that d(xn3
, xn)

n∈A3−−−→ α3.
The inductive process should be clear. Now set a metric space A = {n1 <

n2 < · · · < nk < . . . }. Clearly {nk, nk+1, . . . } ⊆ Ak for k ≥ 1 and hence

d(xnk
, xn)

n∈A
−−−→ αk for all k ≥ 1. It is clear that the set N = {x′

k = xnk
: k ≥ 1}

satisfies our requirements. �

The following theorem is the main result of this note; its proof resembles the
proof of Theorem 4.3 of [4] and the proof of Theorem 2 of [5] (we use Schauder’s
fixed point theorem in the same way we did in [5]). The origins of these ideas can
be traced in P. Braß (see [1] and [8]) and K. J. Swanepoel and R. Villa (see [9]
and [10]).

Theorem 2. Let X be any Banach space containing an isomorphic copy of ℓ∞.
Then X contains isometrically any bounded separable strongly concave metric
space.

Proof: We shall use a kind of non distortion property of ℓ∞ proved indepen-
dently by M. Talagrand (see [11]) and J.R. Partington (see [7]). Let us denote
by ‖·‖∞ the usual norm of ℓ∞.

Claim. Let (M,d) be any bounded separable strongly concave metric space.
There is δ > 0, such that if ‖·‖ is any equivalent norm on ℓ∞ with Banach Mazur
distance

d((ℓ∞, ‖·‖∞), (ℓ∞, ‖·‖)) ≤ 1 + δ

then the space (M,d) embeds isometrically into (ℓ∞, ‖·‖).

Proof of the Claim: Since (M,d) is strongly concave, there is η > 0 such that
d(x, y)+d(y, z)−d(x, z) ≥ η for each triplet x, y, z of pairwise distinct points ofM .
We may assume that ‖x‖ ≤ ‖x‖∞ ≤ (1 + δ)‖x‖ for x ∈ ℓ∞, where δ > 0 is to be
determined.

Let I = {(m,n) : n < m, n,m ∈ N}; denote by K the compact cube [0, η]I .
Since M is (strongly concave and) separable, it is at most countable, so let M =
{x1, x2, . . . , xn, . . . }. For ε = (ε(m,n)) ∈ K set

p1(ε) = (d(x1, x1)− d(x1, x1), d(x1, x2)− d(x1, x2), . . . , d(x1, xn)

− d(x1, xn), . . . )

= (0, . . . , 0, . . . )

p2(ε) = (d(x2, x1)− d(x1, x1) + ε(2,1), d(x2, x2)− d(x1, x2), . . . ,

d(x2, xn)− d(x1, xn), . . . )

...
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pn(ε) = (d(xn, x1)− d(x1, x1) + ε(n,1), . . . , d(xn, xn−1)

− d(x1, xn−1) + ε(n,n−1), d(xn, xn)− d(x1, xn), . . . )

...

(Note that xn 7→ pn(0) is the Fréchet embedding of M into (ℓ∞, ‖·‖∞)).
For n < m we have

‖pn(ε)− pm(ε)‖∞ = sup
k

∣

∣d(xn, xk) + ε(n,k) − (d(xm, xk) + ε(m,k))
∣

∣

where we set ε(k,l) = 0 for l ≥ k. This supremum is equal to d(xn, xm) + ε(m,n)

as for k 6= n,m we have

d(xn, xk)−d(xm, xk)+ε(n,k)−ε(m,k) ≤ d(xn, xm)−η+ε(n,k)−ε(m,k) ≤ d(xn, xm).

We define a function

ε = (ε(m,n)) ∈ K
ϕ

7−→ ϕ(ε) = (ϕ(m,n)(ε)) ∈ K,

by the rule ϕ(m,n)(ε) = d(xn, xm)+ε(m,n)−‖pn(ε)−pm(ε)‖. Note that ϕ(m,n)(ε) ≥
d(xn, xm)+ ε(m,n)−‖pn(ε)−pm(ε)‖∞ = 0 (using the computation above and the
fact that the norm ‖·‖∞ dominates ‖·‖). We also have

d(xn, xm) + ε(m,n) = ‖pn(ε)− pm(ε)‖∞ ≤ (1 + δ)‖pn(ε)− pm(ε)‖

⇒
1

1 + δ
(d(xn, xm) + ε(m,n)) ≤ ‖pn(ε)− pm(ε)‖.

Therefore

ϕ(m,n)(ε) = d(xn, xm) + ε(m,n) − ‖pn(ε)− pm(ε)‖

≤ d(xn, xm) + ε(m,n) −
1

1 + δ
(d(xn, xm) + ε(m,n))

=
δ

1 + δ
(d(xn, xm) + ε(m,n)).

It then follows from (this inequality and) the fact that M is bounded that if δ is
quite small, then ϕ(m,n)(ε) ≤ η for ε ∈ K.

Since each coordinate function ϕ(m,n) is continuous (as dependent on finite co-
ordinates, i.e., from the set {(k, l) : 1 ≤ l < k ≤ m}) it follows that ϕ is also con-
tinuous. By a classical result of Schauder, ϕ has a fixed point ε′ = (ε′(m,n)) ∈ K,

that is ϕ(ε′) = ε′, which implies ‖pn(ε
′) − pm(ε′)‖ = d(xn, xm) for all n,m ∈ N.

The proof of the Claim is complete. �

Denote by ‖·‖ the norm ofX and let Y be a subspace ofX isomorphic to ℓ∞. By
the non distortion property of (ℓ∞, ‖·‖∞) there is a subspace Z ⊆ Y (isomorphic
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to ℓ∞) such that

d((Z, ‖·‖), (ℓ∞, ‖·‖∞)) ≤ 1 + δ

(this is the δ > 0 postulated in the Claim). It follows immediately from the Claim
that the space (Z, ‖·‖) contains an isometric copy of (M,d). �

In the special case when (M,d) is the countable infinite discrete metric space
we get the following result first proved in [5, Theorem 2], essentially with the
same method.

Theorem 3. Every Banach space X containing an isomorphic copy of c0 admits
an infinite equilateral set.

Proof: Take in the proof of the previous theorem (M,d) to be the countable
infinite discrete space. Then η = 1 and the resulting family (pn(ε))n≥1, ε ∈ K =
[0, 1]I takes values in c0 (remember that xn 7→ pn(0) is the Fréchet embedding of
(M,d) into c0). Since (c0, ‖·‖∞) is non distortable, we get the conclusion. �

Theorem 2 can be improved in the following way.

Theorem 4. Let (M,d) be an infinite bounded separable strongly concave metric
space. Then there is N ⊆ M infinite such that the metric space (N, d) can be
isometrically embedded into any Banach space containing an isomorphic copy of
the space c0.

Proof: By Proposition 1, there is N ⊆ M infinite such that the Fréchet em-
bedding σ : N → ℓ∞ takes values into c. Then the proof of Theorem 2 gives us
a family of embeddings (pn(ε))n≥1, ε ∈ K = [0, η]I taking values into c. Since c

is isomorphic to c0, we are done. �
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