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Abstract. We propose a new type of multilevel method for solving eigenvalue problems
based on Newton’s method. With the proposed iteration method, solving an eigenvalue
problem on the finest finite element space is replaced by solving a small scale eigenvalue
problem in a coarse space and a sequence of augmented linear problems, derived by Newton
step in the corresponding sequence of finite element spaces. This iteration scheme improves
overall efficiency of the finite element method for solving eigenvalue problems. Finally,
some numerical examples are provided to validate the efficiency of the proposed numerical
scheme.
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1. Introduction

In recent decades, the study of solving large scale eigenvalue problems, arising from

the modern science and engineering society, has become one of the major focuses of

numerical analysts and engineers. However, it is always a difficult task to solve high-

dimensional eigenvalue problems that come from physical and chemical sciences.

About the solution of eigenvalue problems, [3], [9], [10], [14], [15], [16], [19], [23], [24]

and the references cited therein give some types of multilevel or multigrid schemes.
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Newton’s method is one of the most powerful and well-known numerical methods

for solving a root-finding problem. With a suitable initial guess, Newton’s method is

guaranteed to converge and the convergence is quadratic under some assumptions. So

Newton’s method is an extremely powerful technique in numerical computation and is

widely applied to minimization and maximization problems, multiplicative inverses

of numbers and power series, solving transcendent equations, complex functions,

nonlinear systems of equations.

Note that, recently, Newton-type (Jacobi-type) approach has been successfully

developed for solving eigenvalue problems [8], [6], [11], [18], [20], [22], [21], includ-

ing linear and nonlinear cases. However, most existing researches focus mainly on

method designing, understanding, implementing and numerical experiments in al-

gebraic version. The aim of this paper is to present a type of multilevel iteration

scheme based on Newton’s approach for eigenvalue problems by using finite element

discretization. In the multilevel iteration scheme, the coarse meshes provide good

initial values for fine meshes, which improves the convergence rate of Newton’s it-

eration. Actually, in order to obtain the optimal accuracy, we only need to do one

Newton’s iteration step in each level of meshes. The standard Galerkin finite element

method for eigenvalue problems has been extensively investigated, e.g. Babuška and

Osborn [1], [2], Chatelin [5] and references cited therein. Here we adopt some basic

results from these papers for our analysis. The corresponding error and complexity

of the proposed iteration scheme for the eigenvalue problem will be analyzed. Based

on the analysis, the new method can obtain optimal accuracy with an optimal com-

putational work when we can solve the associated augmented linear problems by

the optimal complexity. Although Newton’s method is sensitive to initial guess, we

use multilevel technique to overcome this difficulty. Since it is easy to find a good

approximation in the coarse grid for the fine grid approximation, using Newton type

iterative method is reasonable. According to the theory of mixed finite element

method [4], we also prove the existence and uniqueness of solutions to the proposed

scheme. Namely, results should be helpful to better understand solving eigenvalue

problems by Newton’s approach and further extension.

This paper is organized as follows. In Section 2, we introduce the finite element

method for the eigenvalue problem and give the corresponding basic error estimates.

A type of one Newton iteration step is presented and the error estimates of the pro-

posed scheme are analyzed in Section 3. In Section 4, we suggest a type of multilevel

iteration scheme for more eigenvalues. In Section 5, three numerical examples are

presented to validate our theoretical analysis. Some concluding remarks are provided

in the last section.
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2. Finite element method for eigenvalue problems

In this section, we introduce some notation and error estimates of the finite element

method for the eigenvalue problem. The letter C (with or without subscripts) denotes

a generic positive constant which may be different at its different occurrences through

the paper. For convenience, the symbols ., & and ≈ will be used in this paper.

Namely, x1 . y1, x2 & y2 and x3 ≈ y3, mean that x1 6 C1y1, x2 > c2y2 and

c3x3 6 y3 6 C3x3 respectively for some constants C1, c2, c3, and C3 that are

independent of the mesh size (see e.g. [25]).

In our methodology description, we are concerned with the following model prob-

lem: Find (λ, u) ∈ R× V such that b(u, u) = 1 and

(2.1) a(u, v) = λb(u, v) ∀ v ∈ V,

where V := H1
0 (Ω), and a(·, ·) and b(·, ·) are bilinear forms defined by

a(u, v) =

∫

Ω

∇u∇v dΩ, b(u, v) =

∫

Ω

uv dΩ.

Here Ω ⊂ R
d denotes a bounded domain with Lipschitz boundary.

In this paper, based on these two bilinear forms, we define the norms ‖·‖a and

‖·‖b as follows:

‖v‖2a = a(v, v), ‖v‖2b = b(v, v).

It is well known that ‖·‖a is a norm in the space V and ‖·‖b is a norm in the space

L2(Ω).

For the eigenvalue λ, there exists the Rayleigh quotient expression (see e.g. [1],

[2], [26])

λ =
a(u, u)

b(u, u)
.

From [2], [5], we know (2.1) has an eigenvalue sequence {λj}:

0 < λ1 6 λ2 6 . . . 6 λk 6 . . . , lim
k→∞

λk = ∞,

and the associated eigenfunctions

u1, u2, . . . , uk, . . . ,

where b(ui, uj) = δij , and δij is the Kronecker’s delta. In the sequence {λj}, the λj
are repeated according to their geometric multiplicity. In order to give the error esti-

mates, let M(λi) denote the eigenfunction space corresponding to the eigenvalue λi
which is defined by

M(λi) = {w ∈ V : w is an eigenfunction of (2.1) corresponding to λi}.
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Now, let us define the finite element approximations of the problem (2.1). First we

generate a shape-regular decomposition of the computing domain Ω ⊂ R
d (d = 2, 3)

into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3). The

diameter of a cell K ∈ Th is denoted by hK . The mesh diameter h describes the

maximum diameter of all cells K ∈ Th. Based on the mesh Th, we can construct

the linear finite element space denoted by Vh ⊂ V . The finite element space Vh is

assumed to satisfy the assumption

(2.2) lim
h→0

inf
vh∈Vh

‖w − vh‖a = 0, for any w ∈ V.

The finite element approximation for (2.1) is defined as follows: Find (λ̄h, ūh) ∈

R× Vh such that b(ūh, ūh) = 1 and

(2.3) a(ūh, vh) = λ̄hb(ūh, vh) ∀ vh ∈ Vh.

From (2.3), we know the following Rayleigh quotient expression for λ̄h holds (see

e.g. [1], [2], [26]):

λ̄h =
a(ūh, ūh)

b(ūh, ūh)
.

Similarly, the eigenvalue problem (2.3) has eigenvalues (see e.g. [2], [5])

0 < λ̄1,h 6 λ̄2,h 6 . . . 6 λ̄k,h 6 . . . 6 λ̄Nh,h,

and the corresponding eigenfunctions

ū1,h, ū2,h, . . . , ūk,h, . . . , ūNh,h,

where b(ūi,h, ūj,h) = δij , 1 6 i, j 6 Nh (Nh is the dimension of the finite element

space Vh).

Due to the minimum-maximum principle (see e.g. [1], [2]), the following upper

bound result holds

λi 6 λ̄i,h, i = 1, 2, . . . , Nh.

Similarly, let Mh(λi) denote the approximate eigenfunction space corresponding to

the eigenvalue λi which is defined by

Mh(λi) = {wh ∈ Vh : wh is an eigenfunction of (2.3) corresponding to λi}.

According to [1], [2], each eigenvalue λ̄i,h can be defined as follows

(2.4) λ̄i,h = inf
vh∈Vh

vh⊥Mh(λj) for λj<λi

a(vh, vh)

b(vh, vh)
.
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In order to give error estimate results for the eigenvalue problems by the finite

element method, we define

(2.5) δh(λi) = sup
w∈M(λi)
‖w‖a=1

inf
vh∈Vh

‖w − vh‖a,

and

(2.6) ηa(h) = sup
f∈V

‖f‖b=1

inf
vh∈Vh

‖Tf − vh‖a,

where the operator T : V ′ → V is defined as

a(Tf, v) = b(f, v) ∀ f ∈ V ′ and ∀ v ∈ V.

The following error estimates for the eigenpair approximations by finite element

method are known:

Proposition 2.1 ([1], Lemma 3.7, (3.29b), [2], p. 699 and [5]). (i) For any eigen-

function approximation ūi,h of (2.3) (i = 1, 2, . . . , Nh), there is an eigenfunction ui
of (2.1) corresponding to λi such that ‖ui‖b = 1 and

(2.7) ‖ui − ūi,h‖a 6 Cδh(λi).

Furthermore,

(2.8) ‖ui − ūi,h‖b 6 Cηa(h)‖ui − ūi,h‖a.

(ii) For each eigenvalue we have

(2.9) λi 6 λ̄i,h 6 λi + Cδ2h(λi).

Here and hereafter C is a constant depending on λi but independent of the mesh

size h.
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3. Newton’s method for eigenvalue problem

The aim of this section is to present a type of one Newton iteration step to improve

the accuracy of the given eigenpair approximations. This iteration method only

requires solving augmented linear problems in a finer finite element space. Here we

only state the numerical method for the first and simple eigenvalue. In the next

section, we will show the case of more eigenvalues.

For the analysis in this paper, we introduce the error expansion of the eigenvalue

by the Rayleigh quotient formula which comes from [1], [2], [17], [26].

Lemma 3.1 ([1], Lemma 3.1). Assume (λ̄h, ūh) is a true solution of the eigenvalue

problem (2.3) and 0 6= ψh ∈ Vh. Let us define

λ̂h =
a(ψh, ψh)

b(ψh, ψh)
.

Then we have

λ̂h − λ̄h =
a(ūh − ψh, ūh − ψh)

b(ψh, ψh)
− λ̄h

b(ūh − ψh, ūh − ψh)

b(ψh, ψh)
.

3.1. Existence and uniqueness of solutions. This subsection introduces the

main idea that deduces our numerical method. Here, we use Newton’s method to

solve the eigenproblem (2.1): Find (λ, u) ∈ R× V such that

(3.1)

{
a(u, v)− λb(u, v) = 0 ∀ v ∈ V,

b(u, u)− 1 = 0.

If we have an eigenpair approximation (µ0, u0) with b(u0, u0) = 1, Newton’s method

for (3.1) is to find (λ̃, ũ) ∈ R× V such that

(3.2)





a(ũ− u0, v)− µ0 · b(ũ− u0, v)− (λ̃− µ0)b(u0, v)

= −(a(u0, v)− µ0 · b(u0, v)) ∀ v ∈ V,

−b(ũ− u0, u0) = 0.

After simplifying (3.2), we have the following equation for the new eigenpair approx-

imation (λ̃, ũ) ∈ R× V :

(3.3)

{
a(ũ, v)− µ0 · b(ũ, v)− λ̃b(u0, v) = −µ0b(u0, v) ∀ v ∈ V,

−b(ũ− u0, u0) = 0.
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Now, we come to proving that the mixed problem (3.3) has only one solution. To

this aim, we define the bilinear forms

(3.4) Aµ0
(u, v) = a(u, v)− µ0b(u, v), B(v, ν) = −νb(u0, v),

where u ∈ V , v ∈ V , ν ∈ W = R and µ0 = a(u0, u0)/b(u0, u0).

Assume that f ∈ V ′ and g ∈ W ′. We consider the following mixed problem: Find

(u, λ) ∈ V ×W such that

(3.5)

{
Aµ0

(u, v) +B(v, λ) = f(v) ∀ v ∈ V,

B(u, ν) = g(ν) ∀ ν ∈W.

Concerning the existence and uniqueness of problem (3.5), the following theorem

holds.

Theorem 3.1. Assume u0 is an eigenfunction approximation to M(λ1) with suf-

ficiently small error and ‖u0‖b = 1. Then the bilinear forms defined in (3.4) satisfy

the following conditions:

(1) There exists α > 0 (depending on λ2 − λ1) such that

(3.6) Aµ0
(v, v) > α‖v‖2a ∀ v ∈ V0,

where V0 = {v : B(v, ν) = 0 ∀ ν ∈ W} = {v : b(u0, v) = 0}.

(2) There exists σ > 0 (depending on 1/µ0) such that

(3.7) sup
v∈V

B(v, ν)

‖v‖a
> σ|ν| ∀ ν ∈W.

Based on these two conditions, the mixed equation (3.5) has only one solution.

P r o o f. We decompose u0 as u0 = w1 + w⊥
1 such that w1 ∈ M(λ1) and w

⊥
1 ⊥

M(λ1).

Since u0 (‖u0‖b = 1) is an eigenfunction approximation toM(λ1) with sufficiently

small error, there exists a small enough positive number δ such that

(3.8) ‖u0 − w1‖a 6 δ.

From Lemma 3.1, we also have

(3.9) |µ0 − λ1| 6 Cδ2.
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Since (3.8) and ‖u0‖
2
b = ‖w1‖

2
b + ‖w⊥

1 ‖
2
b hold, w

⊥
1 and w1 have estimates

‖w⊥
1 ‖b 6 C‖w⊥

1 ‖a 6 Cδ, ‖w1‖b > 1− Cδ.

We also do the decomposition v = v1 + v⊥1 with v1 ∈ M(λ1) and v
⊥
1 ⊥ M(λ1) for

v ∈ V0. Since b(w1 + w⊥
1 , v1 + v⊥1 ) = 0, the following inequality holds:

‖v1‖b‖w1‖b = |b(v1, w1)| = |−b(v⊥1 , w
⊥
1 )| = |−b(v, w⊥

1 )| 6 Cδ‖v‖b.

Then ‖v1‖b has the estimate

(3.10) ‖v1‖b 6
Cδ

1− Cδ
‖v‖b 6 Cδ‖v‖b.

From (3.10) and the property ‖v‖2b = ‖v1‖
2
b + ‖v⊥1 ‖

2
b , we obtain the estimates

b(v, v) = b(v1, v1) + b(v⊥1 , v
⊥
1 ) 6 Cδ2b(v, v) +

1

λ2
a(v⊥1 , v

⊥
1 )

6 Cδ2b(v, v) +
1

λ2
a(v, v).

Thus we have the inequality

(3.11) b(v, v) 6
1

λ2(1− Cδ2)
a(v, v).

By virtue of (3.9), (3.11) and the definition of Aµ(·, ·), the following inequalities hold:

a(v, v) − µ0b(v, v) >
(
1−

µ0

λ2(1 − Cδ2)

)
a(v, v) >

λ2(1− Cδ2)− µ0

λ2(1− Cδ2)
a(v, v)

>
λ2 − λ1 − Cδ2

λ2(1 − Cδ2)
a(v, v).

This means that (3.6) holds for α = (λ2 − λ1 − Cδ2)/(λ2(1− Cδ2)) when δ is small

enough.

Now, we come to proving (3.7). From the definitions of B(·, ·) and µ, we have

sup
v∈V

B(v, ν)

‖v‖a
> |ν|

b(u0, u0)

‖u0‖a
=

|ν|

µ0
∀ ν ∈W.

It means that (3.7) holds for

σ =
1

µ0
.

According to the theory for the mixed finite element method [4], there exists only

one solution for equation (3.5). �
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Corollary 3.1. Under the conditions of Theorem 3.1, the inequality

(3.12) ‖w‖a + |γ| 6 C4 sup
06=(v,ν)∈V ×W

Aµ0
(w, v) +B(v, γ) +B(w, ν)

‖v‖a + |ν|
,

holds for any (w, γ) ∈ V ×W . The constant C4 depends on 1/(λ2 − λ1), λ1 and λ2

as

(3.13) C4 = C
(
λ1 +

λ1λ2
λ2 − λ1

)
.

3.2. One Newton iteration step. Based on previous discussion, we propose a

one correction step to improve the given eigenpair approximation. Assume we have

obtained an eigenpair approximation (λ1,hk
, u1,hk

) ∈ R×Vhk
with ‖u1,hk

‖b = 1. Now

we introduce a type of iteration step to improve the accuracy of the current eigenpair

approximation (λ1,hk
, u1,hk

). Let Vhk+1
⊂ V be a finer finite element space such that

Vhk
⊂ Vhk+1

. Based on this finer finite element space, we define the following one

Newton iteration step.

A l g o r i t hm 3.1. One Newton Iteration Step

(1) Solve the augmented mixed problem: Find (λ̂1,hk+1
, û1,hk+1

) ∈ R × Vhk+1
such

that

(3.14)





a(û1,hk+1
, vhk+1

)− λ1,hk
b(û1,hk+1

, vhk+1
)− λ̂1,hk+1

b(u1,hk
, vhk+1

)

= −λ1,hk
b(u1,hk

, vhk+1
) ∀ vhk+1

∈ Vhk+1
,

b(û1,hk+1
, u1,hk

) = b(u1,hk
, u1,hk

).

(2) Do the normalization for û1,hk+1
as

(3.15) u1,hk+1
=

û1,hk+1

‖û1,hk+1
‖b

and compute the Rayleigh quotient for u1,hk+1

(3.16) λ1,hk+1
=
a(u1,hk+1

, u1,hk+1
)

b(u1,hk+1
, u1,hk+1

)
.

Then we obtain a new eigenpair approximation (λ1,hk+1
, u1,hk+1

) ∈ R×Vhk+1
. Sum-

marize the above two steps into

(λ1,hk+1
, u1,hk+1

) = Newton Iteration(λ1,hk
, u1,hk

, Vhk+1
).
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Theorem 3.2. Assume (λ1,hk
, u1,hk

) is a good enough approximation to (λ1, u1)

such that (3.6), (3.7) hold and λ1,hk
= a(u1,hk

, u1,hk
)/b(u1,hk

, u1,hk
). After one

iteration step, the resulting approximation (λ1,hk+1
, u1,hk+1

) ∈ R × Vhk+1
has the

following error estimates

‖ū1,hk+1
− u1,hk+1

‖a 6 C5‖ū1,hk+1
− u1,hk

‖2a,(3.17)

|λ̄1,hk+1
− λ1,hk+1

| 6 C6‖ū1,hk+1
− u1,hk

‖4a,(3.18)

where C5 and C6 are constants which depend on 1/(λ2 − λ1), λ1 and λ2 (similarly

to (3.13)) but are independent of the mesh sizes hk and hk+1.

P r o o f. From the definition (2.3), we know that the eigenpair approximation

(λ̄1,hk+1
, ū1,hk+1

) satisfies the equations

(3.19)





a(ū1,hk+1
, vhk+1

)− λ1,hk
b(ū1,hk+1

, vhk+1
)− λ̄1,hk+1

b(u1,hk
, vhk+1

)

= (λ̄1,hk+1
− λ1,hk

)b(ū1,hk+1
, vhk+1

)

−λ̄1,hk+1
b(u1,hk

, vhk+1
) ∀ vhk+1

∈ Vhk+1
,

b(ū1,hk+1
, u1,hk

) = b(ū1,hk+1
, u1,hk

).

Let us define whk+1
:= ū1,hk+1

− û1,hk+1
and γ := λ̄1,hk+1

− λ̂1,hk+1
. Due to (3.14)

and (3.19), the following equations hold:

(3.20)





a(whk+1
, vhk+1

)− λ1,hk
b(whk+1

, vhk+1
)− γb(u1,hk

, vhk+1
)

= (λ̄1,hk+1
− λ1,hk

)b(ū1,hk+1
− u1,hk

, vhk+1
) ∀ vhk+1

∈ Vhk+1
,

νb(whk+1
, u1,hk

) = νb(ū1,hk+1
− u1,hk

, u1,hk
)

= − 1
2νb(ū1,hk+1

− u1,hk
, ū1,hk+1

− u1,hk
) ∀ ν ∈W.

Then combining Lemma 3.1, Corollary 3.1, (3.20) and

‖ū1,hk+1
− u1,hk

‖b . ‖ū1,hk+1
− u1,hk

‖a,

we obtain the inequalities

(3.21) ‖whk+1
‖a + |γ| . |λ̄1,hk+1

− λ1,hk
|‖ū1,hk+1

− u1,hk
‖b + ‖ū1,hk+1

− u1,hk
‖2b

. ‖ū1,hk+1
− u1,hk

‖2a,

where the hidden constant depends on 1/(λ2 − λ1), λ1 and λ2 as in (3.13).

The inequality (3.21) means the following estimate holds:

(3.22) ‖ū1,hk+1
− û1,hk+1

‖a . ‖ū1,hk+1
− u1,hk

‖2a.
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Combining the above inequality (3.22), the definition (3.15), ‖ū1,hk+1
‖b = 1, and

‖û1,hk+1
‖b > ‖ū1,hk+1

‖b−‖ū1,hk+1
− û1,hk

‖b having a lower bound greater than zero,

we have the inequalities

‖ū1,hk+1
− u1,hk+1

‖a

6
∥∥∥ū1,hk+1

−
ū1,hk+1

‖û1,hk+1
‖b

∥∥∥
a
+

‖ū1,hk+1
− û1,hk+1

‖a

‖û1,hk+1
‖b

6
‖ū1,hk+1

‖a

‖û1,hk+1
‖b

|‖û1,hk+1
‖b − ‖ū1,hk+1

‖b|+
‖ū1,hk+1

− û1,hk+1
‖a

‖û1,hk+1
‖b

6
‖ū1,hk+1

‖a

‖û1,hk+1
‖b

‖ū1,hk+1
− û1,hk+1

‖b +
‖ū1,hk+1

− û1,hk+1
‖a

‖û1,hk+1
‖b

. ‖ū1,hk+1
− û1,hk+1

‖a . ‖ū1,hk+1
− u1,hk

‖2a.

This is the desired result (3.17). Furthermore, from (3.17) and Lemma 3.1, the other

desired result (3.18) can be obtained easily and the proof is complete. �

R em a r k 3.1. Theorem 3.2 shows that Newton’s method has second order con-

vergence rate when the initial approximation has enough accuracy. We would like

to point out that Theorem 3.2 and its proof also give the analysis for the algebraic

eigenvalue problems by Newton’s method.

4. Multilevel iteration method

In this section, we introduce a type of multilevel scheme based on the One New-

ton Iteration Step defined by Algorithm 3.1. The proposed multilevel method can

obtain eigenpair approximation with the optimal accuracy and with much smaller

computational work compared with solving the eigenvalue problem directly in the

finest finite element space.

Before introducing the multigrid scheme, we define a sequence of triangulations Thk

of Ω. Suppose Th1
is given and let Thk

be obtained from Thk−1
via regular refinement

(produce βd subelements) such that

hk =
1

β
hk−1.

Based on this sequence of meshes, we construct the corresponding nested linear finite

element spaces such that

(4.1) Vh1
⊂ Vh2

⊂ . . . ⊂ Vhn
,

291



and the following relation of approximation errors holds:

(4.2)
1

β
ηa(hk−1) 6 C7ηa(hk),

1

β
δhk−1

(λ) 6 C7δhk
(λ), k = 2, . . . , n.

From the error estimate results in Proposition 2.1, we have

(4.3) ‖ū1,hk
− ū1,hk+1

‖a 6 C8δhk
(λ1), k = 1, . . . , n− 1,

where the constant C8 is a constant independent of the mesh size hk.

A l g o r i t hm 4.1. Multilevel Eigenvalue Iteration Scheme

(1) Construct a sequence of nested finite element spaces Vh1
, Vh2

, . . . , Vhn
such that

(4.1) and (4.2) hold.

(2) Solve the following eigenvalue problem: Find (λ1,h1
, u1,h1

) ∈ R× Vh1
such that

b(u1,h1
, u1,h1

) = 1 and

(4.4) a(u1,h1
, vh1

) = λ1,h1
b(u1,h1

, vh1
) ∀ vh1

∈ Vh1
.

(3) Do k = 1, . . . , n− 1

Obtain a new eigenpair approximation (λ1,hk+1
, u1,hk+1

) ∈ R × Vhk+1
by

a Newton iteration step

(4.5) (λ1,hk+1
, u1,hk+1

) = Newton Iteration(λ1,k, u1,hk
, Vhk+1

).

End do

Finally, we obtain an eigenpair approximation (λ1,hn
, u1,hn

) ∈ R× Vhn
.

Theorem 4.1. Assume h1 is small enough such that (λ1,h1
, u1,h1

) satisfies con-

ditions (3.6) and (3.7). After implementing Algorithm 4.1, the resulting eigenpair

approximation (λ1,hn
, u1,hn

) has the error estimates

‖u1,hn
− ū1,hn

‖a 6 δhn
(λ1),(4.6)

|λ1,hn
− λ̄1,hn

| 6 C9δ
2
hn

(λ1),(4.7)

when the mesh size h1 is small enough.

Besides, there exists an eigenfunction u1 of (2.1) corresponding to λ1 such that

the following final convergence results hold:

‖u1 − u1,hn
‖a 6 2δhn

(λ1),(4.8)

|λ1 − λ1,hn
| 6 2C10δ

2
hn
(λ1).(4.9)
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P r o o f. Let us prove (4.6) by the method of induction. First, it is obvious

that (4.6) holds for n = 1 according to (4.4). Then we assume that (4.6) holds for

n = k. It means we have the estimate

(4.10) ‖ū1,hk
− u1,hk

‖a 6 δhk
(λ1).

Now let us consider the case of n = k + 1. Combining (4.3), (4.10) and the triangle

inequality leads to the estimates

(4.11) ‖ū1,hk+1
− u1,hk+1

‖a 6 C5‖u1,hk
− ū1,hk+1

‖2a

6 2C5‖u1,hk
− ū1,hk

‖2a + 2C5‖ū1,hk
− ū1,hk+1

‖2a

6 2C5δ
2
hk
(λ1) + 2C5C

2
8δ

2
hk
(λ1)

6 2C5(1 + C2
8 )δ

2
hk
(λ1)

= 2βC5(1 + C2
8 )δhk

(λ1)δhk
(λ1)/β

6 2βC5C7

(
1 + C2

8

)
δhk

(λ1)δhk+1
(λ1).

This means that the result (4.6) also holds for n = k+1 if 2βC5C7(1+C
2
8)δhk

(λ1) < 1.

Thus we prove the desired result (4.6). From Lemma 3.1 and (4.6), we can obtain

the desired result (4.7). Finally, (4.8) and (4.9) can be proved from (2.7), (2.9), (4.6),

(4.7) and the triangle inequality. �

Now, we turn to extending Newton’s iteration (3.2) for solving one eigenvalue

to the corresponding version for more eigenvalues (including simple and semisimple

eigenvalues). Assume that λm < λm+1 and we have obtained the first m eigenpairs

approximations {(µj , u0,j)}
m
j=1 to the problem (3.1), which satisfy

b(u0,i, u0,j) = δij , i, j = 1, . . . ,m,

where µj is the Rayleigh quotient of u0,j.

Similarly to the one eigenvalue case, Newton’s method for more eigenvalues of

(3.1) is to find (xj , ũj) ∈ R
m × V (j = 1, . . . ,m) such that

(4.12)




a(ũj, v)− µj · b(ũj, v)−

m∑
i=1

xijb(u0,i, v) = −µjb(u0,j, v) ∀ v ∈ V,

b(ũj, u0,i) = b(u0,j, u0,i) ∀ i = 1, . . . ,m,

where xij is the ith component of xj .

Now, we come to proving (4.12) has only one solution for any j = 1, . . . ,m. To

this aim, we define the bilinear forms

(4.13) Aµj
(u, v) = a(u, v)− µjb(u, v), B(v, y) = −

m∑

i=1

yib(u0,i, v).

Here and hereafter in this section u ∈ V , v ∈ V , y ∈W = R
m.

293



Assume that fµj
∈ V

′

, gj ∈W
′

are defined as

fµj
(v) = −µjb(u0,j, v), gj(y) = −

m∑

i=1

yib(u0,i, u0,j).

We consider the following mixed problems: Find (xj , ũj) ∈ R
m×V , (j = 1, . . . ,m),

such that

(4.14)

{
Aµj

(ũj , v) +B(v, x) = fµj
(v) ∀ v ∈ V,

B(ũj , y) = gj(y) ∀ y ∈ W.

Define K =M(λ1)∪ . . .∪M(λm). About the existence and uniqueness of problem

(4.14), the following theorem holds.

Theorem 4.2. Assume that there exists a decomposition of eigenspace K satis-

fying K =M(λ1)⊕ . . .⊕M(λm) such that u0,j is an eigenfunction approximation to

M(λj) (j = 1, . . . ,m). Then the bilinear forms defined in (4.13) satisfy the following

conditions:

(1) There exists α > 0 such that

(4.15) Aµj
(v, v) > α‖v‖2a ∀ v ∈ V0,

where V0 = {v : B(v, y) = 0 for all y ∈ W} = {v : b(u0,i, v) = 0 for all i =

1, . . . ,m}.

(2) There exists σ > 0 such that

(4.16) sup
v∈V

B(v, y)

‖v‖a
> σ‖y‖ ∀ y ∈ W,

where ‖y‖ := max
i∈{1,...,m}

|yi|.

Based on these two conditions, for any j (j = 1, . . . ,m), the mixed equation (4.14)

has only one solution.

P r o o f. We decompose u0,j as u0,j = w0,j + w⊥
0,j such that w0,j ∈ M(λj) and

w⊥
0,j ⊥b w0,j . Then span{w0,1, . . . , w0,m} is an orthogonal basis of the eigenspace K.

Since u0,j (‖u0,j‖b = 1) is an eigenfunction approximation to M(λj) with suffi-

ciently small error, there is a small enough number δ such that

(4.17) ‖u0,j − w0,j‖a = ‖w⊥
0,j‖a 6 δ, u0,j − w0,j⊥b span{w0,j}, j = 1, . . . ,m.
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From Lemma 3.1, we also have

(4.18) |µj − λj | 6 Cδ2, j = 1, . . . ,m.

Since (4.17) and ‖u0,j‖
2
b = ‖w0,j‖

2
b + ‖w⊥

0,j‖
2
b , w

⊥
0,j and w0,j have estimates

‖w⊥
0,j‖b 6 C‖w⊥

0,j‖a 6 Cδ, ‖w0,j‖b > 1− Cδ, j = 1, . . . ,m.

Similarly, we also decomposite v ∈ V0 as

v = v1 + . . .+ vm + v∗ = vj + v⊥j , j = 1, . . . ,m,

satisfying

v∗ ⊥b K, vj ∈ span{w0,j}, v⊥j =
m∑

i=1,i6=j

vi + v∗, v⊥j ⊥b span{w0,j}.

According to the definition of v ∈ V0, i.e., b(w0,j + w⊥
0,j , vj + v⊥j ) = 0, we have

‖vj‖b‖w0,j‖b = |b(vj , w0,j)| = | − b(v⊥j , w
⊥
0,j)| = |b(v, w⊥

0,j)|

6 Cδ‖v‖b, j = 1, . . . ,m.

Therefore,

(4.19) ‖vj‖b 6
Cδ

1− Cδ
‖v‖b 6 Cδ‖v‖b, j = 1, . . . ,m.

From (4.19) and the property ‖v‖2b = ‖v1‖
2
b + . . . + ‖vm‖2b + ‖v∗‖2b , the following

estimates hold:

b(v, v) = b(v1, v1) + . . .+ b(vm, vm) + b(v∗, v∗)

6 mCδ2b(v, v) +
1

λm+1
a(v∗, v∗) 6 mCδ2b(v, v) +

1

λm+1
a(v, v).

Thus we have the inequality

(4.20) b(v, v) 6
1

λm+1(1−mCδ2)
a(v, v).

From (4.18), (4.20) and the definition of Aµj
(·, ·), the following inequalities hold:

a(v, v)− µjb(v, v) >
(
1−

µj

λm+1(1−mCδ2)

)
a(v, v)

>
λm+1(1−mCδ2)− µj

λm+1(1−mCδ2)
a(v, v)

>
λm+1 − λj − Cδ2

λm+1(1−mCδ2)
a(v, v).
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It means (4.15) holds for α = (λm+1 − λj − Cδ2)/
(
λm+1(1 − mCδ2)

)
> 0 (j =

1, . . . ,m) when δ is small enough.

Now, we come to proving (4.16). Assume that the index s satisfies ‖y‖ = |ys|.

From b(u0,i, u0,j) = δij (i, j = 1, . . . ,m) and the definition of B(·, ·) and µj , taking

v = −sign(ys)u0,s, we have

sup
v∈V

B(v, y)

‖v‖a
>

|ys|b(u0,s, u0,s)

‖u0,s‖a
=

‖y‖

µs
>

‖y‖

µ
> 0 ∀ y ∈W,

where µ = max
t∈{1,2,...,m}

{µt}. This means that (4.16) holds for

σ =
1

µ
.

According to the theory for the mixed finite element method [4], there exists only

one solution for the equations (4.14) for any j = 1, . . . ,m. �

Based on the previous discussion, we extend the one iteration step to improve the

given approximations to the first m eigenpairs. Assume we have obtained the first m

eigenpairs approximations (λi,hk
, ui,hk

) ∈ R× Vhk
with ‖ui,hk

‖b = 1 (i = 1, . . . ,m).

Now we introduce a type of iteration step to improve the accuracy of the current

eigenpair approximation (λi,hk
, ui,hk

). Let Vhk+1
⊂ V be a finer finite element space

such that Vhk
⊂ Vhk+1

. Based on this finer finite element space, we define the

following one Newton iteration step for m eigenvalues and then state the following

version of Multilevel Eigenvalue Iteration Scheme for m eigenvalues.

Similarly, we first give a type of One Iteration Step for m Eigenvalues for the

given eigenpair approximations {λi,hk
, ui,hk

}mi=1.

A l g o r i t hm 4.2. One Newton Iteration Step for m Eigenvalues

(1) Do i = 1, . . . ,m

Find (xi,hk+1
, ũi,hk+1

) ∈ R× Vhk+1
such that

(4.21)





a(ũi,hk+1
, vhk+1

)− λi,hk
b(ũi,hk+1

, vhk+1
)−

m∑
s=1

xsi,hk+1
b(us,hk

, vhk+1
)

= −λi,hk
b(ui,hk

, vhk+1
) ∀ vhk+1

∈ Vhk+1
,

b(ũi,hk+1
, uj,hk

) = δij ∀ j = 1, . . . ,m,

where xsi,hk+1
is the sth component of xi,hk+1

.

End Do

(2) Build the finite dimensional space Ṽhk+1
= span{ũ1,hk+1

, . . . , ũm,hk+1
} and solve

the following eigenvalue problem: Find (λi,hk+1
, ui,hk+1

) ∈ R × Ṽhk+1
, i =

1, 2, . . . ,m, such that b(ui,hk+1
, ui,hk+1

) = 1 and

a(ui,hk+1
, vhk+1

) = λi,hk+1
b(ui,hk+1

, vhk+1
) ∀ vhk+1

∈ Ṽhk+1
.
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We summarize the above two steps into

{λi,hk+1
, ui,hk+1

}mi=1 = Newton Iteration({λi,hk
, ui,hk

}mi=1, Vhk+1
).

Based on Algorithm 4.2, we come to state the corresponding multilevel correction

method.

A l g o r i t hm 4.3. Multilevel Eigenvalue Iteration Scheme for m Eigenvalues

(1) Construct a series of nested finite element spaces Vh1
, Vh2

, . . . , Vhn
such that

(4.1) and (4.2) hold.

(2) Solve the eigenvalue problem in the initial finite element space Vh1
: Find

(λh1
, uh1

) ∈ R× Vh1
such that b(uh1

, uh1
) = 1 and

a(ui,h1
, vh1

) = λi,h1
b(ui,h1

, vh1
) ∀ vh1

∈ Vh1
.

Choose the first m eigenpairs {λi,h1
, ui,h1

}mi=1 which approximate the desired

eigenpairs.

(3) Do k = 1, . . . , n− 1

Obtain new eigenpair approximations {λi,hk+1
, ui,hk+1

}mi=1 ∈ R×Vhk+1
by the

one Newton iteration step defined in Algorithm 4.2

{λi,hk+1
, ui,hk+1

}mi=1 = Newton Iteration({λi,hk
, ui,hk

}mi=1, Vhk+1
).

End do

Finally, we obtain m eigenpair approximations {λi,hn
, ui,hn

}mi=1 ∈ R× Vhn
.

In Algorithm 4.2, the parallel computation can be used to solve (4.21) for differ-

ent i. Similarly to Theorems 3.2 and 4.1, the analysis of the scheme form eigenvalues

will be given in our future work.

5. Numerical results

In this section, three numerical examples are presented to illustrate the efficiency

of the multilevel iteration scheme proposed in this paper.

5.1. Model eigenvalue problem. Here we give the numerical results of the mul-

tilevel iteration scheme for the Laplace eigenvalue problem on the two dimensional

domain Ω = (0, 1) × (0, 1). The sequence of finite element spaces is constructed by

using linear element on the series of meshes which are produced by the regular refine-

ment with β = 2 (producing β2 subelements). In this example, we use two meshes
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which are generated by the Delaunay method as the initial mesh Th1
(H = h1) to

produce two sequences of finite element spaces for investigating the convergence be-

havior. Figure 1 shows the corresponding initial meshes: one is coarse and the other

is fine.

Algorithm 4.1 is applied to solve the eigenvalue problem. For comparison, we also

solve the eigenvalue problem by the direct method.
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Figure 1. The initial coarse H = 1
6
and fine H = 1

12
meshes for Example 1.

Figure 2 gives the corresponding numerical results for the first eigenvalue λ1 = 2π
2

and the corresponding eigenfunction on the two initial meshes illustrated in Figure 1.

From Figure 2, we find the multilevel iteration scheme can obtain the same optimal

error estimates as the direct eigenvalue solving method for the eigenvalue and the

corresponding eigenfunction approximations.
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Figure 2. The errors of the multilevel iteration algorithm for the first eigenvalue 2π2 and the
corresponding eigenfunction, where udirh and λ

dir

h denote respectively the eigen-
function and eigenvalue approximation by direct eigenvalue solving (the left sub-
figure is for the coarse initial mesh to the left of Figure 1 and the right one for
the fine initial mesh to the right of Figure 1).
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We also check the convergence behavior for more eigenvalue approximations by

Algorithm 4.1. Here the first six eigenvalues λ = 2π
2, 5π

2, 5π
2, 8π

2, 10π
2, 10π

2 are

investigated. We adopt the meshes in Figure 1 as the initial ones and the corre-

sponding numerical results are shown in Figure 3. Figure 3 also exhibits the optimal

convergence rate of the multilevel iteration scheme.
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Figure 3. The errors of the multilevel iteration algorithm for the first six eigenvalues on the
unit square (the left subfigure is for the coarse initial mesh to the left of Figure 1
and the right one for the fine initial mesh to the right of Figure 1).

5.2. More general eigenvalue problem. Here we give the numerical results of

the multilevel iteration scheme for solving a more general eigenvalue problem on the

unit square domain Ω = (0, 1)× (0, 1): Find (λ, u) such that

(5.1)





−∇ · A∇u+ ϕu = λ̺u, in Ω,

u = 0, on ∂Ω,
∫
Ω ̺u

2 dΩ = 1,

where

A =

(
1 + (x1 −

1
2 )

2 (x1 −
1
2 )(x2 −

1
2 )

(x1 −
1
2 )(x2 −

1
2 ) 1 + (x2 −

1
2 )

2

)
,

ϕ = e(x1−1/2)(x2−1/2) and ̺ = 1 + (x1 −
1
2 )(x2 −

1
2 ).

We first solve the eigenvalue problem (5.1) in the linear finite element space on

the coarse mesh Th1
. Then refine the mesh in the regular way to produce a series of

meshes Thk
(k = 2, . . . , n) with β = 2 (connecting the midpoints of each edge) and

solve the augmented mixed problem (3.14) in the finer linear finite element space Vhk

defined on Thk
.

In this example, we also use two coarse meshes which are shown in Figure 1 as

the initial meshes to investigate the convergence behavior. Since the exact solu-

tion is unknown, we choose an adequately accurate eigenvalue approximations by
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the extrapolation method (see e.g. [13]) as the exact eigenvalue. Figure 4 gives the

corresponding numerical results for the first six eigenvalue approximations and their

corresponding eigenfunction approximations. Here we also compare the numerical

results with those of the direct algorithm. Figure 4 also exhibits the optimal conver-

gence rate of Algorithm 4.1.
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Figure 4. The errors of the multilevel iteration algorithm for the first six eigenvalues and

the corresponding first eigenfunction, where udirh and λdirh denote respectively the
eigenfunction and eigenvalue approximation by direct eigenvalue solving (the left
subfigure is for the coarse initial mesh to the left of Figure 1 and the right one
for the fine initial mesh to the right of Figure 1).

5.3. Eigenvalue problem on dumbbell shaped domain. To show our ap-

proach can also work well for a complex domain, we consider the Laplace eigenvalue

problem on the two dimensional dumbbell shaped domain Ω = (0, π)2 ∪ [π, 54π] ×

(38π, 58π) ∪ (54π, 94π) × (0, π) (Figure 5). For this eigenvalue problem, the first eigen-

value is close to the second (1.95532 6 λ1 6 1.95646, 1.96025 6 λ2 6 1.96129).

Since the dumbbell domain has reentrant corners, eigenfunctions with singularities

are expected. The convergence order for eigenvalue approximations is less than 2

by the linear finite element method, which is the order predicted by the theory for

regular eigenfunctions. Then the sequence of meshes is produced by the adaptive

refinement based on the residual type of a posteriori error estimator (see e.g. [7], [12]).

Figure 5 shows the initial mesh and the one after 10 adaptive refinements.

Algorithm 4.1 is applied to solve the eigenvalue problem.

Figure 6 presents the a posteriori error estimates for the first eigenfunction and

the first six eigenfunctions. From Figure 6, we find the multilevel iteration scheme

can also obtain the optimal accuracy.
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Figure 5. The initial mesh and the one after 10 adaptive refinements for the first eigenfunc-
tion.

10
2

10
3

10
4

10
5

Number of elements

E
rr
o
rs

10
−1

10
0

10
1

|λ1,h−λ1|

slope −1

10
2

10
3

10
4

10
5

Number of elements

E
rr
o
rs

10
0

10
1

∑
6

i=1
|λi,h−λi|

slope −1

Figure 6. The errors of the multilevel iteration algorithm for the Laplace eigenvalue problem
on the dumbbell domain (the left subfigure is for the first eigenvalue and the right
one for the first six eigenvalues).

6. Concluding remarks

In this paper, we propose a type of multilevel method for eigenvalue problems

based on Newton’s method. In this type of iteration method, solving eigenvalue

problem on the finest finite element space is decomposed into solving a small scale

eigenvalue problem in the coarsest space and solving a sequence of augmented linear

problems, derived by the Newton iteration step in the corresponding sequence of finite

element spaces. The proposed scheme improves the overall efficiency of eigenvalue

problem solving by the finite element method.

The quadratic convergence property of Newton’s method improves the accuracy

of the numerical solution. On the other hand, the multilevel technique overcomes

the sensitivity of the initial guess of the Newton scheme in some sense. The method

and idea here can be extended to nonlinear eigenvalue problems with some type of

linearization for the nonlinear terms.
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