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Abstract. We extend the conforming virtual element method (VEM) to the numerical
resolution of eigenvalue problems with potential terms on a polytopic mesh. An important
application is that of the Schrödinger equation with a pseudopotential term. This model
is a fundamental element in the numerical resolution of more complex problems from the
Density Functional Theory. The VEM is based on the construction of the discrete bilinear
forms of the variational formulation through certain polynomial projection operators that
are directly computable from the degrees of freedom. The method shows a great flexibil-
ity with respect to the meshes and provides a correct spectral approximation with optimal
convergence rates. This point is discussed from both the theoretical and the numerical view-
point. The performance of the method is numerically investigated by solving the quantum
harmonic oscillator problem with the harmonic potential and a singular eigenvalue problem
with zero potential for the first eigenvalues.
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1. Introduction

The numerical treatment of the Schrödinger equation with local pseudopoten-

tials is one of the most expensive steps in solving electronic-structures in large-scale

Density Functional calculations, see e.g. [10], [42], [59]. These calculations make it

possible to determine properties of materials from quantum-mechanical first prin-

ciples (ab initio), hence without the need of adaptable parameters. A widely used

approach for solving the Schrödinger equation in large-scale quantum-mechanical

physical systems is provided by the plane wave (PW) pseudopotential method [54]

and its many variants. PW methods are spectral methods based on an expansion on

Fourier basis functions (the plane waves). Such methods are generally accurate, but

their computer implementation may be inefficient as it normally relies on the fast

Fourier transform (FFT), whose nonlocal communication pattern compromises the

method’s scalability on parallel architectures. Moreover, the strictly uniform resolu-

tion of a plane waves expansion makes resolution adaptation infeasible, thus requiring

to consider a big number of PWs to capture the highly oscillatory behavior in the

atomic region. Such a high resolution is unnecessary in transition regions between

atoms where the solution to the Schrödinger equation is normally much smoother.

This fact may eventually lead to computationally inefficient discretizations [52].

An alternative to the PW approach has been offered in recent years by real-

space methods such as finite differences, finite volumes, and finite elements. Such

methods are based on the direct approximation of the solution of the Schrödinger

equation on a computational grid. In particular, the finite element method (FEM) is

a variational method based on the expansion of the solution in shape basis functions,

usually piecewise polynomials that are strictly locally defined in each mesh element.

As noted in [50], [51], the strictly local nature of the shape functions has several

important consequences. First, the FEM produces sparse matrices that can efficiently

be treated by standard iterative methods (preconditioned Krylov schemes) [30]; the

computational mesh can be refined near the atom locations, where the eigenfunctions

are expected to vary the most in order to increase the efficiency of the representation;

highly scalable implementations are possible on parallel machines. Moreover, the

accuracy of the method can easily be improved by increasing the polynomial degree

of the shape functions and systematically enhanced by adding other nonpolynomial

functions, which incorporates in the local approximation some physical insight from

the eigenfunction behaviour [53], [55].

A very recent and important development in the field of the FEM consists in

the virtual element method (VEM), which was introduced in [11] as a variational

reformulation of the Mimetic Finite Difference (MFD) method [18], [19], [44]. The

VEM is a very successful approach for the construction of numerical approximation
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of any order of accuracy and regularity on general polygonal/polyhedral meshes.

Despite its relative recentness (the first paper was published in 2013), the VEM

has been developed successfully for a large range of mathematical and engineering

problems [6], [4], [7], [12], [23], [16], [20], [21], [26], [33], [35], [56], [57], [58], extended

to curved edges [25], and three dimensional problems [3], [17], [36], using also mixed

spaces [29] and nonconforming spaces [5], [8], [32], [34], [45]. High-order and higher-

order continuity schemes have been presented in [16] and [4], [22], [28], respectively.

The VEM is indeed a finite element method, so all good properties of the FEM

when applied to the Schrödinger equation still hold. In addition, we can exploit the

great flexibility of the method, which comes from the fact that the shape functions

used in the variational formulation are not known in a closed form, but are defined

as the solution of suitable differential problems. This fact is also the motivation of

the name “virtual”.

The construction of the method and its practical implementations rely on the

special choice of the degrees of freedom rather than the explicit knowledge of the local

shape functions. The degrees of freedom allow the calculation of certain projection

operators from local virtual element spaces into polynomial subspaces. Using such

operators, we can properly construct the discrete bilinear forms that approximate

the continuous ones of the variational formulation in the virtual element framework.

The present work is the first instance of a long term project that aims at ex-

tending the virtual element approach to the real-space numerical approximation of

the equations of the Density Functional Theory. We start here by considering the

Schrödinger equation with local pseudopotentials and Dirichlet/Neumann boundary

conditions. Despite its simplicity, this model allows us to compute the spectrum

of the classical quantum harmonic oscillator. We emphasize that the zero potential

case, which corresponds to the standard eigenvalue problem for the Laplace operator,

also provides the classical “atom in a box” model. Previous works investigating the

VEM for eigenvalue problems regard the approximation of the Steklov eigenvalue

problem [46], [47], the Laplace eigenvalue problem [40], [39] with conforming and

nonconforming virtual elements, respectively, the acoustic vibration problem [24],

the vibration problem of Kirchhoff plates [48], the transmission eigenvalue problem

[49], whereas [31] deals with the Mimetic Finite Difference approximation of the

eigenvalue problem in mixed form.

The outline of the paper is as follows. In Section 2 we recall the eigenvalue

problem under investigation, introducing the classical variational formulation and

the necessary notation. Section 3 details the proposed discretization procedure. The

approximation spaces and all the bilinear forms that define the discrete problem

are introduced and described. Section 4 deals with the theoretical analysis, which

leads to the optimal error estimates of Theorems 4.5, 4.6, and 4.7. In Section 5
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we present several numerical tests which highlight the actual performance of our

approach. Finally, in Section 6 we offer our final remarks and conclusions.

2. The continuous eigenvalue problem

2.1. Technicalities and definitions. We use the standard definition and nota-

tion of Sobolev spaces, norms and seminorms as given in [1]. Hence, the Sobolev

space Hs(ω) consists of functions defined on an open bounded connected subset ω

of Rd, d = 1, 2, 3, that are square integrable and whose weak derivatives up to order s

are also square integrable. As usual, if s = 0, we prefer the notation L2(ω). Norm

and seminorm in Hs(ω) are denoted by ‖·‖s,ω and ‖·‖s,ω, respectively, and (·, ·)ω
denotes the L2-inner product. The subscript ω may be omitted when ω is the whole

computational domain Ω.

If l > 0 is an integer number, Pl(ω) is the space of polynomials of degree up to l

defined on ω, with the convention that P−1(ω) = {0}. The L2-orthogonal projection

onto the polynomial space Pl(ω) is denoted by Π0,ω
l : L2(ω) → Pl(ω). The space

Pl(ω) is the span of the finite set of scaled monomials of degree up to l, that are

given by

(2.1) Ml(ω) = {((x− xω)/hω)
α with |α| 6 l},

where

⊲ xω denotes the center of gravity of ω and hω its characteristic length, as, for

instance, the edge length, the face diameter, or the cell diameter for d = 1, 2, 3;

⊲ α = (α1, . . . , αd) is the d-dimensional multi-index of nonnegative integers αi with

degree |α| = α1 + . . .+ αd 6 l and such that xα = xα1

1 . . . xαd

d for any x ∈ R
d.

We will also use the set of scaled monomials of degree exactly equal to l, denoted by

M∗
l (ω) and obtained by setting |α| = l in the definition above.

Finally, we use the letter C in the estimates throughout the paper to denote

a strictly positive constant that is independent of the mesh size h, but may depend

on the problem constants, like the coercivity and continuity constants, or other

discretization constants like the mesh regularity constant, the stability constants,

etc. The constant C generally has a different value at each occurrence.

2.2. The continuous model. Let Ω ⊆ R
d for d = 2, 3 be the computational

domain and let Γ be the boundary of Ω. We are interested in the numerical approx-

imation of the eigenvalues λ ∈ R and the eigenfunctions u : Ω → R, u 6= 0, solving

the problem in strong form

(2.2) − 1
2∆u(x) + V (x)u(x) = λu(x), x ∈ Ω,
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where V (x) is a smooth real-valued scalar potential function. In the context of atomic

and molecular quantum theory, λ and u are the energy level and the corresponding

wavefunction of the Hamilton operatorH := − 1
2∆+V (x), and potential V (x) collects

all local and nonlocal terms from the Density Functional Theory [10], [42], [59]. For

a proper mathematical formulation, problem (2.2) is supplemented with suitable

boundary conditions that, depending on the problem, can be of Dirichlet, Neumann,

or periodic type (if Ω is a parallelepiped). In the following we consider for sake of

simplicity homogeneous Dirichlet boundary conditions. The other cases easily follow

the same construction. Furthermore we assume that V (x) is uniformly bounded from

below and from above, i.e., there exist two strictly positive constants V∗ and V
∗ such

that V∗ 6 V (x) 6 V ∗ for almost every x ∈ Ω.

The variational formulation of (2.2) reads: Find λ ∈ R and u ∈ H1
0 (Ω),

‖u‖L2(Ω) = 1, such that

(2.3) a(u, v) = λb(u, v) ∀ v ∈ H1
0 (Ω),

where the bilinear form a : H1(Ω)×H1(Ω) → R is given by

(2.4) a(u, v) =

∫

Ω

(
1
2∇v(x) · ∇u(x) + V (x)u(x)v(x)

)
dx ∀u, v ∈ H1(Ω),

and the bilinear form b : L2(Ω)× L2(Ω) → R is the L2-inner product on Ω, i.e.,

(2.5) b(u, v) =

∫

Ω

u(x)v(x) dx ∀u, v ∈ L2(Ω).

R em a r k 2.1. From the standard eigenvalue theory, see [9], [27], we know that

(i) problem (2.3) admits a discrete infinite set of eigenvalues forming a positive

increasing divergent sequence;

(ii) the corresponding eigenfunctions are an orthonormal basis of H1
0 (Ω) with re-

spect to the L2-inner product and the scalar product associated with the bilinear

form a(·, ·);

(iii) the eigenvalues may have multiplicity bigger than one, but in such a case the

corresponding eigenspace must have finite dimension.

We also consider the source problem with homogeneous Dirichlet boundary con-

ditions: Find us ∈ H1
0 (Ω) such that

(2.6) a(us, v) = b(g, v) ∀ v ∈ H1
0 (Ω),

where we assume that g ∈ L2(Ω). Well-posedness of problem (2.6), i.e., the existence

and uniqueness of its solution, is proved by using the Lax-Milgram Lemma [38] since,
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due to the boundedness assumption on the potential field V , the bilinear form a

in (2.4) is coercive and the bilinear form b in (2.5) is continuous. Moreover, due

to a regularity result [2], [41], there exists r > 0, depending only on Ω, such that

us ∈ H1+r(Ω). Eventually, the following stability estimate holds:

(2.7) |us|1+r 6 C‖g‖0.

3. The virtual element method

We are interested in developing the virtual element approximation of the eigen-

value problem in variational form (2.3). To this end, we first discuss which meshes

can be used for the numerical formulation and introduce a proper set of regularity

assumptions. Then, we define the local and global virtual element spaces, the degrees

of freedom and the bilinear forms ah and bh that approximate a and b. Finally, we

review the estimate of the convergence rate for the related VEM approximation of

the source problem.

3.1. Mesh definition and regularity assumptions. Let Ωh denote a decom-

position of the computational domain Ω into a finite set of polytopic elements P .

As usual, the subindex h that labels the mesh Ωh is the maximum of the diameters

hP = sup
x,y∈P

|x − y| of the elements of the mesh. We assume that the elements are

nonoverlapping and for each element P we denote its (d − 1)-dimensional noninter-

secting boundary by ∂P , its center of gravity by xP , its d-dimensional measure by

|P |. The boundary of P is formed by straight edges when d = 2 and flat faces when

d = 3. On 3D polyhedral meshes, we denote the midpoint and length of each mesh

edge e by xe and he, respectively, and the center of gravity, diameter and area of each

face f are denoted by xf , hf , and |f |, respectively. In the 2D case, we do not make

any special distinction between the terms “edge” and “face”, which we consider as

synonyms. To unify the notation we may use the symbol σ instead of e or f and, for

example, refer to the geometric objects forming the elemental boundary ∂P by the

term side instead of edge/face. According to such notation, we denote the center of

gravity, diameter, and measure of side σ by xσ, hσ, and |σ|, respectively.

Consider the set T = {Ωh}h formed by the decompositions of Ω for h → 0. The

convergence analysis of the conforming VEM, we want to consider in this work,

requires some regularity assumptions that must be satisfied by all members of the

mesh family T . For completeness we state these assumptions for both d = 2 and

d = 3 cases, although those for d = 2 can be derived from those for d = 3 by reducing

the spatial dimension.
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(A0) Mesh regularity assumptions.

⊲ d = 3. There exists a positive constant ̺ independent of h (and, hence, of Ωh)

such that for every polyhedral element P ∈ Ωh it holds that

(i) P is star-shaped with respect to a ball with radius > ̺hP ,

(ii) every face f ∈ P is star-shaped with respect to a disk with radius > ̺hf ,

(iii) for every edge e ∈ ∂f of every face f ∈ ∂P it holds that he > ̺hf > ̺2hP ,

⊲ d = 2. There exists a positive constant ̺ independent of h (and, hence, of Ωh)

such that for every polygonal element P ∈ Ωh it holds that

(i) P is star-shaped with respect to a disk with radius > ̺hP ,

(ii) for every edge e ∈ ∂P it holds that he > ̺hP .

The scaling assumption implies that the number of edges and faces in each el-

emental boundary is uniformly bounded over the whole mesh family {Ωh}. The

star-shapedness property implies that the elements and faces are simply connected

subsets of Rd and R
d−1, respectively.

3.2. The conforming virtual element space. We construct the local con-

forming virtual element space by resorting to the so-called enhancement strategy

introduced in [3]. The construction of the conforming virtual element space in the

multidimensional case for d > 3 is recursive. We discuss here only the more general

case for d = 3, while the case for d = 2 follows from a simple dimensional reduction.

To this end, on every polygonal face f of the boundary ∂P and for any integer

number k > 1 we first define the finite element space

(3.1) Ṽ h
k (f) = {vh ∈ H1(f) ∩ C0(f) : vh|∂f ∈ C0(∂f), vh|e ∈ Pk(e)

∀ e ⊂ ∂f, ∆vh ∈ Pk(f) }.

It is worth noting that the space of polynomials of degree up to k defined on f is

a subspace of Ṽ h
k (f). Then, we introduce the set of continuous linear functionals

from Ṽ h
k (f) to R that for every virtual function vh of Ṽ

h
k (f) provide:

(D1) the values of vh at the vertices of f ,

(D2) the moments of vh of order up to k− 2 on each one-dimensional edge e ∈ ∂f :

(3.2)
1

|e|

∫

e

vh m dσ ∀m ∈ Mk−2(e) ∀ e ∈ ∂f,

(D3) the moments of vh of order up to k − 2 on each two-dimensional face f :

(3.3)
1

|f |

∫

f

vh m dσ ∀m ∈ Mk−2(f).
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Finally, we introduce the elliptic projection operator Π∇,f
k : Ṽ h

k (f) → Pk(f) that for

any vh ∈ Ṽ h
k (f) is defined by:

(3.4)

∫

f

∇Π∇,f
k vh · ∇q dx =

∫

f

∇vh · ∇q dx ∀ q ∈ Pk(f)

together with the additional conditions
∫

∂P

(Π∇,f
k vh − vh) dσ = 0 if k = 1,(3.5)

∫

P

(Π∇,f
k vh − vh) dx = 0 if k > 2.(3.6)

As proved in [11], [34], the polynomial projection Π∇,f
k vh is computable from the

values of the linear functionals (D1)–(D3). Furthermore, Π∇,f
k is a polynomial-

preserving operator, i.e. Π∇,f
k q = q for every q ∈ Pk(f).

The local conforming virtual element space of order k on the polygonal face f is

the subspace of Ṽ h
k (f) defined as

(3.7) V h
k (f) = {vh ∈ Ṽ h

k (f) : (vh − Π∇,f
k vh,m)f = 0 ∀m ∈ M∗

k−1(f) ∪M∗
k(f)}.

Space V h
k (f) has two important properties that we outline below:

(i) it still contains the space of polynomials of degree at most k,

(ii) the values provided by the set of continuous linear functionals (D1)–(D3)

uniquely determine every function vh of V
h
k (f) and can be taken as the degrees

of freedom of vh.

Property (i) above is a direct consequence of the space definition, while property

(ii) follows from the unisolvability of the degrees of freedom (D1)–(D3) that was

proved in [3].

R em a r k 3.1. Additionally, from the space definition, we have that the L2-

orthogonal projectionΠ0,f
k vh is computable exactly using only the degrees of freedom

of vh, and Π0,f
k vh = Π∇,f

k vh for k = 1, 2.

To define the conforming virtual element space on the polyhedral cell P , we first

need to introduce the ”extended” virtual element space:

(3.8) Ṽ h
k (P ) = {vh ∈ H1(P ) ∩ C0(P ) : vh|∂P ∈ C0(∂P ), vh|f ∈ V h

k (f)

∀ f ⊂ ∂P, ∆vh ∈ Pk(P )}.

The space Ṽ h
k (P ) clearly contains the polynomials of degree k. Now we introduce

the set of continuous linear functionals from Ṽ h
k (P ) to R that are the obvious three-

dimensional counterparts of the linear operators of the bi-dimensional case. For every

virtual function vh of Ṽ
h
k (P ) we provide [3], [17]:
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(D1) the values of vh at the vertices of P ,

(D2) the moments of vh of order up to k−2 on each one-dimensional edge e ∈ ∂P :

(3.9)
1

|e|

∫

e

vhm dσ ∀m ∈ Mk−2(e) ∀ e ∈ ∂P,

(D3) the moments of vh of order up to k−2 on each two-dimensional face f ∈ ∂P :

(3.10)
1

|f |

∫

f

vh m dσ ∀m ∈ Mk−2(f) ∀ f ∈ ∂P,

(D4) the moments of vh of order up to k − 2 on P :

(3.11)
1

|P |

∫

P

vhm dx ∀m ∈ Mk−2(P ).

Then we introduce the H1-seminorm projection operator Π∇,P
k : Ṽ h

k (P ) → Pk(P )

that for any vh ∈ Ṽ h
k (P ) is defined by

(3.12)

∫

P

∇Π∇,P
k vh · ∇q dx =

∫

P

∇vh · ∇q dx ∀ q ∈ Pk(P )

coupled with the conditions

∫

∂P

(Π∇,P
k vh − vh) dσ = 0 if k = 1,(3.13)

∫

P

(Π∇,P
k vh − vh) dx = 0 if k > 2.(3.14)

The polynomial projection Π∇,P
k vh can be computed in terms of the values of the

linear functionals (D1)–(D4). Finally, Π∇,P
k is polynomial-preserving, i.e. Π∇,P

k q = q

for every q ∈ Pk(P ).

We are now ready to introduce the local conforming virtual element space of order

k on the polytopic element P , which is the subspace of Ṽ h
k (P ) defined as follows:

(3.15) V h
k (P ) = {vh ∈ Ṽ h

k (P ) : (vh−Π∇,P
k vh,m)P = 0 ∀m ∈ M∗

k−1(P )∪M∗
k(P )}.

We recall that, by construction, the local space V h
k (P ) enjoys the following funda-

mental properties (see [3], [17]):

(i) it still contains the space of polynomials of degree at most k,

(ii) the values provided by the set of continuous linear functionals (D1)–(D4)

uniquely determine every function vh of V
h
k (P ) and can be taken as the degrees

of freedom of vh,

341



(iii) we can define an interpolation operator in V h
k (P ) with optimal approximation

properties so that for every v ∈ Hr+1(P ) with 1 6 r 6 k the interpolant vI

satisfies the inequality

(3.16) ‖v − vI‖L2(P ) + hP |v − vI|H1(P ) 6 Chr+1
P |v|Hr+1(P )

for some positive constant C independent of h.

As for the 2D case, the L2-orthogonal projection Π0,P
k vh is computable in terms

of the degrees of freedom of vh, and Π0,P
k vh = Π∇,P

k vh for k = 1, 2.

Finally, the global conforming virtual element space V h
k of order k > 1 subordinate

to the mesh Ωh is obtained by gluing together the elemental spaces V
h
k (P ) to form

a subspace of the conforming space H1(Ω). The formal definition reads

(3.17) V h
k := {vh ∈ H1

0 (Ω): vh|P ∈ V h
k (P ) ∀P ∈ Ωh}.

A set of degrees of freedom for V h
k is given by collecting the values from the linear

functionals (D1)–(D4) for all the mesh elements. The unisolvability of such de-

grees of freedom is an immediate consequence of their unisolvability on each local

space V h
k (P ).

3.3. The VEM for the eigenvalue problem. The next step in the construction

of our method is to define a discrete version of the bilinear forms a and b given in

(2.4) and (2.5). First of all we split the bilinear form a into the sum of local terms:

(3.18) a(u, v) =
∑

P∈Ωh

aP (u, v), where aP (u, v) =

∫

P

(
1
2∇u · ∇v + V uv

)
dx,

and we note that for an arbitrary pair (u, v) ∈ V h
k × V h

k the quantity a(u, v) is

not computable. Then, following a standard procedure in the VEM framework,

we consider a computable discrete local bilinear form ah(·, ·) given by the sum of

elemental contributions

(3.19) ah(uh, vh) =
∑

P∈Ωh

aPh (uh, vh),

where we define

aPh (uh, vh) =
1

2

∫

P

Π0,P
k−1∇uh · Π0,P

k−1∇vh dx(3.20)

+

∫

P

VΠ0,P
k uh Π

0,P
k vh dx+ SP ((I −Π∇,P

k )uh,
(
I −Π∇,P

k )vh),
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SP (·, ·) being the stabilization term that will be discussed in the following. The

bilinear form aPh depends on the orthogonal projections Π
0,P
k−1∇uh and Π0,P

k−1∇vh,

which are computable from the degrees of freedom of uh and vh, respectively [3]. In

fact, starting from the definition of the orthogonal projection, integration by parts

yields

(3.21)

∫

P

Π0,P
k−1∇uh · qdV =

∫

P

∇uh · qdV ∀q ∈ [Pk−1(P )]d

= −

∫

P

uh∇ · qdV +
∑

f∈∂P

∫

f

uhnP,f · qdσ,

where nP,f denotes the unit outward normal to f . The first integral on the last

right-hand side is computable from the degrees of freedom (D4) as it is the moment

of uh against a polynomial of degree k − 2 over P . The face integrals above are also

computable, since

∫

f

uhnP,f · qdσ =

∫

f

Π0,f
k−1uhnP,f · qdσ

and the L2-orthogonal projection Π0,f
k−1uh, as we have seen, is computable exactly

using only the degrees of freedom of uh, cf. Remark 3.1.

The discrete form aPh (·, ·) must satisfy two fundamental properties:

⊲ k-consistency: for all vh ∈ V h
k and for all q ∈ Pk(P ) it holds

(3.22) aPh (vh, q) = aP (vh, q);

⊲ stability: there exist two positive constants α∗, α
∗, independent of h and of P ,

such that

(3.23) α∗a
P (vh, vh) 6 aPh (vh, vh) 6 α∗aP (vh, vh) ∀ vh ∈ V h

k .

Stability is ensured by adding the bilinear form SP , which can be any symmetric

positive definite bilinear form on the element P for which there exist two positive

constants c∗ and c∗ such that

(3.24) c∗a
P (vh, vh) 6 SP (vh, vh) 6 c∗aP (vh, vh) ∀ vh ∈ V h

k (P ) with Π∇,P
k vh = 0.

Note that SP (·, ·) must scale like aP (·, ·), namely SP (·, ·) ≃ hd−2
P (see also Section 5).
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Following [39], [40], we consider two different discretizations of the eigenvalue prob-

lem (2.3) that are obtained by considering two possible choices for the discretization

of the bilinear form b (cf. (2.5)). We split b into the local contributions

(3.25) b(u, v) =
∑

P∈Ωh

bP (u, v), where bP (u, v) =

∫

P

u(x)v(x) dx.

In the first choice we consider an approximated bilinear form bh, which satisfies the

k-consistency property but not the stability property (extending to bh the definitions

above). Therefore, we simply take

(3.26) bPh (uh, vh) =

∫

P

Π0,P
k uhΠ

0,P
k vh dx.

The second possible choice consists in considering a discrete bilinear form b̃h(·, ·)

which, as done for the discrete form ah(·, ·), enjoys both the k-consistency property

and the stability property. In particular, we define

(3.27) b̃Ph (uh, vh) =

∫

P

Π0,P
k uh Π

0,P
k vh dx+ S̃P ((I −Π0,P

k )uh, (I −Π0,P
k )vh),

where S̃P is any positive definite bilinear form on the element P such that there

exist two uniform positive constants β∗ and β∗ such that

β∗b
P (vh, vh) 6 S̃P (vh, vh) 6 β∗ bP (vh, vh) ∀ vh ∈ V k

h (P ) with Π0,P
k vh = 0.

R em a r k 3.2. In analogy with the condition on the form SP (·, ·), we require

that the form S̃P (·, ·) scales like bP (·, ·), that is S̃P (·, ·) ≃ hd.

The resulting virtual element scheme reads: Find (λh, uh) ∈ R× V h
k , ‖uh‖0 = 1,

such that

(3.28) ah(uh, vh) = λhbh(uh, vh) ∀ vh ∈ V h
k

if we adopt the first choice bh for the approximation of b.

The second virtual element formulation reads: Find (λ̃h, ũh) ∈ R×V h
k , ‖ũh‖0 = 1,

such that

(3.29) ah(ũh, vh) = λ̃hb̃h(ũh, vh) ∀ vh ∈ V h
k ,

where we consider the stabilized bilinear form b̃h.
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Finally, in what follows, we will also need the discrete source problem correspond-

ing to both discrete formulations (3.28) and (3.29), which reads, respectively: Find

us
h ∈ V h

k such that

(3.30) ah(u
s
h, vh) = bh(g, vh) ∀ vh ∈ V h

k

and find ũs
h ∈ V h

k such that

(3.31) ah(ũ
s
h, vh) = b̃h(g, vh) ∀ vh ∈ V h

k .

The well-posedness of the discrete formulations (3.30) and (3.31) stem from the

coercivity of the bilinear form ah and from the continuity of the forms bh and b̃h.

We finally observe that both bilinear forms are fully computable for any couple of

functions (uh, vh) ∈ V h
k , since the enhancement technique implies that Π

0,P
k uh and

Π0,P
k vh can be computed using only the degrees of freedom of uh and vh, respectively.

The following convergence estimate theorem holds for the approximation of the

source problem [3].

Theorem 3.3. Let us ∈ Hr+1(Ω) be the solution to the variational problem (2.6)

with g ∈ L2(Ω). Let us
h ∈ V h

k be the solution of the virtual element method (3.30),

ũs
h ∈ V h

k be the solution of the virtual element method (3.31) and denote by gh
the piecewise L2-projection of g onto the space Pk(P ). Under the mesh regularity

assumption (A0), let t = min(k, r), and vh ∈ {us
h, ũ

s
h}. Then we have

⊲ H1-error estimate:

(3.32) |us − vh|H1(Ω) 6 C(ht|us|Hr+1(Ω) + h‖g − gh‖L2(Ω)),

⊲ L2-error estimate (for a convex Ω):

(3.33) ‖us − vh‖L2(Ω) 6 C(ht+1|us|Hr+1(Ω) + h‖g − gh‖L2(Ω)).

R em a r k 3.4. Note that if us is an eigenfunction of the continuous eigenvalue

problem (2.3), then it solves the continuous source problem (2.6) with datum λus

and thus it belongs to H1+r(Ω) with |us|1+r 6 C‖us‖0 and C depending on λ. Then,

recalling that ‖us‖0 = 1, the a priori error estimates in Theorem 3.3 reduce to

⊲ H1-error estimate:

|us−vh|1 6 C

(
ht|us|1+r+h

∑

P∈Ωh

‖(I−Π0,P
k )us‖0

)
6 ht|us|1+r 6 Cht‖us‖0 6 Cht,

with C constant depending on the eigenvalue λ,
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⊲ L2-error estimate (for a convex Ω):

‖us − vh‖0 6 C

(
ht+1|us|1+r + h

∑

P∈Ωh

‖(I −Π0,P
k )us‖0

)
6 Cht+1|us|1+r

6 Cht+1‖us‖0 6 Cht+1

with C constant depending on the eigenvalue λ.

Indeed,

‖(I −Π0,P
k )us‖0 6 Chmin{k+1,1+r}|us|1+r 6 Cht+1‖us‖0.

R em a r k 3.5. We emphasize the two major differences between the virtual ele-

ment methods (3.28) and (3.29) and those introduced in [40]:

(1) the V (x) term; even if its presence does not pose any real technical difficulty

(because we know how to treat it in the VEM), it paves the way to a new set

of problems closer to real applications such as the Schrödinger equations,

(2) the VEM with the external projection of the gradients, which is more suitable

to treat the Poisson operators with variable coefficients (see [15]).

4. Convergence analysis and error estimates

4.1. Spectral approximation for compact operators. In this section, we

briefly recall the results of the spectral approximation theory for compact operators.

For more general results, we refer to the original papers [9], [27], [43].

We introduce a natural compact operator associated with problem (2.3) and its

discrete counterpart, and we recall their connection with the eigenmode convergence.

Let T ∈ L(L2(Ω)) be the solution operator associated with problem (2.3). The

operator T : L2(Ω) → L2(Ω) is bounded, linear, and maps the forcing term g to

us =: Tg: {
Tg ∈ H1

0 such that

a(Tg, v) = b(g, v) ∀ v ∈ H1
0 .

Operator T is self-adjoint and positive definite with respect to the bilinear forms

a(·, ·) and b(·, ·) on H1(Ω), and compact due to the compact embedding of H1(Ω)

in L2(Ω).

Similarly, let Th ∈ L(L2(Ω)) and T̃h ∈ L(L2(Ω)) be the discrete solution operators

associated with the stabilized and nonstabilized discrete source problems. The former
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is the bounded linear operator mapping the forcing term g to us
h =: Thg and satisfies

{
Thg ∈ V h

k such that

ah(Thg, vh) = bh(g, vh) ∀ vh ∈ V h
k .

The latter is the bounded linear operator mapping the forcing term g to ũs
h =: T̃hg

and satisfies {
T̃hg ∈ V h

k such that

ah(T̃hg, vh) = b̃h(g, vh) ∀ vh ∈ V h
k .

Both the operators Th and T̃h are self-adjoint and positive definite with respect to

the discrete bilinear form ah(·, ·), bh(·, ·) and ah(·, ·), b̃h(·, ·). They are also compact,

since their ranges are finite dimensional.

The eigensolutions of the continuous problem (2.3) and the discrete prob-

lems (3.28) and (3.29) are respectively related to the eigenmodes of the operators T ,

Th, and T̃h. In particular, (λ, u) is an eigenpair of problem (2.3) if and only if

Tu = (1/λ)u, i.e. (1/λ, u) is an eigenpair for the operator T , and analogously for

problems (3.28) and (3.29) and operators Th and T̃h. Thanks to this correspondence,

the convergence analysis can be derived from the spectral approximation theory for

compact operators. In the rest of this section we refer only to operators T and T̃h.

Identical considerations hold for operators T and Th and we omit them for brevity.

A sufficient condition for the correct spectral approximation of a compact oper-

ator T is the uniform convergence of the family of discrete operators {T̃h}h to T

(see [27], Proposition 7.4, cf. also [9]):

(4.1) ‖T − T̃h‖L(L2(Ω)) → 0 as h → 0,

or, equivalently,

(4.2) ‖(T − T̃h)g‖0 6 C̺(h)‖g‖0 ∀ g ∈ L2(Ω)

with ̺(h) tending to zero as h goes to zero. Condition (4.2) usually follows by a priori

estimates with no additional regularity assumption on g. Besides the convergence

of the eigenmodes, condition (4.1), or the equivalent condition (4.2), implies that

no spurious eigenvalues may pollute the spectrum. In fact, each discrete eigenvalue

approximates a continuous eigenvalue and each continuous eigenvalue is approxi-

mated by a number of discrete eigenvalues (counted with their multiplicity) that

corresponds exactly to its multiplicity.

We now report the main results about the spectral approximation for compact

operators (cf. [9], Theorems 7.1–7.4; see also [27], Theorem 9.3–9.7), which deal with

the order of convergence of eigenvalues and eigenfunctions.
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Theorem 4.1. Let the uniform convergence (4.1) hold true. Let µ be an eigen-

value of T , with multiplicity m, and denote the corresponding eigenspace by Eµ.

Then exactly m discrete eigenvalues µ̃1,h, . . . , µ̃m,h (repeated according to their re-

spective multiplicities) converge to µ. Moreover, let Ẽµ,h be the direct sum of the

eigenspaces corresponding to the discrete eigenvalues µ̃1,h, . . . , µ̃m,h converging to µ.

Then

(4.3) δ(Eµ, Ẽµ,h) 6 C‖(T − T̃h)|Eµ
‖L(L2(Ω)),

with

δ(Eµ, Ẽµ,h) = max(δ̂(Eµ, Ẽµ,h), δ̂(Ẽµ,h, Eµ)),

where, in general,

δ̂(U, W ) = sup
u∈U,‖u‖0=1

inf
w∈W

‖u− w‖0

denotes the gap between subspaces U , W ⊆ L2(Ω).

Concerning the eigenvalue approximation error, we recall the following result.

Theorem 4.2. Let the uniform convergence (4.1) hold true. Let ϕ1, . . . , ϕm be

a basis of the eigenspace Eµ of T corresponding to the eigenvalue µ, Then, for

i = 1, . . . ,m,

(4.4) |µ− µ̃i,h| 6 C

( m∑

j,k=1

|b((T − T̃h)ϕk, ϕj)|+ ‖(T − T̃h)|Eµ
‖2L(L2(Ω))

)
,

where µ̃1,h, . . . , µ̃m,h are the m discrete eigenvalues converging to µ repeated accord-

ing to their multiplicities.

4.2. Convergence analysis for the stabilized formulation. In this section

we study the convergence of the discrete eigenmodes provided by the VEM approx-

imation to the continuous ones. We will consider the stabilized discrete formula-

tion (3.29). The analysis can be easily applied to the nonstabilized one (3.28).

Theorem 4.3. The family of operators T̃h converges uniformly to the operator T ,

that is,

(4.5) ‖T − T̃h‖L(L2(Ω)) → 0 for h → 0.
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P r o o f. The proof follows the same lines as those of Theorem 6.4 in [40]. We

recall it here for the convenience of the reader. Let us and ũs
h be the solutions to

the continuous and the discrete source problems (2.6) and (3.30), respectively. From

the L2-estimate of Theorem 3.3 with g ∈ L2(Ω) and the stability estimate in (2.7)

we have that

‖us − ũs
h‖0 6 Chmin(t+1,1)‖g‖0

with t = min(k, r), k > 1 being the order of the method and r the regularity index

of the solution us ∈ H1+r(Ω) to the continuous source problem. Then it follows that

‖T − T̃h‖L(L2(Ω)) = sup
g∈L2(Ω)

‖Tg − T̃hg‖0
‖g‖0

= sup
g∈L2(Ω)

‖us − ũs
h‖0

‖g‖0
6 Chmin(t+1,1).

�

We note that if g ∈ Eµ then, thanks to the L2 a priori error estimate in Remark 3.4,

we have

‖(T − T̃h)|Eµ
‖L(L2(Ω)) = sup

g∈Eµ

‖Tg − T̃hg‖0
‖g‖0

= sup
g∈Eµ

‖us − ũs
h‖0

‖g‖0
6 Cht+1.

Putting together Theorem 4.1, Theorem 4.3, and the above observation, we can

state the following result.

Theorem 4.4. Let µ be an eigenvalue of T , with multiplicity m, and denote the

corresponding eigenspace by Eµ. Then exactly m discrete eigenvalues µ̃1,h, . . . , µ̃m,h

(repeated according to their respective multiplicities) converge to µ. Moreover, let

Ẽµ,h be the direct sum of the eigenspaces corresponding to the discrete eigenvalues

µ̃1,h, . . . , µ̃m,h converging to µ. Then

(4.6) δ(Eµ, Ẽµ,h) 6 Cht+1.

A direct consequence of the previous result (cf. [9], [27]) is the following one.

Theorem 4.5. Let u be a unit eigenfunction associated with the eigenvalue λ

of multiplicity m and let w̃
(1)
h , . . . , w̃

(m)
h denote linearly independent eigenfunctions

associated with the m discrete eigenvalues of problem (3.29) converging to λ. Then

there exists ũh ∈ span{w̃
(1)
h , . . . , w̃

(m)
h } such that

‖u− ũh‖0 6 Cht+1,

where t = min{k, r}, k being the order of the method, and r the regularity index

of u.
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We now state the usual double order convergence of the eigenvalues.

Theorem 4.6. Let λ be an eigenvalue of problem (2.3) with multiplicity m, and

denote by λ̃1,h, . . . , λ̃m,h the m discrete eigenvalues of problem (3.29) converging

towards λ. Then the following optimal double order convergence holds:

(4.7) |λ− λ̃i,h| 6 Ch2t ∀ i = 1, . . . ,m,

with t = min{k, r}, k being the order of the method, and r the regularity index of

the eigenfunction corresponding to λ.

P r o o f. The proof follows the guidelines of Theorem 6.4 in [40] and Theorems 4.2

and 4.3 in [48]. For an alternative proof see also Theorem 6.6. in [39], taking into

account that in our case the term Nh(·, ·), relative to the conformity error, vanishes.

�

Eventually, we state the optimal error estimate for the eigenfunctions in the energy

norm.

Theorem 4.7. With the same notation as in Theorem 4.5, we have

|u− ũh|1 6 Cht,

where t = min(k, r), k being the order of the method, and r the regularity index of

u ∈ H1+r(Ω).

P r o o f. The proof of this result is similar to the one for the finite element

method. We briefly report it here for the sake of completeness. It holds that

u− ũh = λTu− λ̃hT̃hũh = (λ − λ̃h)Tu+ λ̃h(T − T̃h)u+ λ̃hT̃h(u − ũh),

then

|u− ũh|1 6 |λ− λ̃h| |Tu|1 + λ̃h|(T − T̃h)u|1 + λ̃h|T̃h(u− ũh)|1.

The first term on the right-hand side of the previous equation is of order h2t, while

the second is of order ht. Finally, for the last term, using (3.23), the continuity of

the operator T̃h, and Theorem 4.5, we obtain

|T̃h(u− ũh)|
2
1 6

1

α∗
ah(T̃h(u− ũh), T̃h(u− ũh))

=
1

α∗
b̃h(u− ũh, T̃h(u − ũh)) 6 C‖u− ũh‖

2
0 6 Ch2t+2.

�
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5. Numerical experiments

In this section, we investigate the behavior of the virtual element method for the

numerical treatment of the eigenvalue problem (2.3). In particular, we present the

performance of the conforming VEM applied to the eigenvalue problem on a two-

dimensional square domain. We use the “diagonal” stabilization [14] for the bilinear

form aPh (·, ·) (cf. (3.20)) and b̃Ph (·, ·) (cf. (3.27)), which reads as follows:

SP (vh, wh) = σPv
T
hwh,

S̃P (vh, wh) = τPh
2
Pv

T
hwh,

where vh, wh denote the vectors containing the values of the local degrees of freedom

associated to vh, wh ∈ V h
k (P ) and the parameters σP and τP are two positive h-

independent constants. In the numerical tests we choose σP as the mean value of the

eigenvalues of the matrix stemming from the consistency term (Π0,P
k−1∇·,Π0,P

k−1∇·)P
for the grad-grad form (see (3.20)). In the same way we pick τP as the mean value

of the eigenvalues of the matrix resulting from the term h−2
P (Π0,P

k ·,Π0,P
k ·)P for the

mass matrix (see (3.27)).

The convergence of the numerical approximation is shown through the relative

error quantity

Relative approximation error :=
|λ− λh|

λ
,

where λ denotes an eigenvalue of the continuous problem and λh its virtual element

approximation. In all figures of this section, the approximation errors are displayed in

log-log plots where the convergence rate is reflected by the slope of the corresponding

error curve. The x-axis is reversed to show decreasing errors curves towards the right.

5.1. Test 1 (quantum harmonic oscillator). In this test case, we numeri-

cally solve the 2D quantum harmonic oscillator problem that corresponds to the

Schrödinger equation with the harmonic potential V (x, y) = 1
2 (x

2 + y2). The eigen-

values are suitable combinations of the eigenvalues of the one dimensional problem

and are given by the natural numbers n = 1, 2, 3, . . ., each one with multiplicity n.

The eigenfunctions of such a problem are obtained through the two-dimensional ten-

sor product of one-dimensional Hermite functions, which are given by the Hermite

polynomials multiplied by the Gaussian function w(x, y) = exp
(
−(x2 + y2)

)
. As

these eigenfunctions are rapidly decreasing to zero for x, y tending to infinity due

to the Gaussian term, we can assume homogeneous Dirichlet boundary conditions if

the computational domain is sufficiently large. For such reason, we solve the eigen-

value problem on the square domain Ω = ]−10, 10[× ]−10, 10[. On this domain, we

consider four different mesh sequences, hereafter denoted by:
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⊲ Mesh 1, mainly hexagonal mesh with continuously distorted cells,

⊲ Mesh 2, nonconvex octagonal mesh,

⊲ Mesh 3, randomized quadrilateral mesh,

⊲ Mesh 4, central Voronoi tessellation.

The first mesh of each sequence is shown in Figure 1. These mesh sequences have

been widely used in the mimetic finite difference and virtual element literature, and

a detailed description of their construction can easily be found elsewhere, for example,

see [18].

Figure 1. Base meshes of the following mesh families from left to right: mainly hexagonal
mesh; nonconvex octagonal mesh; randomized quadrilateral mesh; Voronoi mesh.

The convergence curves for the four mesh sequences above are reported in Fig-

ures 2, 3, 4, and 5 (notice that the mesh sizes h are displayed in the decreasing

order).

The expected rate of convergence is shown in each panel by the triangle closed to

the error curve and indicated by an explicit label.

For these calculations, we used the VEM approximation based on the conforming

virtual element space V h
k , k = 1, 2, 3, 4, and the VEM formulation (3.28) using the

nonstabilized bilinear form bh(·, ·). As already observed in [40] for the conforming

VEM approximation of the Laplace eigenvalue problem, the same computations us-

ing formulation (3.29) and the stabilized bilinear b̃h(·, ·) produce almost identical

results, which, for this reason, are not shown here. These plots confirm that the con-

forming VEM formulations proposed in this work provide a numerical approximation

with optimal convergence rate on a set of representative mesh sequences, including

deformed and nonconvex cells, of the Schrödinger equation problem, i.e., the stan-

dard eigenvalue problem with a regular potential term in the Hamilton operator at

the left hand-side.

5.2. Test 2 (piecewise constant diffusivity tensor). The present test prob-

lem is taken from the benchmark singular solution set in [37]. We here consider the

square domain Ω = (−1, 1)2 split into two subdomains Ωδ and Ω1 (see the left plot
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Relative approximation error. Mesh size h.
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Figure 2. Test Case 1: Convergence plots for the approximation of the first five distinct
eigenvalues λ = 1, 2, 3, 4, 5 using the mainly hexagonal mesh and the virtual
spaces V h

k with k = 1 (top-leftmost panel), k = 2 (top-rightmost panel), k = 3
(bottom-leftmost panel), k = 4 (bottom-rightmost panel). The generalized eigen-
value problem uses the nonstabilized bilinear form bh(·, ·).
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Relative approximation error. Mesh size h.
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Figure 3. Test Case 1: Convergence plots for the approximation of the first five distinct
eigenvalues λ = 1, 2, 3, 4, 5 using the nonconvex octagonal mesh and the virtual
spaces V h

k with k = 1 (top-leftmost panel), k = 2 (top-rightmost panel), k = 3
(bottom-leftmost panel), k = 4 (bottom-rightmost panel). The generalized eigen-
value problem uses the nonstabilized bilinear form bh(·, ·).
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Relative approximation error. Mesh size h.
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Figure 4. Test Case 1: Convergence plots for the approximation of the first five distinct
eigenvalues λ = 1, 2, 3, 4, 5 using the randomized quadrilateral mesh and the
virtual spaces V h

k with k = 1 (top-leftmost panel), k = 2 (top-rightmost panel),
k = 3 (bottom-leftmost panel), k = 4 (bottom-rightmost panel). The generalized
eigenvalue problem uses the nonstabilized bilinear form bh(·, ·).
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Relative approximation error. Mesh size h.
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Figure 5. Test Case 1: Convergence plots for the approximation of the first five distinct
eigenvalues λ = 1, 2, 3, 4, 5 using the Voronoi mesh and the virtual spaces V h

k

with k = 1 (top-leftmost panel), k = 2 (top-rightmost panel), k = 3 (bottom-
leftmost panel), k = 4 (bottom-rightmost panel). The generalized eigenvalue
problem uses the nonstabilized form bh(·, ·).
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in Figure 6), and we study the eigenvalue problem on the square with discontin-

uous diffusivity tensor and zero potential V coupled with Neumann homogeneous

boundary conditions, i.e. we consider the following problem in strong form:

−∇ · (K(x)∇u(x)) = λu(x) in Ω and
∂u

∂n
= 0 on Γ.

Ω1

Ω1Ωδ

Ωδ

Figure 6. Test Case 2: Left plot: subdivision of Ω into the subdomains Ωδ and Ω1. Right
plot: Example of locally Voronoi decomposition of Ω.

Therefore, the continuous bilinear form associated to the eigenvalue problem is

aPK (u, v) :=

∫

P

K∇u · ∇v dx,

whose virtual approximation (see [13], [15]) is given by

(5.1) aPh,K(uh, vh) =

∫

P

KΠ0,P
k−1∇uh · Π0,P

k−1∇vh dx

+KSP ((I −Π∇,P
k )uh, (I −Π∇

k , P )vh)

to be used in place of aPh (uh, vh) (cf. (3.20)) in problem (3.29), where K = ‖K‖∞,P .

We consider K|Ω1
= I and K|Ωδ

= δ−1I with four different values of δ, namely

δ = 0.50, 0.10, 0.01, 1e− 8.

We apply the Virtual Element method (3.29) using a sequence of Voronoi meshes

with mesh diameters h = 1
2 ,

1
4 ,

1
8 ,

1
16 (see the right plot in Figure 6 for an example

of the adopted meshes). We show the plot of the convergence for the first eight
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computed eigenvalues in Figures 7, 8, 9, 10. We compute the relative errors by

comparing our results with the values given in [37].

In accordance with Theorem 4.6, we obtain different rates of convergence that

are determined by the polynomial order of the method and by the regularity of the

corresponding exact eigenfunctions [37]. For instance, the order of convergence for

almost all the eigenvalues relative to δ = 0.50, for the second and sixth eigenvalue

relative to δ = 0.10 and for the third and the seventh eigenvalue relative to δ = 0.01

are determined by the regularity index of the corresponding eigenfunction. We notice

also that the convergence curve for the second eigenvalue relative to δ = 10−8 has

a big jump up on the finest mesh for k = 3. This phenomena could be due to the

fact that, in this case, the reference solution from Dauge’s benchmark is correct up

to six digits. Taking this into account, we show that the method is overall optimal,

and thus stable with respect to discontinuities in the diffusivity tensor.

6. Conclusions

We have discussed the application of the conforming virtual element method to

the numerical resolution of eigenvalue problems with potential terms on polytopic

meshes. The most notable case is that of the Schrödinger equation with a suitable

pseudopotential, which is fundamental in the numerical treatment of more complex

problems in the Density Functional Theory. The VEM approximation of such prob-

lem was discussed from both the theoretical and the numerical viewpoint, proving

that the method provides a correct spectral approximation with optimal rates of

convergence. The performance of the method was shown by computing the first

eigenvalues of the quantum harmonic oscillator provided by the harmonic potential

and a singular eigenvalue problem with zero potential.
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Figure 7. Discontinuous diffusion problem, δ = 0.50; the symbols that label the eigenvalues
are in the following order: circle, square, diamond, triangle up, triangle left,
triangle down, cross, star. The generalized eigenvalue problem uses the stabilized
bilinear form b̃h(·, ·).
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bilinear form b̃h(·, ·).
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Figure 9. Discontinuous diffusion problem, δ = 0.01; the symbols that label the eigenvalues
are in the following order: circle, square, triangle left, triangle down, cross, star.
The generalized eigenvalue problem uses the stabilized form b̃h(·, ·).
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