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Abstract. The paper develops an explicit a priori error estimate for finite element solu-
tion to nonhomogeneous Neumann problems. For this purpose, the hypercircle over finite
element spaces is constructed and the explicit upper bound of the constant in the trace
theorem is given. Numerical examples are shown in the final section, which implies the
proposed error estimate has the convergence rate as 0.5.
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1. Introduction

The Steklov type differential equation problem involves the Neumann boundary

conditions. It models various physical phenomena, for example, the vibration modes

of a structure in contact with an incompressible fluid [4] and the antiplane shear-

ing on a system of collinear faults under slip-dependent friction law [8]. There is

wide literature on numerical schemes to solve this type of problems by using, for

example, the finite element method (FEM), see [6], [13]. Also, the Steklov type

eigenvalue problem is a fundamental problem in mathematics. For example, the

optimal constant appearing in the trace theorem for Sobolev spaces is given by the

smallest eigenvalue of a Steklov type eigenvalue problem raised to the power − 1
2 , see
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e.g. [17]. Efforts have been made on bounding eigenvalues by using conforming or

non-conforming FEMs, see [13], [19].

Most of the existing literature focuses on the convergence analysis of the discrete

solution, while there has been very rare work on the explicit bound of the solution

error. Recently, in the newly developed field of verified computing, the quantitative

error estimate (e.g. explicit values of error) is desired. For example, the explicit

values or bounds of the error constants are required in solution verification of non-

linear partial differential equations, see e.g. [18].

In this paper, we apply the finite element method to solving the Steklov type

differential equation and provide an a priori error estimate for the FEM solution.

The main idea in developing a priori error estimation can be regarded as a direct

extension of the one proposed by Liu in [16], where the a priori error estimation is

constructed by using the hypercircle method for homogeneous boundary conditions.

Such ideas can be further tracked back to the one of Kikuchi in [10], where a posteriori

error estimation is considered. This a priori estimate can be used for bounding an

eigenvalue in the framework proposed by [14] and it will be the topic of a forthcoming

paper.

The rest of this paper is organized as follows. In Section 2, we describe the problem

to be considered. In Section 3, we construct the hypercircle over FEM spaces, based

on which we deduce computable error estimates. In Section 4, we discuss the constant

appearing in the trace theorem and propose the explicit a priori error estimate for

nonhomogeneous Neumann problems. In Section 5, the computation results are

presented.

2. Preliminaries

Throughout this paper, we use the standard notation (see e.g. [3]) for the Sobolev

spaces Hm(Ω) (m > 0). The Sobolev space H0(Ω) coincides with L2(Ω). Denote by

‖v‖L2 or ‖v‖0 the L2 norm of v ∈ L2(Ω); by |v|Hm(Ω) and ‖v‖Hm(Ω) the seminorm

and norm in Hm(Ω) , respectively. Symbol (·, ·) denotes the inner product in L2(Ω)

or (L2(Ω))2. The space H(div,Ω) is defined by

H(div,Ω) := {q ∈ (L2(Ω))2 | div q ∈ L2(Ω)}.

We are concerned with the model problem

(2.1)

{−∆u+ u = 0 in Ω,

∂u

∂n
= f on Γ = ∂Ω,
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where Ω ⊂ R
2 is a bounded polygonal domain, ∂/∂n is the outward unit normal

derivative on the boundary ∂Ω.

A weak formulation of the above problem is to find u ∈ V = H1(Ω) such that

(2.2) a(u, v) = b(f, v) ∀ v ∈ V,

where

a(u, v) =

∫

Ω

(∇u∇v + uv) dx, b(f, v) =

∫

∂Ω

fv ds.

We define ‖u‖b = b(u, u)1/2.

We also have the following regularity result for the solution of problem (2.1), see

for example [9].

Lemma 2.1. If f ∈ L2(∂Ω), then u ∈ H1+r/2(Ω); if f ∈ H1/2(∂Ω), then u ∈
H1+r(Ω); here, r ∈ (12 , 1], especially r = 1 when Ω is convex and r < π/ω (with ω

being the largest inner angle of Ω) otherwise.

Finite element approximation. Let Th be a shape regular triangulation of the
domain Ω. For each element K ∈ Th, denote by hK the longest edge length of K

and define the mesh size h by

h := max
K∈Th

hK .

Define by Eh the set of edges of the triangulation and by Eh,Γ the set of edges on the

boundary of Ω. The finite element space V h(⊂ V ) consists of piecewise linear and

continuous functions. Assume that dim(V h) = n. The conforming finite element

approximation of (2.2) is defined as follows: Find uh ∈ V h such that

(2.3) a(uh, vh) = b(f, vh) ∀ vh ∈ V h.

In this paper, the following classical finite element spaces will also be used in

constructing the a priori estimate.

(i) Piecewise constant function spaces Xh and Xh
Γ are defined as

Xh := {v ∈ L2(Ω) | v is constant on each element K of Th},
Xh

Γ := {v ∈ L2(Γ) | v is constant on each edge e ∈ Eh,Γ}.

(ii) Raviart-Thomas FEM space Wh is defined as

Wh := {ph ∈ H(div,Ω) | ph = (aK + cKx, bK + cKy) in K ∈ Th},

where aK , bK , cK are constants on an element K.
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The space Wh
fh
is a shift of Wh corresponding to fh ∈ Xh

Γ

Wh
fh

:= {ph ∈ Wh | ph · n = fh ∈ Xh
Γ on Γ}.

3. The hypercircle

In this section, we first present two hypercircles which can be used to facilitate

the error estimate.

Consider the boundary value problem1

(3.1)

{−∆u+ αu = g in Ω,

∂u

∂n
= f on Γ

with α being a positive constant and g ∈ L2(Ω). A weak formulation of the above

problem is to find u ∈ V = H1(Ω) such that

(3.2)

∫

Ω

(∇u∇v + αuv) dx =

∫

Ω

gv dx+ b(f, v) ∀ v ∈ V.

Corresponding to problem (3.1), the following hypercircle holds, see e.g. page 185

of [5].

Theorem 3.1. Let u be a solution to problem (3.2). For v ∈ H1(Ω) and v = 0

on Γ suppose that σ ∈ H(div,Ω) satisfies

σ · n = f on Γ and div σ + g = αv.

Then we have

(3.3) ‖∇(u− v)‖20 + ‖∇u− σ‖20 + 2α‖u− v‖20 = ‖∇v − σ‖20.

P r o o f. The expansion of ‖∇v − σ‖20 = ‖(∇v −∇u) + (∇u − σ)‖20 tells that

‖∇v − σ‖20 = ‖∇v −∇u‖20 + ‖∇u− σ‖20 + 2(∇u− σ,∇(v − u)).

Let w := v − u. From the definition of u in (3.2), we have

(3.4) (∇u,∇w) = b(f, w) +

∫

Ω

(g − αu)w dx.

1 The boundary condition can be extended to a mixed one. For example, ∂Ω = Γ1 ∪ Γ2,
∂u/∂n = f1 on Γ1, u = f2 on Γ2, and Γ1 ∩ Γ2 = ∅.
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Also, by applying Green’s theorem to the term with σ, we have

(3.5) (σ,∇w) =

∫

∂Ω

(σ · n)w ds−
∫

Ω

div σw dx = b(f, w)−
∫

Ω

(αv − g)w dx.

By taking (3.4)–(3.5), we have (∇u − σ,∇(v − u)) = α‖v − u‖20, which leads to the
conclusion of the theorem. �

However, it is usually difficult to construct σ such that div σ + g = αv holds for

general v and g. Below we establish a revised hypercircle over finite element spaces.

As a preparation, let us introduce two projection operators: πh and πh,Γ.

⊲ For g ∈ L2(Ω) define the projection πh : L2(Ω) → Xh such that

(g − πhg, vh) = 0 ∀ vh ∈ Xh.

The error estimate for πh is given by

(3.6) ‖g − πhg‖0 6 C0h|g|H1(Ω) ∀ g ∈ H1(Ω).

Here C0 := max
K∈Th

C0(K)/h depends on the triangulation and has an explicit upper

bound. For example, in [12], [15] it is shown that the optimal constant is given

by C0(K) = hK/j1,1, where j1,1 ≈ 3.83171 denotes the first positive root of the

Bessel function J1. Upper bounds of C0 for concrete triangles can be found e.g. in

[11], [15].

⊲ For f ∈ L2(Γ), define the projection πh,Γ : L2(Γ) → Xh
Γ ,

b(f − πh,Γf, vh) = 0 ∀ vh ∈ Xh
Γ .

Theorem 3.2. Given fh ∈ Xh
Γ , let ũ ∈ V and ũh ∈ V h be solutions to the

following variational problems, respectively,

a(ũ, v) = b(fh, v) ∀ v ∈ V,(3.7)

a(ũh, vh) = b(fh, vh) ∀ vh ∈ V h.(3.8)

Then for ph ∈ Wh
fh
satisfying div ph = πhũh we have the revised hypercircle

‖∇ũh − ph‖2L2 = ‖ũ− ũh‖2H1(Ω)

+ ‖∇ũ− ph‖2L2 + ‖ũ− ũh‖2L2 + 2((πh − I)(ũ − ũh), (πh − I)ũh),

where I is the identity operator.
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P r o o f. Rewriting ∇ũh − ph by (∇ũh −∇ũ) + (∇ũ − ph), we have

‖∇ũh − ph‖2L2 = ‖∇ũh −∇ũ‖2L2 + ‖∇ũ− ph‖2L2 + 2(∇ũh −∇ũ,∇ũ− ph).

Notice that

(∇ũh −∇ũ,∇ũ− ph) = (ũh − ũ,−ũ+ πh(ũh))

= (ũh − ũ,−ũ+ ũh − ũh + πh(ũh)) = ‖ũh − ũ‖2L2 + (ũh − ũ,−ũh + πh(ũh)).

Thus, from the definition of πh we get the conclusion. �

The following theorem gives a computable error estimate for fh ∈ Xh
Γ .

Theorem 3.3. Given fh ∈ Xh
Γ , let ũ ∈ V and ũh ∈ V h be solutions to (3.7) and

(3.8), then the following computable error estimate holds

‖ũ− ũh‖H1(Ω) 6 κh‖fh‖b.

Here κh is defined by

κh := max
fh∈Xh

Γ
\{0}

Y (fh, ph, β)

‖fh‖b
,

where

Y 2(fh, ph, β) := (2 + β + 1/β)(C0h)
4‖∇ũh‖20 + (1 + 1/β)‖∇ũh − ph‖20 ∀β > 0

and ph ∈ Wh
fh
satisfies div ph = πhũh.

P r o o f. From the hypercircle and (3.6), we get

(3.9) ‖ũ− ũh‖2H1(Ω) 6 ‖∇ũh − ph‖2L2 − 2((πh − I)(ũ − ũh), (πh − I)ũh)

6 ‖∇ũh − ph‖20 + 2C0h‖∇(ũ− ũh)‖0‖(I − πh)ũh‖0
6 ‖∇ũh − ph‖20 + 2(C0h)

2‖∇(ũ− ũh)‖0‖∇ũh‖0.

Define x := ‖ũ− ũh‖H1(Ω), A := 2(C0h)
2‖∇ũh‖0, B := ‖∇ũh− ph‖0. By solving the

inequality x2 6 B2 +Ax, one can easily deduce that

(3.10) ‖ũ− ũh‖H1(Ω) 6 Y (fh, ph, β)

for any β > 0. By further varying fh in Xh
Γ , we draw the conclusion about κh. �

R em a r k 3.1. The selection of ph in Theorem 3.3 is not unique. A proper ph

will be determined in Section 4.3. In practical computation, since the first term in

Y (fh, ph, β) has higher order convergence, we can take β > 1 to have a smaller value

of κh.
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4. Explicit a priori error estimates

4.1. Trace theorem. This section is devoted to providing the explicit bound for

the constant in the trace theorem.

Let us follow the method in [2] to show the explicit value of constants related to

the trace theorem.

Theorem 4.1. Let e be an edge of triangle element K. Given u ∈ Ve(K), we

have the trace theorem

‖u‖L2(e) 6 0.574

√

|e|
|K|hK |u|H1(K),

where Ve(K) := {v ∈ H1(K) |
∫

e v ds = 0}.

P r o o f. Suppose P1, P2, P3 are the vertices of K and e := P1P2. For any u ∈
H1(K) the Green theorem leads to

∫

K

((x, y)− P3) · ∇(u2) dK =

∫

∂K

((x, y) − P3) · nu2 ds−
∫

K

2u2 dK.

For the term ((x, y)− P3) · n, we have

(4.1) ((x, y)− P3) · n =

{

0 on P1P3, P2P3,

2|K|/|e| on e.

Thus,

2
|K|
|e|

∫

e

u2 ds =

∫

K

2u2 dK +

∫

K

((x, y)− P3) · ∇(u2) dK

6

∫

K

2u2 dK + 2hK

∫

K

|u||∇u| dK

6 2‖u‖20,K + 2hK‖u‖0,K‖∇u‖0,K.

Since u ∈ Ve(K), we have

∫

e

u2 ds 6

∫

e

(u− πhu)
2 ds 6

|e|
|K| (‖u− πhu‖20,K + hK‖u− πhu‖0,K‖∇u‖0,K).

By further applying the estimation of πh in (3.6), we have

‖u‖L2(e) 6

√

1

3.83172
+

1

3.8317

√

|e|
|K|hK‖∇u‖0,K 6 0.574

√

|e|
|K|hK‖∇u‖0,K.

�
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R em a r k 4.1. Almost the same result is shown in [2], where higher dimensional

elements are considered. Since a sharper bound for πh is utilized here, the con-

stant 0.574 obtained in Theorem 4.1 is smaller than the one in [2] (about 0.648).

R em a r k 4.2. Numerial computations indicate that when the lengths of two

edges P1P3, P2P3 are fixed as h, the constant C in the estimate ‖u‖e 6 Ch‖∇u‖0,K
for all u ∈ Ve(K) will tend to 0 when the length of the third edge e := P1P2 tends

to 0. However, this behavior of the constant C cannot be deduced from Theorem 4.1.

4.2. Explicit a priori error estimates.

Theorem 4.2. Let u and ũ be solutions to (2.2) and (3.7), respectively, with fh

taken as fh := πh,Γf . Then the following error estimate holds:

‖u− ũ‖H1(Ω) 6 C1(h)‖(I − πh,Γ)f‖b,

where

C1(h) = max
e∈Eh,Γ

{

0.574

√

|e|
|K|hK

}

.

P r o o f. Setting v = u− ũ in (2.2) and (3.7), we have

a(u− ũ, u− ũ) = b(f − fh, u− ũ) = b((I − πh,Γ)f, (I − πh,Γ)(u− ũ)).

From the Schwartz inequality and Theorem 4.1, we get

‖u− ũ‖2H1(Ω) 6 ‖(I − πh,Γ)f‖b‖(I − πh,Γ)(u − ũ)‖b
6 C1(h)‖(I − πh,Γ)f‖b|u− ũ|H1(Ω),

which implies the conclusion. �

Now, we are ready to formulate and prove the explicit a priori error estimate.

Theorem 4.3. Let u and uh be solutions to (2.2) and (2.3), respectively. Then

the following error estimates hold:

‖u− uh‖H1(Ω) 6 Mh‖f‖b,(4.2)

‖u− uh‖b 6 M2
h‖f‖b(4.3)

with Mh :=
√

(C1(h))2 + κ2
h.
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P r o o f. The estimation in (4.2) can be obtained by applying Theorems 3.3

and 4.2:
‖u− uh‖H1(Ω) 6 ‖u− ũ‖H1(Ω) + ‖ũ− ũh‖H1(Ω)

6 C1(h)‖(I − πh,Γ)f‖b + κh‖fh‖b

6

√

(C1(h))2 + κ2
h‖f‖b.

The error estimate (4.3) can be obtained by the Aubin-Nitsche duality technique.

�

R em a r k 4.3. The result (4.2) of Theorem 4.3 provides an explicit a priori error

estimation for the FEM solutions, which is based on the a posteriori error estimation

in (3.10). Notice that in (3.10), by taking any explicit ph and β, we have the following

explicit a posteriori bound for the FEM solution:

(4.4) ‖u− uh‖H1(Ω) 6 C1(h)‖(I − πh,Γ)f‖b + Y (fh, ph, β).

Similar results about a posteriori error estimation can be found in [1], [2], [10].

In [1], [10], the homogeneous Dirichlet boundary condition is considered. In [2],

the nonhomogeneous Neumann boundary condition is considered and (4.4) can be

regarded as a special case of [2].

4.3. Computation of κh. The quantity κh is evaluated in two steps.

First, for fixed fh, we deduce explicit forms of ũh ∈ V h and ph ∈ Wh which

appear in the definition of Y (fh, ph, β). According to the standard theories of the

conforming FEM and the Raviart-Thomas FEM, see e.g. [7], we solve the following

two problems:

(a) Find ũh ∈ V h such that

a(ũh, vh) = b(fh, vh) ∀ vh ∈ V h.

(b) Let ũh be the solution of (a). Find ph ∈ Wh
fh
and ̺h ∈ Xh, c ∈ R such that

{

(ph, p̃h) + (̺h, div p̃h) + (̺h, d) = 0 ∀ p̃h ∈ Wh
0 , ∀ d ∈ R,

(div ph, q̃h) + (c, q̃h) = (πh(ũh), q̃h) ∀ q̃h ∈ Xh,

where Wh
0 := {ph ∈ Wh | ph · n = 0 ∈ Xh

Γ on Γ}.
Notice that the solution ph of (b) depends on fh. Let us rewrite Y (fh, ph, β) as

Y (fh, β). Second, we find fh that maximizes the value of Y (fh, β)/‖fh‖b by solving
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an eigenvalue problem. By using the solutions of (a) and (b), Y (fh, β) and ‖fh‖b
can be formulated by

Y 2(fh, β) = xTAx and ‖fh‖2b = xTBx,

where x is the coefficient vector of fh with respect to the basis of X
h
Γ , and A, B

are symmetric matrices to be determined upon the selection of the basis of the FEM

spaces. Thus, the value of κ2
h is given by the maximum eigenvalue of the problem

Ax = λBx.

For detailed solution of this eigenvalue problem we refer to [16], where an analogous

problem is described.

5. Numerical examples

In this section, several numerical tests are presented. The constant κh is com-

puted for problem (2.1) and four different domains. For each domain a sequence of

uniformly refined finite element meshes is considered. If κ2h and κh are computed

on two consecutive meshes, then the convergence rate is estimated numerically as

κh-rate :=
log(κ2h/κh)

log 2
.

5.1. The unit square. We consider the problem (2.1) on the unit square domain

Ω = (0, 1)× (0, 1). In the numerical experiment, we set β = 0.1, 1, 10, 100, and 1000.

The dependency of κh on β is displayed in Figure 1, which illustrates that larger β

gives smaller κh. However, the definition of Y (fh, β) clearly shows that β cannot be

too large.

Computed quantities κh, C1(h), andMh for the case β = 100 are shown in Table 1.

The estimated convergence rate of κh, denoted by κh-rate, is close to 0.5.

h κh C1(h) Mh κh-rate√
2/4 0.4143 0.574 0.7079 –√
2/8 0.2973 0.4059 0.5031 0.4788√
2/16 0.2110 0.2870 0.3562 0.4947√
2/32 0.1493 0.2029 0.2519 0.4990

Table 1. Computed quantities for the square and β = 100.
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Figure 1. The dependence of κh on β (unit square).

5.2. Right triangle, equilateral triangle, and the L-shaped domain. In

this example, three domains are considered, namely, the isosceles right triangle with

unit legs, the unit equilateral triangle, and the L-shaped domain Ω = (0, 1)× (0, 1) \
[ 12 , 1]× [ 12 , 1]. The results for β = 100 are displayed in Tables 2–4, respectively. For

all domains the convergence rate of κh is close to 0.5.

h κh C1(h) Mh κh-rate√
2/4 0.4448 0.6826 0.8147 –√
2/8 0.3107 0.4827 0.5741 0.5176√
2/16 0.2197 0.3413 0.4059 0.5000√
2/32 0.1554 0.2413 0.2870 0.4995

Table 2. Computed quantities for the isosceles right triangle and β = 100.

h κh C1(h) Mh κh-rate
1/4 0.3783 0.4361 0.5773 –

1/8 0.2696 0.3084 0.4096 0.4887

1/16 0.1909 0.2181 0.2898 0.4980

1/32 0.1350 0.1542 0.2049 0.4999

Table 3. Computed quantities for the equilateral triangle and β = 100.
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h κh C1(h) Mh κh-rate√
2/4 0.4872 0.574 0.7529 –√
2/8 0.3432 0.4059 0.5315 0.5055√
2/16 0.2439 0.2870 0.3766 0.4928√
2/32 0.1734 0.2029 0.2669 0.4922

Table 4. Computed quantities for the L-shaped domain and β = 100.

6. Conclusion

In this paper, by applying the technique of the hypercircle method, we successfully

construct the explicit a priori error estimate for the FEM solution of nonhomogeneous

Neumann problems. By following the framework proposed by the second author in

[14], the a priori error estimate obtained here can be used in bounding eigenvalues

of the Steklov type eigenvalue problems. The expected rate of convergence of Mh

is 1 in case the solution is smooth enough. In this paper, only the H1 regularity

is required in the analysis, and both the theoretical results, see Theorem 4.2, and

numerical tests confirm the suboptimal convergence rate 0.5 for Mh as well as κh.

It is an interesting problem whether the rate of convergence can be improved or not

for general f ∈ L2(∂Ω).

A c k n ow l e d g em e n t. We are very grateful to the reviewers for many helpful

comments which improved the quality of our paper.

References

[1] M.Ainsworth, T.Vejchodský: Fully computable robust a posteriori error bounds for
singularly perturbed reaction-diffusion problems. Numer. Math. 119 (2011), 219–243. zbl MR doi

[2] M.Ainsworth, T.Vejchodský: Robust error bounds for finite element approximation of
reaction-diffusion problems with non-constant reaction coefficient in arbitrary space
dimension. Comput. Methods Appl. Mech. Eng. 281 (2014), 184–199. MR doi

[3] I. Babuška, J.Osborn: Eigenvalue problems. Handbook of Numerical Analysis, Volume
II: Finite Element Methods (Part 1) (P.G. Ciarlet, J. L. Lions, eds.). North-Holland,
Amsterdam, 1991, pp. 641–787. zbl MR

[4] A.Bermúdez, R. Rodríguez, D. Santamarina: A finite element solution of an added mass
formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000), 201–227. zbl MR doi

[5] D.Braess: Finite Elements. Theory, Fast Solvers and Applications in Solid Mechanics.
Cambridge University Press, Cambridge, 2007. zbl MR doi

[6] J.H. Bramble, J. E.Osborn: Approximation of Steklov eigenvalues of non-selfadjoint
second order elliptic operators. Mathematical Foundations of the Finite Element
Method with Applications to PDE (A.K.Aziz, ed.). Academic Press, New York, 1972,
pp. 387–408. zbl MR doi

[7] F.Brezzi, M. Fortin: Mixed and Hybrid Finite Element Methods. Springer Series in
Computational Mathematics 15, Springer, New York, 1991. zbl MR doi

378

https://zbmath.org/?q=an:1229.65194
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2836086
http://dx.doi.org/10.1007/s00211-011-0384-1
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3262938
http://dx.doi.org/10.1016/j.cma.2014.08.005
https://zbmath.org/?q=an:0875.65087
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1115240
https://zbmath.org/?q=an:0998.76046
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1804656
http://dx.doi.org/10.1007/s002110000175
https://zbmath.org/?q=an:1118.65117
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2322235
http://dx.doi.org/10.1017/CBO9780511618635
https://zbmath.org/?q=an:0264.35055
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0431740
http://dx.doi.org/10.1016/b978-0-12-068650-6.50019-8
https://zbmath.org/?q=an:0788.73002
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR1115205
http://dx.doi.org/10.1007/978-1-4612-3172-1


[8] D.Bucur, I. R. Ionescu: Asymptotic analysis and scaling of friction parameters. Z.
Angew. Math. Phys. 57 (2006), 1042–1056. zbl MR doi

[9] P. Grisvard: Elliptic Problems for Nonsmooth Domains. Monographs and Studies in
Mathematics 24, Pitman, Boston, 1985. zbl MR

[10] F.Kikuchi, H. Saito: Remarks on a posteriori error estimation for finite element solu-
tions. J. Comput. Appl. Math. 199 (2007), 329–336. zbl MR doi

[11] K.Kobayashi: On the interpolation constants over triangular elements. Proceedings of
the International Conference Applications of Mathematics 2015 (J. Brandts et al., eds.).
Czech Academy of Sciences, Institute of Mathematics, Praha, 2015, pp. 110–124. zbl MR

[12] R. S. Laugesen, B.A. Siudeja: Minimizing Neumann fundamental tones of triangles: an
optimal Poincaré inequality. J. Differ. Equations 249 (2010), 118–135. zbl MR doi

[13] Q.Li, Q. Lin, H.Xie: Nonconforming finite element approximations of the Steklov eigen-
value problem and its lower bound approximations. Appl. Math., Praha 58 (2013),
129–151. zbl MR doi

[14] X.Liu: A framework of verified eigenvalue bounds for self-adjoint differential operators.
Appl. Math. Comput. 267 (2015), 341–355. MR doi

[15] X.Liu, F.Kikuchi: Analysis and estimation of error constants for P0 and P1 interpola-
tions over triangular finite elements. J. Math. Sci., Tokyo 17 (2010), 27–78. zbl MR

[16] X.Liu, S. Oishi: Verified eigenvalue evaluation for the Laplacian over polygonal domains
of arbitrary shape. SIAM J. Numer. Anal. 51 (2013), 1634–1654. zbl MR doi

[17] I. Šebestová, T.Vejchodský: Two-sided bounds for eigenvalues of differential operators
with applications to Friedrichs, Poincaré, trace, and similar constants. SIAM J. Numer.
Anal. 52 (2014), 308–329. zbl MR doi

[18] A.Takayasu, X. Liu, S. Oishi: Verified computations to semilinear elliptic boundary
value problems on arbitrary polygonal domains. Nonlinear Theory and Its Applications
4 (2013), 34–61. doi

[19] Y.Yang, Q. Li, S. Li: Nonconforming finite element approximations of the Steklov eigen-
value problem. Appl. Numer. Math. 59 (2009), 2388–2401. zbl MR doi

Authors’ addresses: Qin Li, School of Science, Beijing Technology and Business Uni-
versity, Beijing 100048, P.R. China, e-mail: liqin@lsec.cc.ac.cn; Xuefeng Liu (cor-
respoding author), Graduate School of Science and Technology, Niigata University,
8050 Ikarashi 2-no-cho, Nishi-ku, Niigata City, Niigata 950-2181 Japan, e-mail: xfliu@
math.sc.niigata-u.ac.jp.

379

https://zbmath.org/?q=an:1106.35038
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2279256
http://dx.doi.org/10.1007/s00033-006-0070-9
https://zbmath.org/?q=an:0695.35060
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR0775683
https://zbmath.org/?q=an:1109.65094
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2269515
http://dx.doi.org/10.1016/j.cam.2005.07.031
https://zbmath.org/?q=an:1363.65014
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3700193
https://zbmath.org/?q=an:1193.35112
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2644129
http://dx.doi.org/10.1016/j.jde.2010.02.020
https://zbmath.org/?q=an:1274.65296
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3034819
http://dx.doi.org/10.1007/s10492-013-0007-5
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3399052
http://dx.doi.org/10.1016/j.amc.2015.03.048
https://zbmath.org/?q=an:1248.65118
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2676659
https://zbmath.org/?q=an:1273.65179
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3061473
http://dx.doi.org/10.1137/120878446
https://zbmath.org/?q=an:1287.35050
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR3163245
http://dx.doi.org/10.1137/13091467X
http://dx.doi.org/10.1587/nolta.4.34
https://zbmath.org/?q=an:1190.65168
http://www.ams.org/mathscinet/search/publdoc.html?contributed_items=show&pg3=MR&r=1&s3=MR2553141
http://dx.doi.org/10.1016/j.apnum.2009.04.005

		webmaster@dml.cz
	2020-07-02T15:03:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




