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Abstract. We define and study restricted projective, injective and flat dimensions over
local homomorphisms. Some known results are generalized. As applications, we show that
(almost) Cohen-Macaulay rings can be characterized by restricted homological dimensions
over local homomorphisms.
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1. Introduction

Throughout this paper, all rings are commutative and noetherian. A local ho-

momorphism ϕ : (R,m, k) → (S, n, l) is a homomorphism of local rings such that

ϕ(m) ⊆ n. We define and study notions of restricted homological dimensions for

complexes of modules over local homomorphisms.

It is well known that Gorenstein homological dimensions are refinements of the

classical homological dimensions. Christensen, Foxby and Frankild introduced re-

stricted homological dimensions in [7], which are refinements of Gorenstein homolog-

ical dimensions in some sense. Iyengar and Sather-Wagstaff in [10] develop a theory

of Gorenstein dimension over local homomorphisms. More precisely, let ϕ : R → S

be a local homomorphism and X ∈ Df
b (S), and let R

ϕ̇
−→ R′

ϕ′

−→ Ŝ be a Cohen

factorization of ϕ̀. The Gorenstein dimension of X over ϕ (see [10], (3.3)) is defined

by

G-dimϕX := G-dimR′X̂ − edim(ϕ̇),

where G-dimR′X̂ denotes the Gorenstein dimension of X̂ over R′ (see [1]). Recall

DOI: 10.21136/CMJ.2018.0638-16 741

http://dx.doi.org/10.21136/CMJ.2018.0638-16


that the projective dimension of X over ϕ, pdϕX (see [10], (4.2)), is defined by

pdϕX = pdR′X̂ − edim(ϕ̇).

Let ϕ : R → S be a local homomorphism and X ∈ Df
b (S). Recall that the injective

dimension of X over ϕ (see [4], (8.2)) is the number

idϕX = sup{n ∈ Z : µn
ϕ(X) 6= 0} − edim(ϕ),

where

µn
ϕ(X) = rankl Ext

n−edim(ϕ)
R (k,K[x;X ])

is the nth Bass number of X over ϕ (see [4], (4.1)). If ϕ : R → S is a local

homomorphism and X ∈ Df
b (S), then it is known that pdϕX = fdRX +depthRX −

depthSX (see [10], Proposition 4.5) and idϕX = idRX (see [4], Corollary 8.2.2).

Inspired by this, we define and study notions of restricted homological dimensions

of complexes over local homomorphisms in this paper. The main goal of this paper

is to study the properties of restricted homological dimensions over local homomor-

phisms and to characterize (almost) Cohen-Macaulay rings by restricted homological

dimensions over local homomorphisms.

2. Preliminaries

The derived category is written D(R). Let M be an R-complex

. . . −→ Mi+1

∂M

i+1

−→ Mi

∂M

i−→ Mi−1 −→ . . .

The projective, injective and flat dimensions of M are abbreviated as pdRM , idRM

and fdRM , respectively. The symbols supM and infM are used for the supremum

and infimum of the set {i ∈ Z : Hi(M) 6= 0}, with the conventions sup ∅ = −∞ and

inf ∅ = ∞. The amplitude of a complex X is defined by ampX = supX − inf X .

A complex M is called homologically bounded above if supM < ∞, it is called

homologically bounded below if infM > −∞, and it is called homologically bounded

if it is homologically bounded above and below. The full subcategories D−(R) and

D+(R) consist of complexes X with, respectively, supX < ∞ and inf X > −∞.

We set Db(R) = D−(R) ∩ D+(R). The full subcategories P(R), I(R) and F(R)

of Db(R) consist of complexes of finite, respectively, projective, injective and flat

dimension. We use the superscript f to denote finite (finitely generated) homology

and the subscript 0 to denote modules. For example, Pf
0 (R) denotes the category of

finite R-modules of finite projective dimension.

We use the standard notation RHomR(−,−) and −⊗L
R − for the derived Hom

and derived tensor product of complexes.
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Definition 2.1. Let (R,m, k) be a local ring and M an R-complex. The depth

of M is defined as

depthRM = − supRHomR(k,M).

By [8], Theorem 1.5. (3), for every R-complex M one has

(2.1) depthRM > − supM.

If supM = s is finite, then equality holds if and only if m is an associated prime of

the top homology module Hs(M).

Lemma 2.2 ([10], (2.8)). Let ϕ : R → S be a local homomorphism andX ∈ D(S).

If H(X) is degreewise finite over R, then we have the equality

depthSX = depthRX.

Definition 2.3. Let (R,m, k) be a local ring. The width of an R-complex M is

defined as

widthRM = inf (k ⊗L
R M).

By [8], Theorem 1.5. (1), for every R-complex M we have the inequality

(2.2) widthRM > infM,

and equality holds if H(M) is bounded below and degreewise finite by Nakayama’s

lemma.

Lemma 2.4. Let ϕ : R → S be a local homomorphism. If X ∈ Df
+(S), then we

have the equality

inf X = widthSX = widthRX.

P r o o f. Nakayama’s lemma explains the first two equalities in the next display:

widthSX = inf X = widthS(mRS;X) = widthRX.

For the third equality, use the Koszul characterization of width: if x ∈ mR is a gen-

erating sequence of mR, then one has S ⊗L
R KR(x) ≃ KS(x) and so

X ⊗L
S KS(x) ≃ X ⊗L

S (S ⊗L
R KR(x)) ≃ X ⊗L

R KR(x).

�
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We proceed by recalling the definition of Cohen factorizations of local homomor-

phisms from [3].

Let ϕ : (R,m, k) → (S, n, l) be a local homomorphism. The embedding dimension

of ϕ is

edim(ϕ) := edim(S/mS).

A regular factorization of ϕ is a diagram of local homomorphisms, R
ϕ̇

−→ R′
ϕ′

−→ S,

where ϕ = ϕ′ϕ̇, with ϕ̇ flat, the closed fibre R′/mR′ regular and ϕ′ : R′ → S surjec-

tive.

Let Ŝ denote the completion of S at its maximal ideal and let ι : S → Ŝ be

the canonical inclusion. By [3], (1.1), the composition ϕ̀ = ιϕ admits a regular

factorization R → R′ → Ŝ with R′ complete. Such a regular factorization is said to

be a Cohen factorization of ϕ̀.

Note that edim(ϕ) 6 edim(ϕ̇) = edim(R/mR′). When equality holds the Cohen

factorization is said to be minimal. It is proved in [3], (1.5), that the homomor-

phism ϕ̀ always has a minimal Cohen factorization.

3. Restricted flat dimensions

Recall that the small restricted flat dimension (see [7], Definition 2.9), rfdRX , of

X ∈ D+(R) is

rfdRX = sup{sup(T ⊗L
R X)|T ∈ Pf

0 (R)},

and the large restricted flat dimension (see [7], Definition 2.1), RfdRX , ofX ∈ D+(R)

is

RfdRX = sup{sup(T ⊗L
R X)|T ∈ F0(R)}.

Note that if R is local (more generally, if R has finite Krull dimension) and

X ∈ Db(R), then one has rfdRX < ∞ and RfdRX < ∞ by [7], (2.2) and (2.10).

Now we introduce the concepts of restricted flat dimensions over local homomor-

phisms.

Definition 3.1. Let ϕ : (R,m, k) → (S, n, l) be a local homomorphism and X ∈

D+(S). We define the small restricted flat dimension of X over ϕ to be the number

rfdϕX = rfdRX + depthRX − depthSX ;

the large restricted flat dimension of X over ϕ to be the number

RfdϕX = RfdRX + depthRX − depthSX.
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Remark 3.2. Since depthRX 6 depthSX by [9], (5.2), one has rfdϕX 6 rfdRX

and RfdϕX 6 RfdRX . If X ∈ Db(S), then it follows from [7], (2.2), (2.12) and

(2.10), and [8], (2.5), that

depthR− depthSX 6 rfdϕX 6 RfdϕX < ∞.

Remark 3.3. The two restricted flat dimensions defined over R may differ, even

for finite modules over local rings. The same also holds for the two restricted flat

dimensions over local homomorphisms. Let R be a local ring with dimR = 2 and

depthR = 0 (see [7], Example 2.13). Choose q ∈ SpecR with depthRq = 1 and pick

x ∈ q such that the fraction x/1 is Rq-regular. Let S = R/(x), ϕ : R → S be the nat-

ural map and M = R/(x). Then rfdϕM = rfdRM = 0 and RfdϕM = RfdRM > 1.

Recall that a local ring R is called a Cohen-Macaulay ring if dimR = depthR

(see for example [5]).

Proposition 3.4. Let R be a Cohen-Macaulay ring, ϕ : R → S a module-finite

local homomorphism and X ∈ Df
b (S). If R

ϕ̇
−→ R′

ϕ′

−→ Ŝ is a minimal Cohen

factorization of ϕ̀, then we have the equalities

rfdϕX = rfdR′X̂ − edim(ϕ) and RfdϕX = RfdR′X̂ − edim(ϕ),

where X̂ = X ⊗L
S Ŝ.

P r o o f. Since R is a Cohen-Macaulay ring, by [3], Proposition 2.8, R′ is a

Cohen-Macaulay ring. Now we have

rfdϕX = rfdRX + depthRX − depthSX

= depthR − depthSX

= depthR − depth
Ŝ
X̂

= depthR − depthR′X̂

= depthR′ − depthR′X̂ − depthR′ + depthR

= rfdR′X̂ − depthR′ + depthR

= rfdR′X̂ − edim(ϕ).

The second equality in the computation above follows from [7], Corollary 3.5, as ϕ

is module-finite, the fourth holds by Lemma 2.2, the sixth follows from X̂ ∈ Df
b (R

′)

and [7], Corollary 3.5, and the last equality holds since R
ϕ̇

−→ R′
ϕ′

−→ Ŝ is a minimal

Cohen factorization of ϕ̀.

Similarly, one has RfdϕX = RfdR′X̂ − edim(ϕ). �
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The next result shows that the large restricted flat dimension is a refinement of

the projective dimension over a local homomorphism.

Proposition 3.5. Let ϕ : R → S be a local homomorphism and X ∈ Df
b (S).

Then we have the inequality

RfdϕX 6 pdϕX,

and equality holds if pdϕX < ∞.

P r o o f. It follows from [7], Theorem 2.5, and [10], Proposition 4.5. �

The following result is an extension of the Bass formula for the restricted flat

dimensions (see [7], Corollary 3.5), which is a special case by putting ϕ = idR.

Lemma 3.6. Let R be a Cohen-Macaulay ring and ϕ : R → S a module-finite

local homomorphism and X ∈ Df
b (S). Then

rfdϕX = RfdϕX = depthR− depthSX.

P r o o f. It follows from Lemma 2.2 and [7], Corollary 3.5. �

Recall that a local ring R is called an almost Cohen-Macaulay ring if cmdR =

dimR− depthR 6 1.

Proposition 3.7. Let R be a local ring. The following conditions are equivalent.

(i) R is almost Cohen-Macaulay.

(ii) For every local homomorphism ϕ : R → S and for every X ∈ D+(S), rfdϕX =

RfdϕX .

(iii) For every local homomorphism ϕ : R → S and for every finite S-module M ,

rfdϕM = RfdϕM .

P r o o f. It follows from [7], Theorem 3.2. �

Theorem 3.8. Let R be a local ring. The following conditions are equivalent.

(i) R is Cohen-Macaulay.

(ii) For every module-finite local homomorphism ϕ : R → S and for every X ∈

Df
b (S), RfdϕX = depthR− depthSX .

(iii) For every module-finite local homomorphism ϕ : R → S and for every finite

S-module M , rfdϕM = depthR− depthSM .
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P r o o f. It follows from Lemma 3.6 and [7], Theorem 3.4. �

Lemma 3.9. Let ϕ : R → S be a local homomorphism and X ∈ D+(S).

(i) (See [10], (8.6)) We have the inequality RfdRX > depthR− depthSX ; equality

holds if X is homologically finite over R and G-dimRX is finite.

(ii) We have the inequality rfdRX > depthR − depthSX ; equality holds if X is

homologically finite over R and G-dimRX is finite.

P r o o f. (ii) Note that depthRX 6 depthSX . Hence the inequality follows by [7],

(2.12). If X is homologically finite over R and G-dimRX is finite, then equality holds

by (i) and [7], (2.10). �

Theorem 3.10. Let ϕ : R → S be a local homomorphism and X ∈ Df
b (S). If

G-dimϕX is finite, then

rfdRX − edim(ϕ) 6 rfdϕX 6 rfdRX.

P r o o f. By Remark 3.2, one has depthR−depthSX 6 rfdϕX 6 rfdRX . There-

fore, we only need to show that

(∗) rfdRX − edim(ϕ) 6 depthR− depthSX.

Let Ŝ be the completion of S at its maximal ideal and set X̂ = Ŝ ⊗S X. We have

rfdRX = sup{sup(T ⊗L
R X) : T ∈ Pf

0 (R)}

= sup{sup((T ⊗L
R X)⊗S Ŝ) : T ∈ Pf

0 (R)}

= sup{sup(T ⊗L
R X̂) : T ∈ Pf

0 (R)}

= rfdRX̂.

Since Ŝ is faithfully flat as an S-module, the second equality holds in the computation

above. The third equality is by the isomorphism

(T ⊗L
R X)⊗S Ŝ ∼= T ⊗L

R (Ŝ ⊗S X).

Consider the other quantities in the desired inequality (∗). Since we have edim(ϕ̀) =

edim(ϕ) and depth
Ŝ
X̂ = depthSX , it suffices to show that

rfdRX̂ − edim(ϕ̀) 6 depthR− depth
Ŝ
X̂.
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Hence without loss of generality, we may assume that S is complete. With R →

R′ → S a minimal Cohen factorization of ϕ, one has

rfdRX = sup{sup(T ⊗L
R X) : T ∈ Pf

0 (R)}

= sup{sup((T ⊗R R′)⊗L
R′ X) : T ∈ Pf

0 (R)}

6 sup{sup((T ⊗R R′)⊗L
R′ X) : T ⊗R R′ ∈ Pf

0 (R
′)}

= rfdR′X

= depthR′ − depthR′X

= depthR+ edim(ϕ)− depthR′X

= depthR+ edim(ϕ)− depthSX.

Since T ∈ Pf
0 (R), one has T ⊗R R′ ∈ Pf

0 (R
′) and so the inequality in the computa-

tion above holds. Since G-dimϕX is finite, the fourth equality follows by Lemma 3.9,

the fifth holds as R → R′ is flat and R′/mR′ is regular and the last follows by

Lemma 2.2. This completes the proof. �

Similarly, one has the following result.

Proposition 3.11. Let ϕ : R → S be a local homomorphism and X ∈ Df
b (S). If

G-dimϕX is finite, then

RfdRX − edim(ϕ) 6 RfdϕX 6 RfdRX.

4. Restricted injective dimensions

Recall that the small restricted injective dimension ridRY (see [7], Definition 5.1)

of Y ∈ D−(R) is

ridRY = sup{− infRHomR(T, Y ) : T ∈ Pf
0 (R)},

and the large restricted injective dimension RidRY (see [7], Definition 5.10) of

Y ∈ D−(R) is

RidRY = sup{− infRHomR(T, Y ) : T ∈ P0(R)}.

Note that if R is local (more generally, if R has finite Krull dimension), and

X ∈ Db(R), then one has ridRX < ∞ and RidRX < ∞ by [7], (5.2) and (5.11).

Next we introduce the concepts of restricted injective dimensions over local homo-

morphisms.
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Definition 4.1. Let ϕ : (R,m, k) → (S, n, l) be a local homomorphism and X ∈

D−(S). We define the small restricted injective dimension of X over ϕ to be the

number

ridϕX = ridRX +widthRX − widthSX ;

the large restricted injective dimension of X over ϕ to be the number

RidϕX = RidRX +widthRX − widthSX.

Note that if X ∈ Df
b (S), then ridϕX = ridRX by Lemma 2.4 and so it follows

from [7], (5.2) and (5.11) that − infX 6 ridϕX 6 RidϕX < ∞.

Lemma 4.2. Let ϕ : R → S be a local homomorphism. For X ∈ Df
b (S), we have

the equalities

ridϕX = ridRX = depthR− inf X ; RidϕX = RidRX.

P r o o f. We have

ridRX = sup{depthR(p, X)− widthR(p, X)|p ∈ SpecR}

= sup{depthR(p, X)− widthS(pS,X)|p ∈ SpecR}

= depthR− inf X.

The first equality in the computation above follows by [7], Proposition 5.3, the second

by [11], Proposition 2.5, and the third holds by [7], (4.3.2). Now the result follows

from Lemma 2.4. �

Proposition 4.3. Let ϕ : R → S be a module-finite local homomorphism and

X ∈ Df
b (S). If R is Cohen-Macaulay, then we have the equality

RidϕX = depthR− inf X.

P r o o f. It follows from [12], Theorem 2.2. �

Theorem 4.4. Let ϕ : R → S be a local homomorphism and X ∈ Df
b (S). If

R
ϕ̇

−→ R′
ϕ′

−→ Ŝ is a minimal Cohen factorization of ϕ̀, then we have the equality

ridϕX = ridR′X̂ − edim(ϕ), where X̂ = X ⊗L
S Ŝ.
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P r o o f. We have

ridϕX = depthR− widthSX

= depthR− width
Ŝ
X̂

= depthR− widthR′X̂

= depthR′ − widthR′X̂ − depthR′ + depthR

= ridR′X̂ − depthR′ + depthR

= ridR′X̂ − edim(ϕ).

The first equality in the computation above follows by Lemma 4.2, the second by [11],

Proposition 2.3, the third by Lemma 2.4, the fifth follows from X̂ ∈ Df
b (R

′) and [7],

Corollary 3.5, and the last equality holds since R
ϕ̇

−→ R′
ϕ′

−→ Ŝ is a minimal Cohen

factorization of ϕ̀. �

By analogy with the proof of Theorem 4.4 and [12], Theorem 2.2, we have the

following result.

Proposition 4.5. Let R be a Cohen-Macaulay ring, ϕ : R → S a module-finite

local homomorphism and X ∈ Df
b (S). If R

ϕ̇
−→ R′

ϕ′

−→ Ŝ is a minimal Cohen

factorization of ϕ̀, then we have the equality RidϕX = RidR′X̂ − edim(ϕ).

The following result shows that the restricted injective dimensions are refinements

of the injective dimension over a local homomorphism, at least over almost Cohen-

Macaulay rings.

Proposition 4.6. Let ϕ : R → S be a local homomorphism. For X ∈ Df
b (S), we

have the inequalities

ridϕX 6 idϕX and RidϕX 6 idϕX

and equalities hold if idϕX < ∞ and cmdR 6 1.

P r o o f. It follows from [4], Corollary 8.2.2, and [7], Propositions 5.8 and 5.13.

�

For the small restricted injective dimension over local homomorphisms, we have

some stability results.

Proposition 4.7. Let ϕ : R → S be a local homomorphism and P ∈ Pf
b (S). For

each X ∈ Df
b (S) we have an equality

ridϕ(P ⊗L
S X) = ridϕX − inf P.
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P r o o f. Note that P ⊗L
S X ∈ Df

b (S). We have

ridϕ(P ⊗L
S X) = depthR − widthS(P ⊗L

S X)

= depthR − widthSP − widthSX

= ridϕX − inf P,

where the first and third equalities follow by Lemma 4.2 and the second holds by [8],

Proposition 4.6. �

Corollary 4.8. Let ϕ : R → S be a local homomorphism and P ∈ Pf
b (S). For

each X ∈ Df
b (S) we have the equality

ridϕRHomS(P,X) = ridϕX + pdSP.

P r o o f. Note that RHomS(P,X) ∈ Df
b (S) by assumption. Since pdSP is finite,

one has

RHomS(P,X) ∼= RHomS(P, S ⊗L
S X) ∼= RHomS(P, S) ⊗

L
S X,

where the second isomorphism follows from [2], Lemma 4.4. It follows from [6],

Theorem 2.13, that pdSRHomS(P, S) = − inf P is finite and infRHomS(P, S) =

−pdSP . Thus we have the following equalities.

ridϕRHomS(P,X) = ridϕ(RHomS(P, S)⊗
L
S X)

= ridϕX − infRHomS(P, S)

= ridϕX + pdSP.

The second equality above follows from Proposition 4.7. �

For any faithfully injective R-module E we use the notation −∨ = RHomR(−, E).

Proposition 4.9. Let ϕ : R → S be a local homomorphism and X ∈ Df
b (S).

(i) ridϕX = rfdϕX
∨.

(ii) If ϕ is module-finite, then ridϕX
∨ = rfdϕX .

(iii) If ϕ is module-finite, then RidϕX
∨ = RfdϕX .
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P r o o f. (i) We have

rfdϕX
∨ = rfdRX

∨ + depthRX
∨ − depthSX

∨

= rfdRX
∨ +widthRX + depthRE − widthSX − depthRE

= rfdRX
∨

= ridRX

= ridϕX.

The second equality in the computation above follows from [8], Proposition 4.6,

and [11], Proposition 2.3, the third by Lemma 2.4 and the fourth by [7], Proposi-

tion 5.3.

(ii) We have

ridϕX
∨ = ridRX

∨ +widthRX
∨ − widthSX

∨

= rfdRX + depthRX − depthSX

= rfdϕX.

The second equality in the computation above follows from [12], Proposition 2.1,

and [7], Proposition 4.8.

(iii) Similarly. �

Remark 4.10. The two restricted injective dimensions over local homomor-

phisms may also differ. Let R be a local ring with dimR = 2 and depthR = 0 (see [7],

Example 2.13). Choose q ∈ SpecR with depthRq = 1 and pick x ∈ q such that the

fraction x/1 is Rq-regular. Let S = R/(x), let ϕ : R → S be the natural map and

M = R/(x). Then ridϕM
∨ = rfdϕM = 0 and RidϕM

∨ = RfdϕM = RfdRM > 1.

Theorem 4.11. Let R be a local ring. The following conditions are equivalent.

(i) R is almost Cohen-Macaulay.

(ii) For every module-finite local homomorphism ϕ : R → S and for every X ∈

Df
b (S), RfdϕX

∨ = depthR− inf X .

(iii) For every module-finite local homomorphism ϕ : R → S and for every finite

S-module M , RfdϕM = depthR.

P r o o f. (i) ⇒ (ii): We have

RfdϕX
∨ = rfdϕX

∨ = ridϕX = depthR− inf X.

The first equality in the computation above holds by Proposition 3.7, the second by

Proposition 4.9 and the last follows by Lemma 4.2.

(ii) ⇒ (iii): It is clear.

(iii) ⇒ (i): By [12], Theorem 3.1. �
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5. Restricted projective dimensions

Recall that the small restricted projective dimension rpdRX (see [7], Defini-

tion 5.19) of X ∈ D+(R) is

rpdRX = sup{inf U − infRHomR(X,U) : U ∈ If
b (R) ∧ H(U) 6= 0},

and the large restricted projective dimension RpdRX (see [7], Definition 5.14) of

X ∈ D+(R) is

RpdRX = sup{− infRHomR(X,T ) : T ∈ I0(R)}.

Note that if R is local (more generally, if R has finite Krull dimension) and

X ∈ Db(R), then one has rpdRX < ∞ and RpdRX < ∞.

Next we introduce the concepts of restricted projective dimensions over local ho-

momorphisms.

Definition 5.1. Let ϕ : (R,m, k) → (S, n, l) be a local homomorphism and X ∈

D+(S). We define the small restricted projective dimension of X over ϕ to be the

number

rpdϕX = rpdRX + depthRX − depthSX ;

the large restricted projective dimension of X over ϕ to be the number

RpdϕX = RpdRX + depthRX − depthSX.

Proposition 5.2. Let ϕ : R → S be a module-finite local homomorphism and

X ∈ Df
b (S). If R

ϕ̇
−→ R′

ϕ′

−→ Ŝ is a minimal Cohen factorization of ϕ̀, then we have

the equality rpdϕX = rpdR′X̂ − edim(ϕ), where X̂ = X ⊗L
S Ŝ.

P r o o f. By analogy with the proof of Proposition 3.4 and [7], Lemma 5.20. �

Similarly, we have the following result by [7], Theorem 5.22.

Proposition 5.3. Let R be a Cohen-Macaulay ring, ϕ : R → S a module-finite

local homomorphism and X ∈ Df
b (S). If R

ϕ̇
−→ R′

ϕ′

−→ Ŝ is a minimal Cohen

factorization of ϕ̀, then we have the equality RpdϕX = RpdR′X̂ − edim(ϕ).

The next result is an extension of the Bass formula to the restricted projective

dimension (see [7], Corollary 5.23), which is a special case by putting ϕ = idR.

Proposition 5.4. Let ϕ : R → S be a module-finite local homomorphism. If

X ∈ Df
b (S), then we have the equality

rpdRX = rpdϕX = depthR− depthSX.
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P r o o f. It follows from [7], Lemma 5.20, and Lemma 2.2. �

Proposition 5.5. Let ϕ : R → S be a module-finite local homomorphism and

X ∈ Df
b (S). If R is Cohen-Macaulay, then we have the equality

RpdϕX = depthR− depthSX.

P r o o f. It follows from [7], Corollary 5.23, and Lemma 2.2. �
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