Alireza Kamel Mirmostafaee
Norm continuity of pointwise quasi-continuous mappings

Persistent URL: http://dml.cz/dmlcz/147391

Terms of use:

© Institute of Mathematics AS CR, 2018

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use.*

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://dml.cz
NORM CONTINUITY OF POINTWISE QUASI-CONTINUOUS MAPPINGS

Alireza Kamel Mirmostafaee, Mashhad

Received February 13, 2017. Published online January 17, 2018.
Communicated by Javier Gutiérrez García

Abstract. Let X be a Baire space, Y be a compact Hausdorff space and $\varphi: X \to C_p(Y)$ be a quasi-continuous mapping. For a proximal subset H of $Y \times Y$ we will use topological games $G_1(H)$ and $G_2(H)$ on $Y \times Y$ between two players to prove that if the first player has a winning strategy in these games, then φ is norm continuous on a dense G_δ subset of X. It follows that if Y is Valdivia compact, each quasi-continuous mapping from a Baire space X to $C_p(Y)$ is norm continuous on a dense G_δ subset of X.

Keywords: function space; weak continuity; generalized continuity; quasi-continuous function; pointwise topology

MSC 2010: 54C35, 54C08, 54C05

1. Introduction

Let X and Z be topological spaces. A function $\varphi: X \to Z$ is called quasi-continuous at $x_0 \in X$ if for any neighborhood U of x_0 in X and any neighborhood V of $z_0 = \varphi(x_0)$ in Z there exists a nonempty open subset G of U such that $\varphi(G) \subset V$. The mapping $\varphi: X \to Z$ is called quasi-continuous if it is quasi-continuous at any point of X.

Let Y be a compact space and $C(Y)$ be the space of all continuous real-valued functions on Y. We consider two topologies on $C(Y)$, the norm topology, which is the topology generated by the supremum norm $\|f\| = \sup_{y \in Y} |f(y)|$, $f \in C(Y)$, and the pointwise topology, which is the topology inherited from \mathbb{R}^Y with product topology. The space $C(Y)$ equipped with the pointwise topology will be denoted by $C_p(Y)$.

The research has been supported by a grant from Ferdowsi University of Mashhad No. 2/44717.

DOI: 10.21136/MB.2018.0016-17
In 1974, Namioka [15] proved that every continuous mapping \(\varphi: X \to C_p(Y) \) is norm continuous at the points of a dense \(G_\delta \) subset of \(X \) provided that \(X \) is countably Čech-complete. Christensen [5] showed Namioka’s theorem is still valid when \(X \) is \(\sigma\)-\(\beta \)-unfavorable. It was expected that the result of Namioka remains true when \(X \) is an arbitrary Baire space. However, Talagrand [17] provided an example of a pointwise continuous mapping \(\varphi: X \to C_p(X) \), where \(X \) is on an \(\alpha \)-favorable space \(X \) which is nowhere norm continuous. The result of Talagrand raises the following question:

What are compact spaces \(Y \) such that for every Baire space \(X \) and continuous (or quasi-continuous) mapping \(\varphi: X \to C_p(Y) \) must be norm continuous at each point of some dense \(G_\delta \) subset of \(X \) ?

Several partial answers to the above question have been obtained by some authors (see e.g. [3], [6]–[14]). In particular, Bouziad [2] introduced two person games \(G_1(H) \) and \(G_2(H) \) on product \(Y \times Y \), where \(H \) is a proximal subset of \(Y \times Y \), to show that if the first player has winning strategies in both plays, then \(Y \) is a co-Namioka compact space.

In this paper, we will show that if in a compact space \(Y \) the second player in games \(G_1(H) \) and \(G_2(H) \) has no winning strategies, then every quasi-continuous mapping \(\varphi: X \to C_p(Y) \) is norm continuous on a dense \(G_\delta \) subset of \(X \).

2. Results

We start this section by introducing the following topological games. The first one is known as “Banach-Mazur game” (or “Choquet game”, see [4] or [16]).

The Banach-Mazur game \(BM(X) \): Two players \(\beta \) and \(\alpha \) select alternately non-empty open subsets of \(X \) as follows. Player \(\beta \) starts the game by selecting a nonempty open subset \(U_1 \) of \(X \). In return, \(\alpha \) replies by selecting some nonempty open subset \(V_1 \) of \(U_1 \). At the \(n \)-th stage of the game, \(n \geq 1 \), player \(\beta \) chooses a nonempty open subset \(U_n \subset V_{n-1} \) and \(\alpha \) answers by choosing a nonempty open subset \(V_n \) of \(U_n \). Proceeding in this fashion, the players generate a sequence \((U_n, V_n)_{n=1}^{\infty} \) which is called a play. Player \(\alpha \) wins the play \((U_n, V_n)_{n=1}^{\infty} \) if \(\bigcap_{n \geq 1} U_n = \bigcap_{n \geq 1} V_n \neq \emptyset \); otherwise player \(\beta \) wins this play. A partial play is a finite sequence of sets consisting of the first few moves of a play. A strategy for player \(\alpha \) is a rule by means of which the player makes his/her choices. An s-play is a play in which \(\alpha \) selects his/her moves according to the strategy \(s \). The strategy \(s \) for the player \(\alpha \) is said to be a winning strategy if every s-play is won by \(\alpha \). A space \(X \) is called \(\alpha \)-favorable if there exists a winning strategy for \(\alpha \) in \(BM(X) \).
It is easy to verify that every \(\alpha \)-favorable space \(X \) is a Baire space. There are examples of Baire spaces which are not \(\alpha \)-favorable (see for example [10]). It is known that \(X \) is a Baire space if and only if player \(\beta \) does not have a winning strategy in the game \(B.M(X) \).

Let \(Y \) be a compact Hausdorff space and \(\Delta \) denote the diagonal of \(Y \times Y \). Following [2], a subset \(H \) of \(Y \times Y \) is called proximal if it intersects every neighborhood of \(\Delta \). For a proximal set \(H \subset \Delta \) we consider the following two player topological games.

\[G_1(H) : \text{At the } n\text{-th stage, } a \text{ selects a pair } (W_n, D_n), \text{ where } W_n \text{ is an open neighborhood of } \Delta \text{ and } D_n \cap H \text{ is a dense subset of } H. \text{ Then } b \text{ answers by taking a point } (y_n, y'_n) \in W_n \cap H \cap D_n. \text{ This play is won by } a \text{ if for every neighborhood } W \text{ of } \Delta \text{ there is some } n \in \mathbb{N} \text{ such that } (y_n, y'_n) \in W. \text{ Otherwise, } b \text{ wins the play. The space } Y \text{ is called } G_1(H)-b\text{-favorable if } b \text{ has a winning strategy in } G_1(H). \text{ Otherwise, } Y \text{ is called } G_1(H)-b\text{-unfavorable.} \]

\[G_2(H) : \text{At the } n\text{-th stage, } a \text{ selects a pair } (W_n, D_n), \text{ where } W_n \text{ is an open neighborhood of } \Delta \text{ and } D_n \text{ is a dense subset of } W_n. \text{ Then the answer of } b \text{ will be a point } (y_n, y'_n) \in W_n \cap D_n. \text{ The play is won by } a \text{ if for every neighborhood } W \text{ of } \Delta \text{ containing } H \text{ there is some } n \in \mathbb{N} \text{ such that } (y_n, y'_n) \in W. \text{ Otherwise, } b \text{ wins the game. The space } Y \text{ is called } G_2(H)-b\text{-favorable if } b \text{ has a winning strategy in } G_2(H). \text{ Otherwise, } Y \text{ is called } G_2(H)-b\text{-unfavorable.} \]

Hereafter, we will assume that \(Y \) is a compact space and \(H \) is a proximal subset of \(Y \). In order to prove the main result of this paper, we need the following lemmas.

Lemma 1. Let \(A \subset C(Y) \) be such that for some \(\varepsilon > 0 \) there is a neighborhood \(W \) of \(\Delta \) such that \(|f(y) - f(y')| < \frac{1}{4}\varepsilon \) for each \(f \in A \) and \((y, y') \in W \). Then for every \(f \in A \) there is a relatively open, with respect to pointwise topology on \(A \), set \(B \subset A \) such that \(f \in B \) and \(\|f\| - \text{diam}(B) < \varepsilon \).

Proof. For each \(y \in Y \) let \(W_y = \{z : (y, z) \in W\} \). Then each \(W_y \) is open and \(|f(y) - f(z)| < \frac{1}{4}\varepsilon \) for each \(f \in A \) and \(z \in W_y \). Since \(Y \) is compact, there are points \(y_1, \ldots, y_n \in Y \) such that \(Y = \bigcup_{i=1}^{n} W_{y_i} \). Choose an element \(f_0 \in A \) and define

\[
B = \left\{ f \in A : |f(y_i) - f_0(y_i)| < \frac{\varepsilon}{8}, \ 1 \leq i \leq n \right\}.
\]

Then for each \(f, g \in B \) and \(y \in Y \) there is some \(1 \leq i \leq n \) such that \(y \in W_{y_i} \). Therefore we have

\[
|f(y) - g(y)| \leq |f(y) - f(y_i)| + |f(y_i) - f_0(y_i)| + |f_0(y_i) - g(y_i)| + |g(y_i) - g(y)| < \frac{\varepsilon}{4} + \frac{\varepsilon}{8} + \frac{\varepsilon}{8} + \frac{\varepsilon}{4} = \frac{3\varepsilon}{4}.
\]

It follows that \(\|f - g\| < \varepsilon \). \(\square \)
Lemma 2. Let X be a topological space and $\varphi: X \to C_p(Y)$ be a quasi-continuous mapping. If X is α-favorable and a has no winning strategy in $G_1(H)$ or X is Baire and a has a winning strategy in $G_1(H)$, then for each $\epsilon > 0$ and a nonempty open subset U of X there are an open neighborhood E of Δ and a nonempty open subset $O \subset U$ such that for each $f \in \varphi(O)$ and $(y, y') \in E \cap H$ we have $|f(y) - f(y')| < \epsilon$.

Proof. If the result of the lemma were not true, then there are some $\epsilon > 0$ and an open subset U of X such that for each open subset $O \subset U$ and open neighborhood E of Δ, $|f(y) - f(y')| \geq \epsilon$ for some $f \in \varphi(O)$ and $(y, y') \in E \cap H$. Let $U_1 = U$ be the first move of player β in $BM(X)$ and $V_1 \subset U_1$ be the answer of α to this movement. Suppose that (W_1, D_1) is the first move of a in $G_1(H)$. By our assumption, there is some $f_1 \in \varphi(V_1)$ and $(y_1, y'_1) \in W_1 \cap D_1 \cap H$ such that $|f_1(y_1) - f_1(y'_1)| > \frac{1}{2}\epsilon$. Let (y_1, y'_1) be the answer of b to (W_1, D_1). In step n, when V_1, \ldots, V_n and $(W_1, D_1), \ldots, (W_n, D_n)$ are specified by α and a, respectively, we select some $f_n \in \varphi(V_n)$ and $(y_n, y'_n) \in W_n \cap D_n \cap H$ such that $|f_n(y_n) - f_n(y'_n)| > \frac{1}{2}\epsilon$. Let $\delta_n = |f_n(y_n) - f_n(y'_n)| - \frac{1}{2}\epsilon$ and define

$$B_n = \left\{ f: |f(y_n) - f_n(y_n)| < \frac{\delta_n}{2} \text{ and } |f(y'_n) - f_n(y'_n)| < \frac{\delta_n}{2} \right\}.$$

If $f \in B_n$, we have

$$|f(y_n) - f(y'_n)| \geq |f_n(y_n) - f_n(y'_n)| - \{ |f(y_n) - f_n(y_n)| + |f(y'_n) - f_n(y'_n)| \} > |f_n(y_n) - f_n(y'_n)| - \delta_n = \frac{\epsilon}{2}.$$

Thanks to the quasi-continuity of φ, there is some nonempty subset U_{n+1} of V_n such that $\varphi(U_{n+1}) \subset B_n$. Let U_{n+1} be the answer of β to the partial play $(U_1, V_1, \ldots, U_n, V_n)$ and (y_n, y'_n) be the response of b to $(W_1, D_1), \ldots, (W_n, D_n)$. In this way by induction on n, a strategy for β in $BM(X)$ and a strategy for b in $G_1(H)$ is defined. Under either every assumption of the lemma, there are related games $\{(W_n, D_n), (y_n, y'_n)\}$ and $\{(U_n, V_n)\}$ which are won by a and α, respectively. Let $z \in \bigcap_{n \geq 1} U_n$ and $f = \varphi(z)$. Define

$$W = \left\{ (y, y'): |f(y) - f(y')| < \frac{\epsilon}{3} \right\}.$$

Then W is a neighborhood of Δ, hence there is some $n \in \mathbb{N}$ such that $(y_n, y'_n) \in W$. However, $f \in \varphi(U_{n+1}) \subset B_n$, hence by (2.1), $|f(y_n) - f(y'_n)| > \frac{1}{2}\epsilon$. This contradiction proves the lemma.

332
Lemma 3. Let X and φ satisfy the assumptions of Lemma 2 and let Y be b-unfavorable for play $G_2(H)$. Then for every nonempty open subset U of X and every $\varepsilon > 0$ there is a nonempty open subset O of U and an open neighborhood W of Δ such that $|f(y) - f(y')| < \varepsilon$ for each $f \in \varphi(O)$ and $(y, y') \in W$.

Proof. Suppose that the lemma is not true. Then there is some $\varepsilon > 0$ and a nonempty open subset U of X such that for every nonempty open subset O of U and every open neighborhood E of Δ there are $f \in \varphi(O)$ and $(y, y') \in E$ such that $|f(y) - f(y')| \geq \varepsilon$. By Lemma 2, there is a nonempty open subset O' of U and an open neighborhood E of Δ such that $|f(y) - f(y')| < \frac{1}{2}\varepsilon$ for each $(y, y') \in E \cap H$ and $f \in \varphi(O')$. Let $U_1 = O'$ be the first choice of b in $BM(X)$ and $V_1 \subseteq U_1$ be the response of α to U_1. Let E' be an open neighborhood of Δ such that $E' \subseteq E$. Let (W_1, D_1) be the first choice of a in the play $G_2(H)$. Then there is some $f \in \varphi(V_1)$ such that $|f(y_1) - f(y_1')| > \frac{1}{2}\varepsilon$ for some $(y_1, y_1') \in W_1 \cap E'$. Since $D_1 \cap E'$ is dense in $W_1 \cap E'$, we can assume that $(y_1, y_1') \in W_1 \cap E' \cap D_1$. Let (y_1', y_1') be the answer of b to (W_1, D_1).

Let the partial plays (U_1, \ldots, U_n, V_n) in $BM(X)$ and $((W_1, D_1), \ldots, (W_n, D_n))$ in $G_2(H)$ for some $n \in \mathbb{N}$ be specified. Then by our assumption, there is some $f_n \in \varphi(V_n)$ and $(y_n, y_n') \in W_n \cap E' \cap D_n$ such that $|f_n(y_n) - f_n(y_n')| > \frac{1}{2}\varepsilon$. Let (y_n, y_n') be the answer of b to $(W_1, D_1), \ldots, (W_n, D_n)$. Define $\delta_n = |f_n(y_n) - f_n(y_n')| - \frac{1}{2}\varepsilon$ and

$$B_n = \left\{ f : |f(y_n) - f_n(y_n)| < \frac{\delta_n}{2} \text{ and } |f(y_n') - f_n(y_n')| < \frac{\delta_n}{2} \right\}.$$

Then B_n is a pointwise open subset of $C(Y)$ which contains $f_n \in \varphi(V_n)$. Thanks to quasi-continuity of φ, there is an open subset $U_{n+1} \subseteq V_n$ such that $\varphi(U_{n+1}) \subseteq B_n$. Let U_{n+1} be the next move of player β. By (2.1), $|f(y_n) - f(y_n')| > \frac{1}{2}\varepsilon$ for each $f \in \varphi(U_{n+1})$. In this way, by induction on n a strategy for β in $BM(X)$ and a strategy for b in $G_2(H)$ are determined. Since b does not have a winning strategy, there is a play $\{(W_n, D_n), (y_n, y_n')\}_{n \geq 1}$ which is won by a. Let $\{(U_n, V_n)\}_{n \geq 1}$ be its corresponding $BM(X)$ game. Then $\bigcap_{n \geq 1} U_n \neq \emptyset$. Let $f = \varphi(z) \in \varphi\left(\bigcap_{n \geq 1} U_n\right)$ and define

$$W = \left\{ (y, y') : |f(y) - f(y')| < \frac{\varepsilon}{3}\right\} \cup (Y \times Y \setminus E').$$

Then W is a neighborhood of Δ which contains H. Therefore, there is some n such that $(y_n, y_n') \in W$. Since $(y_n, y_n') \in E'$, it follows that $|f(y_n) - f(y_n')| < \frac{1}{3}\varepsilon$. However, $f \in \varphi(U_n) \subseteq B_n$. This contradiction proves the lemma.

Now, we are ready to state the main result of this section.
Theorem 4. Let X be a topological space and $\varphi: X \to C_p(Y)$ be a quasi-continuous mapping. Suppose that X is α-favorable and b has no winning strategy in $G_1(H)$ or X is Baire and a has a winning strategy in $G_1(H)$. If Y is b-unfavorable for play $G_2(H)$, there is a dense G_δ subset D of X such that φ is norm continuous on D.

Proof. Let $\varphi: X \to C_p(Y)$ be a quasi-continuous mapping. Define

$$G_n = \bigcup \{O: O \text{ is open in } X \text{ and norm-diam}(\varphi(O)) < \frac{1}{n}\}.$$

Then each G_n is open in X. Let U be an arbitrary nonempty open subset of X. By Lemma 3, there is a nonempty open subset O of U and an open neighborhood W of Δ such that $|f(y) - f(y')| < \frac{1}{n} - 1$ for each $f \in \varphi(O)$ and $(y, y') \in W$. In view of Lemma 1, there is a pointwise open set $B \subset C_p(Y)$ such that $B \cap \varphi(O) \neq \emptyset$ and norm-diam$(B \cap \varphi(O)) < n^{-1}$. Since φ is quasi-continuous, the set $\varphi^{-1}(B) \cap O$ is semi-open and nonempty, and consequently, it contains a nonempty open set V. Thus $V \subset G_n \cap U$, hence G_n is dense in X. Clearly φ is norm continuous on $D = \bigcap_{n \geq 1} G_n$. □

Let Γ be a set and

$$\sigma(\Gamma) = \{x \in [0, 1]^\Gamma: \{\gamma \in \Gamma: x(\gamma) \neq 0 \text{ is countable}\}\}.$$

A compact space Y is called Corson compact if it can be embedded in some $\sigma(\Gamma)$. The space Y is called Valdivia compact if it can be embedded in some subset K of $[0, 1]^\Gamma$ such that $K \cap \sigma(\Gamma)$ is dense in K. It follows from the definition that every Corson compact space is Valdivia compact but the converse is not true in general (see [8]). Debs [6] proved that if X is a Baire space and Y is a Corson compact, then every continuous mapping $\varphi: X \to C_p(Y)$ is norm continuous at any point of a dense G_δ subset of X. Bouziad [2] improved this result by showing that Y can be any α-favorable space for the games $G_1(H)$ and $G_2(H)$, where H is a proximal subset of $Y \times Y$. So the above result holds when Y is Valdivia compact (see [1]).

Kendeov et al. [11], Corollaries 5 and 8, have shown that this result remains true if X is α-favorable, Y is Valdivia compact and φ is quasi-continuous. Theorem 4 enables us to give a simultaneous generalization of these results.

Corollary 5. Let X be a Baire space and Y be a Valdivia compact space. Then every quasi-continuous mapping $\varphi: X \to C_p(Y)$ is norm continuous at any point of a dense G_δ subset of X.

334
Acknowledgments. The author wishes to thank anonymous reviewer for his/her helpful comments and suggestions.

References

Author’s address: Alireza Kamel Mirmostafaee, Center of Excellence in Analysis on Algebraic Structures, Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Mashhad, Iran, e-mail: mirmostafaei@um.ac.ir.