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The small Ree group 2
G2(3

2n+1) and related graph

Alireza K. Asboei, Seyed S. S. Amiri

Abstract. Let G be a finite group. The main supergraph S(G) is a graph with
vertex set G in which two vertices x and y are adjacent if and only if o(x) | o(y)
or o(y) | o(x). In this paper, we will show that G ∼= 2G2(32n+1) if and only if
S(G) ∼= S(2G2(32n+1)). As a main consequence of our result we conclude that
Thompson’s problem is true for the small Ree group 2G2(32n+1).
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1. Introduction

Let G be a finite group and x ∈ G. The order of x is denoted by o(x). The
set of all element orders of G is denoted by πe(G) and the set of all prime factors
of |G| is denoted by π(G). It is clear that the set πe(G) is closed and partially
ordered by divisibility, and hence it is uniquely determined by µ(G), the subset
of its maximal elements. Let i ∈ πe(G). Set mi = mi(G) = |{g ∈ G : o(g) = i}|,
and nse(G)= {mk(G) : k ∈ πe(G)} be the set of the numbers of elements with the
same order.

We define the graph S(G) with vertex set G such that two vertices x and y
are adjacent if and only if o(x) | o(y) or o(y) | o(x). This graph is called main

supergraph of power graph G and was introduced in [8]. The power graph P(G)
of a group G is the graph with group elements as vertex set and two elements
are adjacent if one is a power of the other. The main properties of this graph
were investigated by P. J. Cameron in [3] and I. Chakrabarty et al. in [4]. The
proper main supergraph S∗(G) is the graph constructed from S(G) by removing
the identity element of G. We write x ∼ y when two vertices x and y are adjacent.

We say that groups G1 and G2 are of the same order type if and only if
mt(G1) = mt(G2) for all t. By the definition of the main supergraph, it is clear
that if G1 and G2 are groups with the same order type, then S(G1) ∼= S(G2).
The converse of this result is not generally correct. To prove this, we consider
G1 = C4 × C4 and G2 = C2 × C2 × C4. Since G1 and G2 are 2-groups, we have
S(G1) ∼= S(G2). But m4(G1) = 12 > 8 = m4(G2) and m2(G1) = 3 < 7 =
m2(G2).
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In 1987, J. G. Thompson, see [9, Problem 12.37], posed the following problem:
Thompson’s problem. Suppose that G1 and G2 are two groups of the same
order type. If G1 is solvable, is it true that G2 is also necessarily solvable?

Obviously, if G1 and G2 are the same order type, then nse(G1) = nse(G2)
and |G1| = |G2|. Therefore, if a group G has been uniquely determined by its
order and nse(G), then Thompson’s problem is true for G. In [6], the authors
proved that Thompson’s problem is true for the small Ree group 2G2(q), where
q ±√

3q + 1 is a prime number (q = 32n+1 and n is a natural number) by its nse
and order.

Clearly, for two groups G1 and G2 that are the same order type, we have
S(G1) ∼= S(G2). Therefore, if a group G has been uniquely determined by S(G),
then Thompson’s problem is true for G. If G is the alternating group of degrees
p, p + 1 or p + 2 or the symmetric group of degree p, where p is prime, then it
is proved that these groups are uniquely determined by their main supergraph,
see [1]. Also, in [2], it is proved that the groups PSL2(p), PGL2(p), where p is
prime, and all of the sporadic simple groups are uniquely determined by their
main supergraph. In this paper, we remove the assumption q±√

3q+1 is a prime
number in [6] and as the main result, conclude that Thompson’s problem is true
for 2G2(q). In fact, we prove the following theorem.

Theorem 1.1. Let G be a finite group. If S(G) ∼= S(2G2(3
2n+1)), where n is

a natural number, then G ∼= 2G2(3
2n+1).

As noted above, as an immediate consequence of Theorem 1.1, we have that

Corollary 1.2. If G is a finite group with the same type as 2G2(3
2n+1), then G

is isomorphic to 2G2(3
2n+1).

We construct the prime graph of G, which is denoted by Γ(G), as follows:
the vertex set is π(G) and two distinct vertices p and q are joined by an edge
if and only if G has an element of order pq, p 6= q. Let t(G) be the number
of connected components of Γ(G) and let π1, π2, . . . , πt(G) be the connected
components of Γ(G). If 2 ∈ π(G), then we always suppose 2 ∈ π1.

Throughout this paper we denote by ϕ(n), where n is a natural number, Euler’s
totient function. Let r be a prime number and Sylr(G) be the set of Sylow
r-subgroups of group G. We denote by Pr a Sylow r-subgroup of G and nr(G)
is the number of Sylow r-subgroups of G, that is, nr(G) = |Sylr(G)|. The other
notations and terminologies in this paper are standard, and the reader is referred
to [14] if necessary.

2. Preliminary results

We first quote some lemmas that are used in deducing the theorem of this
paper.

Lemma 2.1 ([7]). LetG be a finite group andm be a positive integer dividing |G|.
If Lm(G) = {g ∈ G : gm = 1}, then m | |Lm(G)|.
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Lemma 2.2 ([11]). LetR be the small Ree group 2G2(3
2n+1), where n is a natural

number. Then πe(G) exactly consists of divisors of 6, 9, q − 1, (q + 1)/2 and
q ±√

3q + 1.

Lemma 2.3. Let H be a finite simple group. Then 5 ∤ |H | holds if and only if
H is isomorphic to one of the following simple groups:

(a) Zp, p 6= 5;
(b) PSLn(q), n = 2, 3, where q = pf (f is odd), p 6= 5 and p 6= 5k ± 1 for

some k > 0;
(c) G2(q), where q = pf (f is odd), p 6= 5 and p 6= 5k ± 1 for some k > 0;
(d) PSU3(q), where q = pf (f is odd), p 6= 5 and p 6= 5k ± 1 for some k > 0;
(e) 3D4(q), where q = pf (f is odd), p 6= 5 and p 6= 5k ± 1 for some k > 0;
(f) 2G2(3

2n+1), where n is a natural number.

Proof: See [15, Lemma 2.5] or [10]. �

Definition 2.1. A finite group G is a Frobenius group if it has a proper nontrivial
subgroup H such that H ∩Hg = 1 for all g ∈ G−H . The subgroup H with these
properties is called a Frobenius complement of G. The Frobenius kernel of G, with
respect to H , is defined by K = (G−

⋃
g∈G Hg)∪{1}. A group G is a 2-Frobenius

group if there exists a normal series 1 EH E K E G such that K and G/H are
Frobenius groups with kernels H and K/H , respectively.

We quote some known results about Frobenius group and 2-Frobenius group
which are useful in the sequel.

Lemma 2.4 ([5]). Let G be a 2-Frobenius group of even order, i.e., G is a finite
group and has a normal series 1EHEKEG such that K and G/H are Frobenius
groups with kernels H and K/H , respectively. Then:

(a) t(G) = 2, π1 = π(G/K) ∪ π(H) and π2 = π(K/H);
(b) G/K and K/H are cyclic, |G/K| | (|K/H |− 1), (|G/K|, |K/H |) = 1 and

G/K ≤ Aut(K/H).

Lemma 2.5 ([5]). Suppose that G is a Frobenius group of even order and H , K
are the Frobenius kernel and the Frobenius complement of G, respectively. Then
t(G) = 2, and the prime graph components of G are π(H) and π(K).

Lemma 2.6 ([13, Theorem A]). If G is a finite group such that t(G) ≥ 2, then
G has one of the following structures:

(a) G is a Frobenius group or a 2-Frobenius group;
(b) G has a normal series 1 E H E K E G such that π(H) ∪ π(G/K) ⊆ π1

and K/H is a non-abelian simple group. In particular, H is nilpotent,
G/K ≤ Out(K/H) and the odd order components of G are the odd order
components of K/H .

3. Proof of Theorem 1.1

In this section, q = 32n+1, where n is a natural number. Now, we prove the
theorem stated in the introduction.
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Proof: By the definition of the main supergraph and our assumption, we have
|G| = |2G2(q)| (note that |2G2(q)| = q3(q3 + 1)(q − 1), by [14, page 137]). Also,
by S(2G2(q)) ∼= S(G) and the definition of the proper main supergraph, we have
S∗(2G2(q)) ∼= S∗(G).

We will show that q −√
3q + 1, q +

√
3q + 1, q − 1 (or q + 1) are all mutually

coprime. Let r | (q −√
3q + 1) and r | (q − 1), where r is a prime number. Since

r | (q−√
3q+1), we have r | (q−√

3q+1)(q+
√
3q+1) = q2−q+1 = q2− (q−1).

On the other hand, r | (q − 1). It follows that r | q2, which is a contradiction.
Similarly, if r | (q +√

3q + 1) and r | (q − 1), then we get a contradiction.
Now, let r | (q − √

3q + 1) and r | (q + 1), where r is a prime number. Since
r | (q+√

3q+1), we have r | (q+√
3q+1)(q−√

3q+1) = q2−q+1 = q2+2−(q+1).
Therefore, r | (q2 +2). On the other hand, r | (q+ 1). It follows that r | (q2 + q).
Since r | (q2 + 2) and r | (q2 + q), we have r | (q − 2). Hence, r | 3. Because
q = 32n+1 and r | (q + 1), we get a contradiction. Similarly, if r | (q +√

3q + 1)
and r | (q − 1), then we get a contradiction.

By Lemma 2.2, µ(2G2(q)) = {6, 9, q − 1, (q + 1)/2, q ± √
3q + 1}. Thus

2G2(q) has not any element of order rp, where r ∈ π(q3(q2 − 1)(q +
√
3q + 1))

and p ∈ π(q − √
3q + 1). Also it has not any element of order rp, where r ∈

π(q3(q2 − 1)(q − √
3q + 1)) and p ∈ π(q +

√
3q + 1). It follows that S∗(G) is

a disconnected graph with three connected components. We denote them by T+,
T− and T0 such that the vertices of T+ are elements x ∈ G with o(x) | (q+√

3q+1),
the vertices of T− are elements x ∈ G with o(x) | (q −√

3q + 1) and the vertices
of T0 are elements x ∈ G with o(x) | q3(q2 − 1).

Let x be an arbitrary vertex of T+ such that o(x) = r, where r is a prime
and let y be an arbitrary vertex of T− such that o(y) = s, where s is a prime.
If rs ∈ πe(G), then there exists z ∈ G such that o(z) = rs. By definition of
S∗(G), we have x ∼ z and y ∼ z. Thus T+ and T− are connected in S∗(G),
a contradiction. It follows that rs /∈ πe(G). Therefore, r and s are not joined by
an edge in prime graph G. Similarly, we can prove it for T+ and T0 and also for
T− and T0. Thus Γ(G) has at least three connected components.

Since t(G) ≥ 3, Lemmas 2.4 (a) and 2.5 show that G is neither a Frobenius
group nor a 2-Frobenius group. By Lemma 2.6, G has a normal series 1 E H E

K E G such that H and G/K are π1-groups and K/H is a non-abelian simple
group, |G/K| divides |Out(K/H)|.

By Lemma 2.3, |G| = |2G2(q)| is coprime to 5. Again by Lemma 2.3, since
|K/H | | |G|, K/H is isomorphic to one the following groups: PSL2(f), PSL3(f),
PSU3(f), G2(f),

3D4(f), where f ≡ ±2 ( mod 5) (f is a power of prime p) and
2G2(f), where f = 32m+1 ≥ 27.

We will show that the order of a Sylow 2-subgroup of G is 8. As noted at the
beginning of the proof, |G| = |2G2(q)| = q3(q3+1)(q−1) = q3(q2− q+1)(q2−1),
where q = 32n+1. Clearly, 2 ∤ q3(q2 − q + 1). Since q2 − 1 = (q − 1)(q + 1) =
(32n+1 − 1)(32n+1 + 1) = 8(32n + 32n−1 + · · ·+ 1)(32n − 32n−1 + 32n−2 − · · ·+ 1)
and 2 ∤ (32n + 32n−1 + · · ·+ 1)(32n − 32n−1 + 32n−2 − · · ·+ 1), we have |P2| = 8.
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By [14, Sections 4.3.3, 4.6.2], |G2(f)| = f6(f+1)2(f−1)2(f2−f+1)(f2+f+1)
and |3D4(f)| = f12(f8 + f4 + 1)(f6 − 1)(f2 − 1). Clearly, the order of a Sylow
2-subgroup of G2(f) or

3D4(f) is greater than 8. Therefore, we can rule out the
cases G2(f) and

3D4(f).
If K/H is isomorphic to PSL3(f) or PSU3(f), then the order ofK/H is divisible

by (f ± 1)(f2 − 1). When f is odd, this is always divisible by 16 and so f must
be even. Thus K/H is isomorphic to one of the groups: PSL2(f) with f ≡ ±2
(mod 5), PSL3(2

u) with u ≥ 2, PSU3(2
u) with u ≥ 2 and 2G2(f). Since 16 divides

the order of PSL3(2
u), PSU3(2

u), K/H is isomorphic to PSL2(f) or
2G2(f).

Let K/H be isomorphic to PSL2(f) and let f = pm, where p is a prime number
and m a natural number. By the above discussion, q ± √

3q + 1 are odd order
components of K/H .

If p = 2, then f + 1 and f − 1 are the odd order components of PSL2(f), so
q +

√
3q + 1 = f + 1 and q −√

3q + 1 = f − 1, which is impossible.
If p 6= 2, then the odd order components of PSL2(f) are f and (f ± 1)/2.

Thus q +
√
3q + 1 = f and q − √

3q + 1 = (f + 1)/2, or q +
√
3q + 1 = f and

q −√
3q + 1 = (f − 1)/2.

If the latter case holds, q − 3
√
3q + 2 = 0. This equation has no solutions in

positive integer. Then the former case occur in which we have that q− 3
√
3q = 0.

It follows that q = 27 and f = 37. Therefore, K/H = PSL2(37). In this case
S∗(2G2(27)) has three components such that two components are complete graphs
(T+ and T−). We show that the vertices of T+ or T− are elements of order

37 = 27 +
√
3 · 27 + 1. We know that order of T+ or T− is m37 = 1633531536.

First, let x and y be two vertices of T+ or T− such that o(x) = r and o(y) = s,
where r 6= s and r, s ∈ π(G). Since T+ and T− are complete, we have x ∼ y,
a contradiction. Let r be a prime and the vertices of T+ or T− be all of x ∈ G
such that o(x) = r, r2, . . . , or rk (note that exp(Pr) = rk). Then with considering
m = |Pr| in Lemma 2.1, |Pr| | (1+mr+mr2+ · · ·+mrk) = 1+m37 = 1633531537.
It follows that r = 37. Hence, the vertices of T+ or T− are x ∈ G such that
o(x) = 37k, where k ≥ 1 is an integer.

Since |G| = 23 ·39 ·7 ·13 ·19 ·37, we have 372 /∈ πe(G). Therefore, the vertices of
T+ or T− are all of elements of order 37 in G. Therefore, G has not any element
of order 37r, where r ∈ π(G).

By Lemma 2.6 (b), |G/K| divides |Out(K/H)| = |Out(PSL2(37))| = 2. Since
|K/H | = |PSL2(37)| = 22 · 32 · 19 · 37, |G| = |2G2(27)| = 23 · 39 · 7 · 13 · 19 · 37
and |G| = |G/K| · |K/H | · |H |, we have |H | = 37 · 7 · 13 or 2 · 37 · 7 · 13. Thus
|H | | 2 · 37 · 7 · 13. Since H E G, we have n13(H) = n13(G) = m13(G)/12. Since G
has not any element of order 37 · 13, P37 acts fixed point freely on the elements of
order 13. Thus 37 = |P37| | m13(G) = m13(H). By Sylow’s theorem n13(H) | |H |.
This implies that 22 · 39 · 7 · 19 · 37 ≤ m13(G) = m13(H) < 2 · 37 · 7 · 13, which is
a contradiction.

By the above discussion, K/H is isomorphic to 2G2(f), where f = 32m+1 and
m is a natural number. Hence, t(K/H) = 3 and f ±

√
3f + 1 are odd order

components of K/H (see [12], Table Id). On the other hand, q±√
3q+1 are also
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the odd order components of K/H . This implies that q±√
3q+1 = f ±

√
3f +1.

Consequently, f = q. Therefore, K/H ∼= 2G2(q). Since |G| = |K/H | = |2G2(q)|,
we deduce that G ∼= 2G2(q). �
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