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Iterated arc graphs

Danny Rorabaugh, Claude Tardif, David Wehlau, Imed Zaguia

Abstract. The arc graph δ(G) of a digraph G is the digraph with the set of arcs
of G as vertex-set, where the arcs of δ(G) join consecutive arcs of G. In 1981,
S. Poljak and V. Rödl characterized the chromatic number of δ(G) in terms of
the chromatic number of G when G is symmetric (i.e., undirected). In contrast,
directed graphs with equal chromatic numbers can have arc graphs with distinct
chromatic numbers. Even though the arc graph of a symmetric graph is not
symmetric, we show that the chromatic number of the iterated arc graph δk(G)
still only depends on the chromatic number of G when G is symmetric. Our
proof is a rediscovery of the proof of [Poljak S., Coloring digraphs by iterated

antichains, Comment. Math. Univ. Carolin. 32 (1991), no. 2, 209–212], though
various mistakes make the original proof unreadable.
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Classification: 05C15, 06A07

1. Introduction

The arc graph δ(G) of a digraph G is the digraph with the set A(G) of arcs of
G as vertex-set, where the arcs of δ(G) join consecutive arcs of G. The iterated
arc graphs δk(G), k ≥ 1, are defined recursively by δk(G) = δ(δk−1(G)). However
it is possible to interpret δk(G) in terms of sequences of vertices of G:

V (δk(G)) = {(u0, . . . , uk) ∈ V (G)k :

(ui, ui+1) ∈ A(G) for i = 0, . . . , k − 1},

A(δk(G)) = {((u0, . . . , uk), (u1, . . . , uk+1)) :

(u0, . . . , uk), (u1, . . . , uk+1) ∈ V (δk(G))}.

In particular, the iterated arc graphs of complete graphs with loops are the well-
known de Bruijn graphs. The iterated arc graphs of transitive tournaments are
a folklore construction of graphs with large chromatic numbers and no short odd
cycles (see [4]).

We will be investigating chromatic numbers of iterated arc graphs. Here, the
chromatic number of a digraph is defined as the minimum number of colours
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needed to colour its vertices so that the endpoints of an arc have different colours.
Thus, the direction of an arc has no effect on the chromatic number. In [3],
C. C. Harner and R.C. Entriger give the following relations between the chromatic
number of a digraph and that of its arc graph.

Theorem 1 ([3]).

(i) If χ(δ(G)) ≤ n, then χ(G) ≤ 2n.

(ii) If χ(G) ≤
( n
⌊n/2⌋

)

, then χ(δ(G)) ≤ n.

Inductively, the bound gives θ(log(k)(χ(G))t) behaviour for χ(δk(G)) in terms

of χ(G).
The “undirected” graphs are symmetric digraphs with each edge corresponding

to an opposite pair of arcs. In [8], S. Poljak and V. Rödl give a characterization
of the chromatic number of the arc graph of a graph.

Theorem 2 ([8]). For any graph G,

χ(δ(G)) = min
{

n : χ(G) ≤
(

n
⌊n/2⌋

)}

.

In particular, for a graph G, χ(δ(G)) depends on χ(G) alone and not on the
structure of G. In contrast, digraphs with equal chromatic numbers can have
arc graphs with distinct chromatic numbers. For instance, let C be the cyclic
tournament on three vertices, and T the transitive tournament on three vertices.
Then χ(C) = χ(T ) = 3, while χ(δ(C)) = 3 and χ(δ(T )) = 2.

Now, what about iterated arc graphs? Theorem 2 cannot be used to character-
ize χ(δ2(G)) in terms of χ(δ(G)), since δ(G) is not symmetric in general. However,
it turns out that for all k, χ(δk(G)) is indeed characterized by χ(G). This seems
to have been first noticed by S. Poljak in [7]. There are numerous mistakes in the
original exposition, which are corrected here. In addition, the topic is connected
to interesting combinatorial structures and problems, which makes it worthy of
more attention.

The characterization of χ(δk(G)) uses numbers defined in terms of specific
posets. An ideal in a poset P is a subset I of P such that x ≤ y ∈ I implies x ∈ I.
The set of ideals of P , ordered by inclusion, is a poset which we denote I(P ).
Iterating the construction, we get the posets Ik(P ), k ≥ 0. The complement Kn

of the complete graph with n vertices can be viewed as a poset, more precisely an
antichain of size n. We let b(n, k) be the maximum size of an antichain in Ik(Kn)
(i.e., the width of Ik(Kn)).

Theorem 3. For any graph G and any integer k ≥ 1,

χ(δk(G)) = min{n : χ(G) ≤ b(n, k)}.

The posets Ik(Kn) turn out to be interesting objects. The lattice I(Kn) is the

boolean lattice with n generators, and b(n, 1) =
( n
⌊n/2⌋

)

by Sperner’s theorem.
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Thus the case k = 1 of Theorem 3 is Theorem 2. The lattice I 2(Kn) is the free
distributive lattice with n generators. Thus the number of elements in I 2(Kn)
are called the Dedekind numbers (sequence A000372 in the on-line Encyclopedia
of integer sequences). The largest known antichain in I 2(Kn) consists of the
ideals with exactly 2n−1 elements, that is, half the elements of I(Kn).

Now for any poset P , the number of elements in an ideal I of P defines its
height as an element of I(P ). Thus, I(P ) is always a graded poset. A graded
poset which has a maximal antichain consisting of all elements of the same height
is called a Sperner poset. A conjecture attributed to Richard Stanley states that
I 2(Kn) is indeed a Sperner poset. (We thank Dwight Duffus for this information.)

a b c

K3

I(K3)

∅

a b c

ab ac bc

abc

{}

{∅}

↓{a} ↓{b} ↓{c}

↓{a, b} ↓{a, c} ↓{b, c}

↓{ab} ↓{ac} ↓{bc} ↓{a, b, c}

↓{ab, c} ↓{ac, b} ↓{bc, a}

↓{ab, ac} ↓{ab, bc} ↓{ac, bc}

↓{ab, ac, bc}

↓{abc}

I 2(K3)

Figure 1. Ik(K3), k ∈ {0, 1, 2}.

It seems that the only published statement of Stanley’s conjecture is in the
thesis [6], where it is verified that for n up to 6, the unique maximum antichain
in I 2(Kn) is indeed the one which consists of the ideals of I(Kn) with exactly
2n−1 elements. Thus the known values of b(n, 2) are as follows:

b(3, 2) = 4, b(4, 2) = 24, b(5, 2) = 621, b(6, 2) = 492288.
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By inspecting the 20-element I 2(K3)—see Figure 1—it is easy to check that
b(3, 3) = 7. The levels 8, 9, 11, 12 of I 3(K3) each constitute antichains of
size 7, but level 10 is an antichain of size 6. Thus the level of maximum size
is not necessarily the middle level. Apart from the trivial cases b(1, k) = 1 and
b(2, k) = 2 for all k, no further values b(n, k) are known.

2. Proof of Theorem 3

We will show that for any digraph G, an n-colouring of δk(G) corresponds
to a homomorphism from G to a suitably defined digraph N (Ik(Kn)). When
G is a graph, its edges must be mapped to the symmetric arcs of N (Ik(Kn)).
These symmetric arcs span a graph which retracts to Kb(n,k). The details of this
argument are provided below.

2.1 The right adjoint of the arc graph construction. Viewed as a digraph
functor, δ admits a kind of “right adjoint”. More precisely, there is a construction
δR such that there exists a homomorphism from δ(G) to K if and only if there
exists a homomorphism from G to δR(K). (Note that our definition of a right
adjoint is less restrictive than the standard categorial definition, in which a cor-
respondence between morphisms is required.) Here, a homomorphism ϕ : G → H
is a map ϕ from the vertex set of G to that of H such that if (u, v) is an arc of G,
then (ϕ(u), ϕ(v)) is an arc of H .

For a digraph K, δR(K) is the digraph defined as follows.

◦ The vertices of δR(K) are the ordered pairs (X,Y ) such that X and Y
are sets of vertices of K with an arc (x, y) between all vertices x of X
and all vertices y of Y .

◦ The arcs of δR(K) are ordered pairs ((X,Y ), (Z,W )) such that Y ∩Z 6= ∅.

The sets X,Y of vertices of K used in the definition of δR(K) are allowed to be
empty. In particular, if K0 is the graph with no vertex and no edge, then δR(K0)
is a single vertex, and δ2R(K0) has three vertices and one arc.

We use the following result.

Lemma 4 ([2]). Given two digraphs G and K, there exists a homomorphism of

δ(G) to K if and only if there exists a homomorphism of G to δR(K).

Proof: We include the sketch of an elementary proof to make the paper self
contained. First note that a homomorphism ϕ : G → H induces homomorphisms
δ(ϕ) : δ(G) → δ(H) defined by δ(ϕ)(u, v) = (ϕ(u), ϕ(v)), and δR(ϕ) : δR(G) →
δR(H) defined by δR(ϕ)(X,Y ) = (ϕ(X), ϕ(Y )). Second, note that there are
homomorphisms from δ(δR(G)) to G defined by mapping ((X,Y ), (Z,W )) to any
element of Y ∩ Z, and from G to δR(δ(G)) defined by mapping u to (u−, u+),
where u− and u+ are respectively the sets of arcs entering and leaving u.

Therefore, if there exists a homomorphism from δ(G) to K then there exists
a homomorphism from δR(δ(G)) to δR(K), which composed with a homomor-
phism from G to δR(δ(G)) yields a homomorphism from G to δR(K). Similarly,
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if there exists a homomorphism from G to δR(K), then there exists a homomor-
phism from δ(G) to δ(δR(K)), and the latter admits a homomorphism to K. �

Corollary 5. Given two digraphs G and K and any k ≥ 1, there exists a ho-

momorphism of δk(G) to K if and only if there exists a homomorphism of G to

δkR(K).

A subdigraph H of a digraph G is called a retract of G if there exists a homo-
morphism ̺ : G → H such that the restriction of ̺ to H is the identity.

Lemma 6. The digraph δR(K) retracts to its subdigraph induced by the vertices

(X,Y ) such that

Y = {y ∈ V (K) : (x, y) ∈ A(K) for all x ∈ X}
and

X = {x ∈ V (K) : (x, y) ∈ A(K) for all y ∈ Y }.

Proof: Let ̺ : δR(K) → δR(K) be the map defined by ̺(X,Y ) = (X ′, Y ′),
where X ′ is the set of common inneighbours of Y , and Y ′ is the set of common
outneighbours of X ′. Then ̺ is easily seen to be a retraction on the prescribed
subdigraph. �

2.2 Nondomination digraphs of posets. The nondomination digraph N (P )
of a poset P is the digraph which has the elements of P for vertices, and for
arcs the ordered pairs (u, v) such that u is strictly less than v or u and v are
incomparable. In other words, if G = N (P ), then A(G) is the complement in
V (G)2 of the relation “≥”. Note that Kn = N (Kn), where Kn is the antichain
of size n. The constructions δR, N and I connect as follows.

Lemma 7. For any poset P , δR(N (P )) retracts to N (I(P )).

Proof: By Lemma 6, δR(N (P ))) retracts to its subdigraph G induced by the
vertices (X,Y ) such that Y is the common outneighbourhood of all vertices in X
and X is the common inneighbourhood of all vertices in Y . We will show that
G = N (I(P )).

For (X,Y ) ∈ V (G), suppose that there exists a vertex u of N (P ) not contained
in X or Y . Since u 6∈ X , u is not a common inneighbour of the vertices in Y .
Thus, there exists a vertex y ∈ Y such that u ≥ y in P . Likewise, u 6∈ Y so there
exists a vertex x ∈ X such that x ≥ u. By transitivity, x ≥ y, contradicting the
fact that there is an arc from x to y in N (P ). Therefore, Y = X.

Hence the elements of G are determined by their first coordinates. It is easy to
see that these first coordinates are ideals of P , that is, elements of I(P ). Indeed,
if (X,X) ∈ V (G) and x < y ∈ X , then (y, x) is not an arc of G, hence x 6∈ X. So
it only remains to show that adjacency in G corresponds to adjacency in N (I(P )).
By definition ((X,X), (Y, Y )) is an arc of G if and only if X intersects Y , that is,
X 6⊇ Y , which is equivalent to (X,Y ) ∈ A(N (I(P ))). �

Corollary 8. For any poset P and any integer k, δkR(N (P )) retracts toN (Ik(P )).
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2.3 Symmetric restrictions. Let [G] denote the symmetric restriction of a di-
graph G, that is, the subgraph spanned by its symmetric arcs.

Lemma 9. For any poset P , [N (P )] retracts to a complete subgraph with car-

dinality equal to the width of P .

Proof: Any antichain in P is a complete subgraph of [N (P )]. Let K = [A],
where A is a maximum antichain in P . Then K is a complete subgraph of [N (P )]
of cardinality equal to the width w of P . By Dilworth’s theorem, see [1], there
exists a chain partition {C1, . . . , Cw} of P . Each chain Ci is an independent set in
[N (P )]. Therefore, the map ̺ : [N (P )] → K mapping each Ci to its intersection
with A is a retraction of [N (P )] to K. �

To summarize the proof of Theorem 3, the existence of an n-colouring of δk(G)
is equivalent to the existence of a homomorphism of G to δkR(Kn) by Corollary 5.

Since Kn = N (Kn), this is equivalent to the existence of a homomorphism of G
to N (Ik(Kn)) by Corollary 8. When G is a graph, its edges must be mapped to
those of [N (Ik(Kn))], which retracts to Kb(n,k) by Lemma 9. This concludes the
proof of Theorem 3. �

3. Further comments

For any poset P , the chromatic number of N (P ) is equal to the number of
elements in P , since any two elements of P are joined by an arc in at least one di-
rection. In particular, the number of elements of Ik(Kn) is equal to the maximum
possible chromatic number of a digraph G with the property that χ(δk(G)) = n.
Note that G = N (Ik(Kn)) achieves the bound, as well as any spanning tour-
nament of N (Ik(Kn)). We can even require the spanning tournament to be
transitive, since any linear extension of Ik(Kn) corresponds to a spanning tran-
sitive tournament in N (Ik(Kn)). Specializing to k = 2, this implies that the nth
Dedekind number is equal to the maximum cardinality of a transitive tournament
T such that χ(δ2(T )) = n.

As we mentioned, the proof of Theorem 3 given here constitutes a clarification
of that of [7]. In that paper, it looks as though the publisher replaced “ 6≥” by “<”
as a symbol for nondomination. Furthermore, I(P ) is obviously isomorphic to
F(P ), the containment poset of the filters of P . Both posets can be represented
by means of a specific ordering on antichains, but different orderings are used for
I(P ) and F(P ). These confusions make it impossible to follow the exposition
in [7] without rediscovering the results.
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