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On pseudocompactness and related notions in ZF

Kyriakos Keremedis

Abstract. We study in ZF and in the class of T1 spaces the web of implications/
non-implications between the notions of pseudocompactness, light compactness,
countable compactness and some of their ZFC equivalents.

Keywords: axiom of choice; countably compact; lightly compact topological
space; pseudocompact topological space

Classification: 54D30, 03E25

1. Notation and terminology

Let X = (X,T ) be a topological space and U be a family of subsets of X . An
element x ∈ X is called a cluster point of U if and only if every neighborhood
of x meets nontrivially infinitely many members of U . The set U is said to be
locally finite (or point finite, respectively) if each point of X has a neighborhood
intersecting a finite number of elements of U (or each point ofX belongs to finitely
many members of U , respectively). An open refinement of an open cover U of X
is a new open cover V of X such that each set in V is contained in some member
of U .

The space X is said to be metacompact if and only if every open cover of X
has a point finite open refinement.

The space X is said to be compact (or countably compact, respectively) if and
only if every open cover U of X (or countable open cover U of X, respectively)
has a finite subcover V .

The space X is said to be pseudocompact if and only if every continuous real-
valued function on X is bounded. Pseudocompact spaces were introduced and
investigated by E. Hewitt in [2].

The space X is said to be lightly compact (or countably lightly compact, re-
spectively) if and only if X has no infinite (or no countably infinite, respectively)
locally finite family of open subsets.

Light compactness has been introduced in [5]. Lightly compact spaces are also
called feebly compact, see, e.g., [7].

Countable light compactness is condition (B3) in [1] and is equivalent to light
compactness in ZFC, i.e., the Zermelo–Fraenkel set theory ZF together with axiom
of choice (AC).
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The space X is said to be ineptly compact (or countably ineptly compact, re-
spectively) if and only if X has no infinite (or no countably infinite, respectively)
locally finite family of closed sets. Inept compactness has been introduced in [4].
It is known to be stronger than countable compactness in ZF, but equivalent to
the latter property in ZFC.

LetX be an infinite set. We say thatX is Dedekind infinite (or weakly Dedekind

infinite, respectively) if and only if X (P(X), respectively) has a countably in-
finite subset. Otherwise, X is called Dedekind finite (or weakly Dedekind finite,
respectively).

Below we list the weak forms of the axiom of choice we shall use in this paper.

◦ DC (the axiom of dependent choice): For any nonempty set X and any
binary relation R on X such that for every x ∈ X there is a y ∈ X with
xRy, there exists a sequence (xn)n∈N of X such that xnRxn+1 for all
n ∈ N.
◦ CAC (the countable axiom of choice): For every countable family A of
nonempty sets there exists a function f such that for all x ∈ A, f(x) ∈ x.
◦ CMC (the countable axiom of multiple choice): For every family A =
{Ai : i ∈ ω} of pairwise disjoint nonempty sets there exists a family B =
{Bi : i ∈ ω} of nonempty finite sets such that for all i ∈ ω, Bi ⊆ Ai.

The set B in the statement of CMC is called multiple choice set of A. CMC
is equivalent (see [3]) to the assertion: For every family A = {Ai : i ∈ ω} of
pairwise disjoint nonempty sets there exists a subfamily B = {Aki

: i ∈ ω} of A
with a multiple choice set C which is called partial multiple choice set of A.

◦ IDI: Every infinite set is Dedekind infinite.
◦ IDI(R): IDI restricted to subsets of the real line R.
◦ IWDI: Every infinite set is weakly Dedekind infinite.
◦ NT: Every normal space satisfies the Tietze extension theorem.

For ZF models satisfying any single weak choice axiom, or its negation, from
the above list we refer the reader to [3].

2. Introduction and some known results

The intended context for reasoning in this paper will be ZF unless otherwise
noted. In order to stress that a result is proved in ZF (or ZF+WFC, respectively)
we shall write in the beginning of the statements of the theorems (ZF) (or (ZF+
WFC), respectively), where WFC will stand for some weak form of the axiom of
choice listed in the first section.

It is well known, see e.g. [4] and references therein, or it is easy to see that on
any topological space X = (X,T ) each of the following properties implies “X is
pseudocompact” in ZFC.

(A1): Every pairwise disjoint locally finite family of open sets of X is finite.
(A2): Every locally finite open cover of X is finite.
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(B1): Every countable open covering U of X has a finite subcollection whose
closures cover X .

(B2): Every countable family U of nonempty open subsets of X has a cluster
point in X.

(B3): Every pairwise disjoint family U = {Un : n ∈ N} of nonempty open subsets
of X has a cluster point in X.

(B4): Every countable open filterbase has a point of adherence.
(B5): Every countable, locally finite, disjoint collection of open sets of X is

finite.
(B6): If U is a countable open cover of X and A is an infinite subset of X , then

the closure of some member of U contains infinitely many points of A.
(C1): Every locally finite family of subsets of X is finite.
(C2): Every pairwise disjoint, locally finite family of subsets of X is finite.
(C3): Every pairwise disjoint, locally finite family of closed subsets ofX is finite.
(C4): Every countable locally finite family of subsets of X is finite.
(C5): Every countable pairwise disjoint, locally finite family of subsets of X is

finite.
(C6): Every countable pairwise disjoint, locally finite family of closed subsets of

X is finite.

The question which pops up at this point is whether the statement “X is
pseudocompact” implies back, in ZF, any statement of the above list.

Regarding the ZF implications/non-implications which hold amongst the mem-
bers of the list, the following results are known.

Theorem 1 ([4], (ZF)). On a topological space X = (X,T ) the following hold.

(i) Properties (A1) and (A2) are equivalent to “X is lightly compact”.
(ii) Properties (B1)–(B5) are equivalent.
(iii) (B1) implies (B6).
(iv) Properties (C1) and (C2) are equivalent to the statement “X is ineptly

compact”.
(v) (C1) implies (C3).
(vi) If X is ineptly compact then it is lightly compact and countably compact.

Theorem 2 ([4]). (i) The statement: “Every topological space satisfying
(B6) satisfies (B1) (or is pseudocompact, respectively)” implies IDI(R).

(ii) Each of the statements: “Every pseudocompact, completely regular,
T4 space is lightly compact (or ineptly compact, respectively)”;
“ every countably compact T4 space is lightly compact (or ineptly com-
pact, respectively)”;
“ every T4 space satisfying condition (B5) (or (B6), respectively) is lightly
compact”;
“ every countably compact space is ineptly compact”;
“ every countably compact space is lightly compact”;
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“ every countably compact space satisfies condition (C1) (or (C3), re-
spectively)” implies IWDI. In particular, none of the above-mentioned
statements is a theorem of ZF.

(iii) The statement: “Every T1 topological space satisfying (C3) satisfies (C1)”
implies CMC.

Theorem 3 ([4], (ZF + CAC)). (i) A topological space satisfies condition
(C1) if and only if it satisfies property (C3).

(ii) (ZF+IDI) A topological space X = (X,T ) is ineptly compact if and only
if it is countably compact.

Theorem 4 ([4], (ZF + DC)). Let X = (X,T ) be a T4 topological space. The
following are equivalent:

(i) the space X is ineptly compact;
(ii) the space X is lightly compact;
(iii) the space X is pseudocompact;
(iv) the space X is countably compact.

Theorem 5 ([8], [6], (ZFC)). A Tychonoff space X is compact if and only if it
is pseudocompact and metacompact.

The following web of ZF implications/non-implications, whose interpretation
is self-evident, pictures the results stated in Theorems 1 and 2.
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❯

OO

(C1)oo

OO

Diagram 1.

Countable light (countable inept, respectively) compactness, and properties
(C4), (C5) and (C6) are introduced here. We show in the forthcoming Proposi-
tion 6 that properties (C4), (C5) and countable inept compactness are equivalent
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to countable compactness, and each of the conditions (C3), (C4) implies (C6).
Our main aim in this paper is to add to Diagram 1 condition (C6) and study
in ZF all the implications/non-implications which hold between the properties in
the augmented diagram.

3. Main results

In this section all topological spaces will assume to satisfy at least the T1

separation axiom.

Proposition 6. Let X = (X,T ) be a topological space. Then, the following
hold:

(i) (ZF) The space X is countably lightly compact if and only if X satis-
fies (Bi), i = 1, . . . , 5.

(ii) (ZF) Properties (C4) and (C5) are equivalent to “X is countably ineptly
compact”.

(iii) (ZF) The space X is countably ineptly compact if and only if it is count-
ably compact.

(iv) (ZF) If X is countably ineptly compact then it is countably lightly com-
pact and satisfies (C6).

(v) (ZF) If X satisfies condition (C3) then X satisfies (C6).
(vi) CMC implies “every topological space satisfying condition (C6) is count-

ably compact” and “ every countably ineptly compact space is ineptly
compact”.

(vii) CMC if and only if “every topological space satisfying (C6) satisfies (C1)”.
In particular, CMC implies that properties (C1)–(C6) are equivalent.

Proof: (i) It is straightforward to see that X is countably lightly compact if and
only if X satisfies (B2). The conclusion of part (i) now follows from Theorem 1.

(ii) If X is countably ineptly compact then X satisfies (C4), and (C4)→ (C5)
are straightforward.

Assume that X satisfies (C5) and show that X is countably ineptly compact.
Fix a countably infinite, locally finite family U of closed subsets of X. Without
loss of generality we may assume that U is closed under finite intersections. Let
“∼” be the equivalence relation on Y =

⋃
U given by:

(1) x ∼ y if and only if for every U ∈ U , x ∈ U ↔ y ∈ U.

Let P = Y/ ∼ be the quotient set of “∼”. Clearly, P is pairwise disjoint. For
every x ∈ Y let Ux denote the intersection of all members of U including x and
[x] denote the “∼” equivalence class of x. We claim that for every x, y ∈ Y,
[x] ⊆ Ux, and [x] 6= [y] if and only if Ux 6= Uy. Indeed, [x] ⊆ Ux is an immediate
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consequence of (1). For the second assertion we note that:

[x] 6= [y] if and only if there is U ∈ U such that

(x ∈ U ∧ y /∈ U) ∨ (x /∈ U ∧ y ∈ U) if and only if Ux 6= Uy.

By our assumption, for every x ∈ Y , Ux ∈ U . Hence {Ux : x ∈ Y }, and
consequently P , is countable. Therefore, by our hypothesis, P is finite. Since U
is locally finite and every member of U includes a member of P it follows easily
that U is finite.

(iii) (←) Assume the contrary and fix a locally finite family G = {Gn : n ∈ N}
of closed subsets of X. For every n ∈ N, let

Fn =
⋃
{Gi : i ≥ n}.

Clearly, F = {Fn : n ∈ N} is a descending family of closed subsets of X. Hence,
by our hypothesis, F =

⋂
F 6= ∅. It is easy to see that for every x ∈ F and every

neighborhood V of x, V ∩ Fn 6= ∅ for all n ∈ N. Hence, V meets infinitely many
members of G meaning that G is not locally finite. This leads us to a contradiction.
Hence, X is countably ineptly compact as required.

(→) Assume the contrary and fix a descending family G = {Gn : n ∈ N} of
closed subsets of X with

⋂
G = ∅. Clearly, G is locally finite. Hence, by our

hypothesis, G is finite contradicting our assumption.
(iv) If X is countably ineptly compact then X satisfies (C4) which in turn

implies (C6). To see that X is countably lightly compact, fix a locally finite
family U = {Un : n ∈ N} of open subsets of X. Clearly, G = {Gn = Un : n ∈ N}
is locally finite. Therefore, by our hypothesis, G is finite. Since for every G ∈ G,
|{U ∈ U : U = G}| < ℵ0 (U is locally finite), it follows that U is finite as a finite
union of finite sets.

(v) This is straightforward.
(vi) Fix a topological space X = (X,T ) satisfying condition (C6). We show

that X is countably compact. To see this, we assume the contrary and fix G =
{Gn : n ∈ N} a strictly descending family of closed subsets of X with empty
intersection. Fix by CMC, for every n ∈ N, a finite subset Kn ⊆ Gn\Gn+1.
Since finite subsets of T1 spaces are closed, it follows that K = {Kn : n ∈ N}
is a pairwise disjoint family of closed subsets of X without cluster points (any
cluster point x of K is in

⋂
G). Thus, K is locally finite, and by our hypothesis

finite. Contradiction!
The second assertion can be proved similarly and we leave it as an easy exercise

for the reader.
(vii) (←) This follows from Theorem 2 (iii) and the fact that every space

satisfying (C3) satisfies (C6) also.
(→) This follows from part (vi) and Theorem 1 (iv). �

Example 7 (ZF). A lightly compact, pseudocompact topological space satisfying
condition (B6) but not (C6), hence not (C3) also.
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Let T be the co-countable topology on R (O ∈ T if and only if O = ∅ or
|R\O| ≤ ℵ0). Since every two nonempty open sets of Rmeet nontrivially, it follows
that (R, T ) is lightly compact, countably lightly compact and pseudocompact.
Hence, it satisfies condition (B6) also. Furthermore, {{n} : n ∈ N} is an infinite
pairwise disjoint locally finite family of closed subsets of (R, T ). Thus, (R, T ) is
not countably compact and does not satisfy properties (C6) and (C3).

Example 8 (ZF). A pseudocompact topological space satisfying the negation
of (B6).

Let X = {(n,m) : n,m ∈ N} be endowed with the topology T in which basic
neighborhoods of points (n,m) ∈ X are all cofinite subsets of

An,m = {(n, i) : i ∈ N} ∪ {(i,m) : i ∈ N}

including (n,m). Clearly, for every (n,m) ∈ X , An,m is a clopen (simultaneously
closed and open) set of X. Hence, U = {An,m : n,m ∈ N} is a countable open
cover of X. Since for all n,m ∈ N, An,m ∩ {(n, n) : n ∈ N} is finite, it follows that
X does not satisfy condition (B6).

The spaceX is pseudocompact. To see this, fix a continuous function f:X→ R.
Clearly, for every n,m ∈ N the restriction of f to each of the subspaces Yn, Yn =
{(n, i) : i ∈ N} and Zm, Zm = {(i,m) : i ∈ N} is constant (the subspace topology
on Yn, Zn coincides with the cofinite one). Since Yn∩Zm 6= ∅, it follows that f is
constant on An,m. Similarly, the fact that for all n,m, u, v ∈ N, An,m ∩Au,v 6= ∅,
implies f is constant on An,m ∪ Au,v. Therefore f is constant on X =

⋃
U and

X is pseudocompact as required.

Example 9 (ZF). A pseudocompact topological space satisfying condition (B6)
but not conditions (C3) and (B1).

Fix a pairwise disjoint family A = {Ai : i ∈ N} of infinite subsets of N whose
union is not a cofinite subset of N and let B = {si : i ∈ N} be an infinite subset of
N disjoint from

⋃
A. For every i ∈ N let Xi = Ai ∪ {si}. Let T be the topology

on X =
⋃
{Xi : i ∈ N} in which basic open neighborhoods of points x ∈ An,

n ∈ N, are all cofinite subsets of An including x, and for all n ∈ N neighborhoods
of sn are all cofinite subsets of Un =

⋃
{Xi : i ≤ n} including sn. It is easy to

verify that A is a pairwise disjoint locally finite family of open sets of X (if x ∈ X
then x ∈ Xn for some n ∈ N. Hence, x has a neighborhood meeting at most
n members of A), and {{si} : i ∈ N} is a pairwise disjoint locally finite family
of closed subsets of X. Thus, X is not countably lightly compact and does not
satisfy condition (C6).

We show next that X is pseudocompact. To this end, fix a continuous function
f : X → R. Clearly, the restriction of f to B is constant (every two open sets
U, V of X meeting nontrivially B have a nonempty intersection). Since for every
i ∈ N the restriction of f to Xi is constant it follows that f is constant and X is
pseudocompact as required.
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Finally, we show that X satisfies condition (B6). To this end, fix an infinite
subset A = {ai : i ∈ N} of X , X ⊆ N, and let U = {Un : n ∈ N} be an open cover
of X. Since U is a cover of X it follows that s1 ∈ Un for some n ∈ N. Since
Un = X it follows that A ⊆ Un and X satisfies (B6) as required.

Theorem 10. (i) CMC if and only if every topological space satisfying property
(C3) is countably lightly compact.

In particular, it is relatively consistent with ZF the existence of a non-countably
lightly compact (or non-countably compact, respectively) topological space satis-
fying the (C3) condition.

(ii) (ZF) Every topological space satisfying (C6) (or (C3), respectively) is pseu-
docompact and satisfies property (B6).

Proof: (i) (→) This follows from Proposition 6 (vii), and Theorem 1 (iv) and (vi).
(←) Assume the contrary and fix a pairwise disjoint family A = {Ai : i ∈ N}

of nonempty sets without a partial multiple choice set. For every n ∈ N let
Xn =

⋃
{Yi : i ≤ n}, where Yn = An ∪ Bn and Bn = An × {n} is a disjoint copy

of An.
Define a topology T on X =

⋃
{Xn : n ∈ N} by requiring:

(1) Basic neighborhoods of points x ∈ An, n ∈ N, are all subsets S of An

such that x ∈ S and |An\S| < ℵ0, and
(2) basic neighborhoods of points x ∈ Bn, n ∈ N, are all subsets S of Xn such

that x ∈ S and |Xn\S| < ℵ0.

It is easy to see that each member of A is an open subset of X. We claim that
A is locally finite. To see this fix x ∈ X . If x ∈ An (or x ∈ Bn, respectively) for
some n ∈ N then An (or Xn, respectively) is a neighborhood of x meeting finitely
many members of A. Thus A is locally finite as claimed and X is not countably
lightly compact, hence not lightly compact also.

We show next that X satisfies the (C3) condition. Assume, aiming for a con-
tradiction, that G is an infinite, pairwise disjoint, locally finite family of closed
subsets of X. Since A has no partial multiple choice set it follows that neither
B = {Bi : i ∈ N} does. Hence, for every closed set G of X each of the sets

{i ∈ N : G ∩ Ai 6= ∅ is finite} and {i ∈ N : G ∩Bi 6= ∅ is finite}

is finite. Therefore, if G is an infinite closed subset of X then there exists the
least integer k such that G ∩ Ak is infinite, or G ∩ Bk is infinite. We observe
that in case G ∩Bk is infinite then for every n ≥ k, Bn ⊆ G. Since G is pairwise
disjoint it follows that G can contain at most one element meeting some member
of B in an infinite set. So, by discarding this element of G, we may assume that
every G ∈ G meets each B ∈ B in a finite set and only finitely many nontrivially.
Therefore, if G ∈ G is infinite then there exists the least k ∈ N such that G ∩ Ak

is infinite. Since G is closed it follows that Bk ∪Ak ⊆ G, as well as Bn ∪An ⊆ G
for every n ≥ k. Since G is pairwise disjoint, it follows that there exists at most
one member of G meeting in an infinite set some member of A. So, without loss
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of generality we may assume that each member of G is finite. Since G is locally
finite, it follows that for every n ∈ N,

|{G ∈ G : G ∩An 6= ∅}| < ℵ0 and |{G ∈ G : G ∩Bn 6= ∅}| < ℵ0.

So, for every n ∈ N,

Cn =
⋃
{G ∈ G : G ∩ An 6= ∅} and Dn =

⋃
{G ∈ G : G ∩Bn 6= ∅}

are finite sets. Since G is infinite, it follows that one of the sets

C = {Cn : n ∈ N}, D = {Dn : n ∈ N}

is infinite. If C is infinite then A has a partial multiple choice set, otherwise B
does. This leads to a contradiction. Hence, X satisfies the (C3), and consequently
the (C6) condition also.

(ii) Fix a topological space X satisfying condition (C6).
We show first thatX is pseudocompact. Assume the contrary and let f : X→ R

be a continuous unbounded strictly positive function. Via a straightforward in-
duction construct a strictly increasing sequence of natural numbers (kn)n∈N such
that f−1[kn, kn+1] 6= ∅ for all n ∈ N. By the continuity of f it follows that

G = {f−1[k2n, k2n+1] : n ∈ N}

is a pairwise disjoint family of closed subsets of X. It is a routine work to verify
that G is locally finite. Hence, by our hypothesis, X does not satisfy condi-
tion (C6). Contradiction!

We show next that X satisfies condition (B6). Assume the contrary and fix
a countable open cover U = {Un : n ∈ N} of X and an infinite subset A of X such
that for all n ∈ N, |Un ∩ A| < ℵ0. Via a straightforward induction we construct
a strictly increasing sequence of natural numbers (kn)n∈N such that for all n ∈ N,

Gn = (Ukn+1
\Ukn

) ∩ A 6= ∅.

Since Ukn+1
∩A is finite and X is T1 it follows that Gn is closed. Furthermore, for

every n,m ∈ N, n < m, Gn ⊆ Ukm
and Gm ∩ Ukm

= ∅. Hence, G = {Gn : n ∈ N}
is a pairwise disjoint family of closed sets of X. We claim that G is locally finite.
To see this, fix x ∈ X and let t be the least natural number with x ∈ Ukt

. Clearly,
Ukt

is a neighborhood of x avoiding Gn for every n > t. Thus, G is locally finite
as claimed. Hence, by condition (C6), G is finite. Contradiction! �

In contrast to Example 8 we show next in (ZF+NT) that a T4 pseudocompact
topological space satisfies (B6).

Theorem 11 (ZF + NT). Every T4 pseudocompact topological space satisfies
condition (B6).
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Proof: Fix a pseudocompact T4 space X. We show that X satisfies condi-
tion (B6). Assume the contrary and fix a countable open cover U = {Un : n ∈ N}
and an infinite subset A of X such that for all n ∈ N, |Un ∩ A| < ℵ0. Let
G = {Gn : n ∈ N} be as in the proof of (v). Clearly, G =

⋃
G is a closed subset of

X and the function f : G→ R, f(x) = n, x ∈ Gn, n ∈ N is continuous and un-
bounded. By NT, f extends continuously to X. Hence, X is not pseudocompact.
Contradiction! �

We show next that Theorem 5 is not a theorem of ZF.

Theorem 12. The statement: “Every Tychonoff pseudocompact and metacom-
pact space is compact” implies IWDI.
In particular, it is relatively consistent with ZF the existence of a non-compact,
pseudocompact and metacompact topological space.

Assume the contrary and let X be an infinite weakly Dedekind finite set
endowed with the discrete topology. Trivially, X is Tychonoff, metacompact
and pseudocompact (if f : X → R is unbounded and strictly positive, then
{f−1(n,∞) : n ∈ N} is a countably infinite subset of P(X), contradicting the
fact that X is weakly Dedekind finite). Thus, by our hypothesis, X is compact.
However, U = {{x} : x ∈ X} is an open cover ofX with no finite subcover meaning
that X is not compact. Contradiction!

4. Summary results

Let LC, IC, CC, PSC and CLC abbreviate lightly compact, ineptly compact,
countably compact, pseudocompact and countably lightly compact, respectively.
The following table summarizes the ZF implications/non-implications between
LC, IC, CC, PSC, CLC, (B6), (C3) and (C6) obtained in this paper and in [4].
The interpretation of the table is as follows: Given P,Q ∈ {LC, IC, CC, PSC,
CLC, (B6), (C3), (C6)}, if in the P -line and Q-row entry there is “→” then
in ZF, every topological space satisfying property P satisfies property Q also. In
case there is “9” then, either there exists a topological space satisfying P but
not Q and the argument can be given in ZF, or there is a ZF model including
a topological space satisfying property P but not Q.

IC LC CC PSC CLC (B6) (C3) (C6)
IC → → → → → → → →
LC 9 → 9 → → → 9 9

CC 9 9 → → → → 9 →
PSC 9 9 9 → 9 9 9 9

CLC 9 9 9 → → → 9 9

(B6) 9 9 9 9 9 → 9 9

(C3) 9 9 9 → 9 → → →
(C6) 9 9 9 → 9 → 9 →

Table 1.
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