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DEPENDENCE OF HIDDEN ATTRACTORS
ON NON-LINEARITY AND HAMILTON ENERGY
IN A CLASS OF CHAOTIC SYSTEM

Ge Zhang, Chunni Wang, Ahmed Alsaedi, Jun Ma and Guodong Ren

Non-linearity is essential for occurrence of chaos in dynamical system. The size of phase
space and formation of attractors are much dependent on the setting of nonlinear function and
parameters. In this paper, a three-variable dynamical system is controlled by different nonlin-
ear function thus a class of chaotic system is presented, the Hamilton function is calculated to
find the statistical dynamical property of the improved dynamical systems composed of hidden
attractors. The standard dynamical analysis is confirmed in numerical studies, and the depen-
dence of attractors and Hamilton energy on non-linearity selection is discussed. It is found
that lower average Hamilton energy can be detected when intensity of nonlinear function is
enhanced. It indicates that non-linearity can decrease the energy cost triggering for dynamical
behaviors.

Keywords: Helmholtz theorem, chaos, hidden attractor,bifurcation, Hamilton energy
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1. INTRODUCTION

In the end of 19th century, Poincaré discovered the emergence of intrinsic stochastic
properties in the deterministic systems by handling three-body problems [6]. In 1963,
Lorenz presented the first realistic example for chaotic solution approached from a dis-
sipative system described by deterministic dynamical equations during the predicting of
weather change. It is confirmed that weather forecast with long period becomes difficult
because the results are much dependent on the initial setting, and this phenomenon is
called as butterfly effect [35]. As a result, sensitivity to initial setting is thought as one
distinct property of chaotic systems [35, 43]. Furthermore, transition from periodical be-
havior to chaos and more statistical analysis on chaotic system become more attractive
[8, 9, 13, 52]. Indeed, the application of chaos is often appreciated when its dynamical
properties and behaviors are known for circuit implement. For example, signal oscillator
[1, 23] can be designed by using chaotic circuits [39, 48, 51, 53, 62, 66], chaotic neural
network is used to process and estimate signals [2, 3, 54], secure communication and
image encryption [11, 25, 30, 32, 61, 65, 68] can be realized by using kinds of chaotic
systems.
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Inspired by the exact description on chaos, which period three implies chaos, the chaos
emergence and ways to chaos occurrence are discussed [34]. For example, the ecologist
May R M [46] found the occurrence of chaos via bifurcation in Logistic map. Feigenbaum
[12] found two generic constants from period doubling bifurcation to chaos [22, 31]. Shaw
et al. [55] investigated the droplet from dripping faucet and chaotic attractors were
confirmed from the sampled time series. Within the topics associated with chaos and
hyperchaos, many new chaotic systems are designed and improved to generate specific
chaotic attractors [5, 19, 21, 26]. Furthermore, many schemes are proposed for realizing
chaos control and synchronization [40, 45, 42, 60, 41]. The formation and profile of
attractors tell more information about dynamical systems. Leonov and Kuznettsov
proposed the concept about hidden attractors [27, 28, 29], which a basin of attraction
that does not intersect with small neighborhoods of any equilibrium points. Dudkowski
et al. [10] discussed the dynamical behaviors in a class of nonlinear systems composed
of hidden attractors. In fact, the dynamics of attractors could be dependent on the
shape of equilibrium points, for example, Wang et al. [59] discussed the attractors in
system composed arbitrary number of equilibrium points, while Sprott et al. [20, 47]
investigated the dynamical system that equilibrium points are located on line shape.
Most of the well-known dynamical systems can generate finite number of attractors, and
some dynamical systems can be controlled to generate infinite number of attractors by
generating infinite equilibrium points, which can be realized by using nonlinear function
such as step function, Jerk function. As a result, multi-scroll attractors [17, 38, 67] can
be induced in the dynamical systems. More interesting, hidden attractors have been paid
much attention and the dynamics transition is investigated by modulating the constraint
formula on equilibrium points [14, 15, 16, 17, 50, 58, 69]. In fact, the dynamics of system
is much dependent on the parameter region and nonlinear interaction function as well.
Indeed, standard analysis [64, 70] such bifurcation calculation and Lyapunov exponent
approach are available for detecting emergence of chaos.

In this paper, the nonlinear terms in a three-variable dynamical system composed
of hidden attractors are modulated by different types, and the Hamilton energy, phase
portrait and sampled time series are analyzed to understand the transition of hidden
attractors and energy dependence on non-linearity selection.

2. MODEL AND SCHEME

In Ref. [49], a chaotic system with different shapes of equilibria is presented to dis-
cuss the dynamics of hidden attractor. For example, the nonlinear function is selected
carefully so that the system can exhibit chaotic attractor with circular equilibrium, el-
lipse equilibrium, square-shaped equilibrium, and/or rectangle-shaped equilibrium. As
mentioned in Ref. [33], multi-scroll attractors can be triggered in the chaotic system
coupled by Jerk function, which can geneate a lot of equilirbium points in the chaotic
system. A generic dynamical system composed of hidden attractors can be described by

.
x = az + f
.
y = bxz + cz3

.
z = x2 + y2 − r2 + dxz,

(1)
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where x, y, z are output variables, the parameters are often fixed at a = −0.1, b = 1,
c = −1.2, r = 1.1, f describes the type of nonlinear function. It is confirmed that the
equilibrium points are located in annulus defined by x2 + y2 = r2. The position of
equilibrium points are modulated when each kind of nonlinear functions f is applied,
respectively. For simplicity, four kinds of nonlinear function are considered for following
discussion.

f1 = A sin(ωy + ϕ); f4 = k(α+ 3βy2)x;

f2 =


A ωy + ϕ > 0

0 ωy + ϕ = 0

−A ωy + ϕ < 0

; f3 =


A(ωy + ϕ) ωy + ϕ > 0

0 ωy + ϕ = 0

−A(ωy + ϕ) ωy + ϕ < 0

(2)

where nonlinear function f1 encodes the sampled time series and can input quasi-
perodical signals, f2 is a discontinuous sign function and the switch depends on the
outputs, f3 inputs positive modulation, ϕ is initial phase value. f4 is memritor-based
function [4, 7, 18, 36, 57] with memory effect dependent on the variable y. As mentioned
in Ref. [36], the memory effect based on memristor could be available for selection of
multiple modes in electrical activities of neuron. At first, the equilibrium points are
estimated when the amplitude of nonlinear function f1 is set as A 6= 0, it is approached
as follows 

A sin(ωy + ϕ) = 0→ y =
nπ − ϕ
ω

z(bx+ cz2) = 0→ x ∈ R

x2 + (
nπ − ϕ
ω

)2 = r2

z = 0.

(3)

As a result, the equilibrium points can be estimated by
x = ±r
y = 0, nπ − ϕ = 0

z = 0

;


y 6= 0, nπ − ϕ 6= 0

x2 + (
nπ − ϕ
ω

)2 = r2.

z = 0

(4)

While the equilibrium points under z 6= 0 are controlled to be free in a large region, it
is approached as follows

A sin(ωy + ϕ) = −az → y =
1

ω
sin−1(−az

A
)− ϕ

ω

z(bx+ cz2) = 0→ x = −c
b
z2

c2z4 + b2[
1

ω
sin−1(−az

A
)− ϕ

ω
]2 − b2r2 − bcdz3 = 0.

(5)

When f4 is applied for stability analysis, the equilibrium points will be controlled by
y = r, −r at x = 0, z = 0 while it will be dependent on the variable x, z as x2 + dxz =
r2 at y = 0; otherwise, it can be dependent on all the variables. As is well known,
continuous power supply is helpful to keep the oscillating behavior in the dynamical
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system. The standard Hamilton energy [33, 42, 56, 63] in dimensionless dynamical
system can be approached by using Helmholtz theorem [24], which the dynamical system
can be mapped into two vector field named as gradient vector fd and rotational field fc
as follows 

ẋ

ẏ

ż

 = (J(x, y, z) +R(x, y, z))∇H = fc(x, y, z) + fd(x, y, z). (6)

When the nonlinear function is described by f1, f2, f3, the vector field is defined by

fc = (x, y, z) = J (x, y, z)∇H =


az + f1,2,3 + ac

br2xz
3

bxz + cz3 − c
r2 y

2z3 + b
axf1,2,3

x2 + y2 − r2



fd = (x, y, z) = R (x, y, z)∇H =


− ac

br2xz
3

c
r2 y

2z3 − b
axf1,2,3

dxz

 .

(7)

Where the subsrcipt 1, 2, 3 defines different nonlinear functions, and the vector field
should meet the criterion [24, 63] as follows{

∇HT fc(x, y, z) = 0

∇HT fd(x, y, z) = dH/dt = Ḣ.
(8)

As a result, the Hamilton function is approached by

H = H1,2,3 = − b

2a
x2 + y +

c

4r2
z4. (9)

That is, the Hamilton energy holds the same formula when nonlinear terms are controlled
by the functions f1, f2, f3. Furthermore, the derivative of Hamilton energy function
with respect to time is verified by

dH/dt = Ḣ = Ḣ1,2,3 = − b
a
xf1,2,3 +

c

r2
x2z3 +

c

r2
y2z3 +

c

r2
dxz4. (10)

It is found that the Hamilton energy function with respect to time is dependent on the
setting for non-linearity completely. In the case for setting function f4 with multiplica-
tion between different variables, the vector is calculated by

fc = (x, y, z) =


az + ac

br2xz
3

bxz + cz3 − c
r2 y

2z3

x2 + y2 − r2



fd = (x, y, z) =


f4 − ac

br2xz
3

c
r2 y

2z3

dxz

 .

(11)
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According to the criterion shown in Eq.(8), the Hamilton function can be calculated as
follows 

H = H4 = − b

2a
x2 + y +

c

4r2
z4

dH/dt = Ḣ4 = − b
a
xf4 +

c

r2
x2z3 +

c

r2
y2z3 +

c

r2
dxz4.

(12)

That is, the Hamilton energy function is dependent on the variables, parameter setting
and nonlinear terms as well. As a result, restriction of variable and phase compression
can modulate the Hamilton energy, and then the attractors can be controlled in effective
way.

3. NUMERICAL RESULTS AND DISCUSSION

The fourth order Runge–Kutta algorithm is used to find solutions from the dynamical
system with time step h=0.01, and ODE45 is carried out on Matlab tool. The initial
values are selected as (x0, y0, z0) = (0.1, 0.2, 0.3), parameters are selected as a = −0.1,
b = 1, c = −1.2, r = 1.1. In fact, the improved system (1) driven by f1 = A sin(ωy+ϕ)
is similar to the dynamical system mapped from the Jerk circuit that the outputs are
encoded by quasi-periodical function and then the dynamical system can be controlled
completely. It is important to detect the emergence of chaos in this dynamical system
when different nonlinear functions are applied. There is a lot of different exact definitions
of the chaos phenomenon like the definition in the Smale’s sense, Devaney’s sense, Li-
Yorke’s sense, ergodic definition. In this paper, we use the Li–Yorke’s definition to
observe the occurrence of chaos by calculating the Lyapuonv exponent spectrum reported
by Wolf in Ref. [64]. In Figure 1, the phase portrait is calculated to observe the
dependence of attractors on bifurcation parameters setting.
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Fig. 1. Different attractors are plotted by setting different parameters d,

A. For (a) d = 0.005, A = 0; (b) d = −0.06, A = 0.01; (c) d = −0.06, A = 0;

(d) d = −0.6, A = 0.01; and ω = π/4, ϕ = 0.0.

It is found that chaotic attractors can be tamed to trigger multi-scroll attracors, and
chaos can be suppressed under applying appropriate parameter setting. Furthermore,
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the bifurcation analysis and largest Lyapunov exponent [64] spectrum are calculated to
detect the occurrence of chaos for parameter region, the results are plotted in Figure 2.
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Fig. 2. Bifurcation diagram and largest Lyapunov exponents are calculated

by changing the bifurcation parameter d, the other parameters are fixed at

A = 0.01,ω = π/4, ϕ = 0. xmax represents the maximal value in the sampled

time series for variable x, and it is detected as x(t− 1) < xmax(t) < x(t+ 1).

That is, the largest Lyapunov exponent is much close to zero with increasing the
parameter d, and the bifurcation analysis for maximal variable confirms that the first
variable can show multiple peaks to induce multi-periodical mode in the sampled time
series. Furthermore, the evolution of the variables is calculated to show the transition
and stability of attractors in Figure 3.
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Fig. 3. Formation of attractors, for (a) d = −1; (b) d = −0.6; (c)

d = −0.3; (d) d = −0.03; the other parameters are fixed at A = 0.01,

ω = π/4, ϕ = 0. The nonlinear function is selected by f1.

That is, multi-scroll attractors can be suppressed to behave periodical oscillation
when nonlinear modulation f1 is applied. On the other hand, the modulation from f1 can
also be suppressed by another nonlinear term dxz via setting appropriate parameter d,
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so that multi-scroll attracors can be enhanced greatly. Furthermore, the effect of initial
phase setting is investigated in Figure 4.
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Fig. 4. Formation of attractors are calculated by setting different initials

phase ϕ, for (a)ϕ = π/8; (b) ϕ = π/2; (c)ϕ = 3π/4; (d)ϕ = 2π; the other

parameters are fixed at A = 0.01, ω = π/4, d = −0.06.The nonlinear

function is selected by f1.

It is found that the attractors in the dynamical system are much dependent on the
initial setting for phase in the nonlinear function f1, and the scroll number of attrac-
tors can be modulated completely. Extensive numerical results confirmed that chaotic
attractors can also be suppressed by setting appropriate initial phase, e. g. ϕ = −π/4,
and A = 0.01, ω = 2, d = −0.10. In fact, nonlinear function f1 changes the dynamical
system modulated by Jerk function-like function that more equilibrium points can be
formed to generate scroll-attractors . The evolution of response behavior of this system
is also dependent on the nonlinear term dxz, however, the properties of attactors in this
system is mainly controlled by the nonlinear function f1 when parameter d is fixed.
It is also interesting to investigate the case when nonlinear term f2 = Asign(ωy + ϕ),
f3 = A|ωy + ϕ| are used to change the dynamical properties in this system. Similar
numerical algorithm is carried out to find solutions from the system driven by discon-
tinuous nonlinear functions as f2, f3, then the attractors and sampled time series for
the first variables are calculated in Figure 5.

It is found that similar chaotic attractors can be formed by applying different non-
linear modulation f1, f2, f3 on the dynamical system when the amplitude A is fixed the
same, and the sampled time series for variable x also show similar oscillating properties.
The mechanism could be that the nonlinear modulation from f1, f2, f3 all depends on
the second variable y completely and modulation function are switched with certain
rhythm. In fact, the three kinds of nonlinear functions can modulate the dynamical
behaviors with certain periodicity.

In the following discussion, we investigate the dynamical response of system by ap-
plying memristor-based function as f4 = k(α + 3βy2)x, and the stability of attractors
will be discussed. Memristor [57] is a new electric device and it is often used in the
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Fig. 5. Formation of attractors by applying nonlinear terms, for (a)f1;

(b)f2; (c)f3; sampled time series for variable x are calculated (d); the other

parameters are fixed at A = 0.01, ω = π/4, ϕ = 0, d = −0.06.

nonlinear circuit to support the chaotic behaviors, and its memductance is dependent
on the inputs current. As a result, memory effect is found in the memristor. As men-
tioned in Ref. [43], switch and resetting initial values for the dynamical system can
select different periodical and chaotic attractors when other parameters are fixed in the
initial-dependent system with memory. Furthermore, the memristor is used to describe
the effect of electromagnetic induction in neuron and it can bridge the coupling between
magnetic flux and membrane potential of neuron. Indeed, this improved neuron model
[37, 44] can explain the emergence of multiple modes and response to external electro-
magnetic radiation on neuronal activities. In Figure 6, the attactors are calculated by
setting different feedback gains k in the memristor function f4.
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Fig. 6. Formation of attractors in the system modulated by memristor

function f4, for (a)k = 0.001; (b)k = 0.005; (c)k = 0.01; (d)k = 0.03; the

other parameters are fixed at α = 0.2, β = 0.2, d = −0.06.
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That is, the chaotic attractors are modulated with increasing the feedback gain in
the memristor function and the scrolls are enhanced. Furthermore, we also investigate
the case when feedback gain d is changed when gain k in memristor function is fixed at
appropriate values; the results are shown in Figure 7.
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Fig. 7. Formation of attractors in the system modulated by memristor

function f4, for (a)d = −0.01; (b)d = −0.03; (c)d = −0.2; (d)d = −0.6, the

other parameters are fixed at α = 0.2, β = 0.2, k = 0.005.

It is found that chaotic attractors can be suppressed and a periodical oscillating
behavior is induced when memristor function is applied on the dynamical systems. To
discern the effect of feedback gains k, d in the nonlinear function, the bifurcation diagram
is calculated in Figure 8.
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changing at fixed k = 0.006. The other parameters are fixed at a = −0.1,

b = 1, c = −1.2, r = 1.1, α = 0.2, β = 0.2.

The results in Figure 8 confirmed that periodical behaviors can be switched to chaotic
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states by applying appropriate setting on feedback gains k in memristor function, and
d in the nonlinear terms of the dynamical systems. Extensive numerical results found
that the profile of attractors is much dependent on the feedback gains in the memristor
function and nonlinear function xz. Finally, it is important to detect the evolution of
Hamilton energy by setting and triggering different attractors in the dynamical system.
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Fig. 9. Evolution of Hamilton function is calculated by applying different

nonlinear modulation function, for (a)f1;(b)f2;(c)f3;(d)f4, the parameters

are fixed at A = 0.01, ω = π/4, ϕ = 0, d = −0.6, k = 0.05, α = 0.2, β = 0.2.

It was ever confirmed that chaotic state can consume a lower average Hamilton energy,
and the average Hamilton energy will be decreased with increase the scroll number of
attractors [33]. The nonlinear function f3 always imposes positive stimulus and thus
the dynamical system can hold higher maximal Hamilton energy than the system driven
by nonlinear function f1 and f2, which generates switch between negative and positive
perturbation on the dynamical system. The memristor function enlarges the fluctuation
of Hamilton energy greatly. It is also found that periodical oscillation can cost higher
Hamilton energy. To further estimate the dependence of Hamilton energy on amplitude
of nonlinear function, the average Hamilton energy is calculated by

〈H〉 =
1

T

∫ T

0

H(t) dt (13)

where T is the transient period for calculating the average Hamilton energy. From the
view of dynamical control, these nonlinear function f1, f2, f3, f4 can input continuous
energy to change the dynamical states. As a result, appropriate amplitude is useful
to enhance the oscillating behavior in the dynamical system driven by nonlinear func-
tion. However, setting some amplitude can cause breakdown and no solution can be
approached in these dynamical systems because no stable equilibrium point can be de-
tected. In Figure 10, the average Hamilton energy is estimated within a transient period
2000 time units.
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Fig. 10. Evolution of average Hamilton energy function by applying

different nonlinear modulation function, for (a)f1; (b)f2;(c)f3;(d)f4,

calculated by changing the amplitude A and the feedback gain k, the

parameters are fixed at ω = π/4, ϕ = 0, d = −0.6, α = 0.2, β = 0.2.

Transient period about T = 2000 time units is used for calculating.

’Unavailable’ means that no solution can be found from the dynamical

system, thus no Hamilton energy can be estimated.

As shown in the curves in Figure 10, the average Hamilton energy decreases with
the increase of amplitude in the nonlinear function. The potential mechanism could
be that stronger non-linearity can much contribute to the oscillating behaviors in the
dynamical system, continuous release and absorbing in energy will approach a lower
average Hamilton energy. As a result, appropriate setting for amplitude in nonlinear
functions can enhance rich dynamical behaviors and also decrease the Hamilton energy,
which is also available for circuit realization when operational amplifier is required. In
this way, appropriate nonlinear function and electric devices can be selected to design
chaotic circuits with lower energy cost, thus it decreases the cost of commercial electric
devices such as operational amplifier(OM) in circuit setting.

4. CONCLUSIONS

Based on a three-variable dynamical system, a different nonlinear term is modulated
to trigger different hidden attractors. The Hamilton energy dependence on non-linearity
and parameter setting is estimated. The improved dynamical system composed of hid-
den attractors can be controlled to switch between periodical and chaotic attractors.
Nonlinear terms are critical to trigger chaotic behaviors and the modulation amplitude
is important to supply enough energy. Indeed, appropriate setting in amplitude and
nonlinear terms are important to decrease Hamilton energy in the dynamical systems,
thus the dynamical system can be controlled to reach target orbits. These results in-
dicate that appropriate setting and selection in non-linear function could be helpful to
design chaotic, periodical circuits with lower energy cost.
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